BN 0
Marc Snir
Fall 2018

?

MPI Cartesian Mesh and Neightorhood Collectives
aka Sparse Collectives

Da

b

Each node (process) has

four outgoing edges and
four incoming edges.

int size, dims[2], periods[2];
MPI_Comm cart;

// find number of processes
MPI_Comm_size (MPI_COMM\ _WORLD, &size)

/% find 2 numbers a,b so that a*b=size, and the numbers
are as close to one another as possible */
MPI_Dims_create(size, 2, dims)

// we want a periodic mesh
periods [0]l=periods [1]=1;

/* Create Cartesian communicator
it 4s a copy of MPI_COMM_WORLD, ezpect that processes
also have Cartesian coordinates */

MPI_Cart_create (MPI_COMM_WORLD, 2, dims, periods, 0, &cart);

\

v

3
Process 0
Na
5> |— :I :
]
1] /I l
\ 3 recv buffer
(=] = E | B

MPI_Neighbor_allgather(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void *recvbuf, intrecvcount, MPI_Datatype recvtype, MPI_Comm
comm)

@ Each process sends its data through all of its outgoing edges. It gathers data from all of it
incoming edges.

@ In a 2D Cartesian mesh, a process send its data to all of its four neighbors and receives, in
one contiguous buffer, from each of them.

@ Not what we need; for Jacobi, each process has to send a distinct datum to each neighbor

send buffer

™~

—

3
\» Process 0
//%_

- |

T

/ recv buffer

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, intrecvcount, MPI_Datatype recvtype, MPI_Comm
comm)

@ Each process sends the k-th chunck of its send buffer though its k-th outgoing edge. It
receives data into the k-th chunk of its receive buffer from its k-th incoming edge.

@ In a 2D Cartesian mesh, a process send data chunks to all of its four neighbors and
receives, data chuncks from each of them.

@ Closer to what we need — but will require us to copy the boundaries intoa contiguous send
buffer and copy into the ghost cells from a contiguous recevive buffer, and requires square
matrix (same number of elements sent to all neightboirs)

send
buffer

CS420 — Lecture 27

float A[N+2][N+2];
float sendbuf S[4*N]
float recvbuf R[4x*N];
int i;

// copy boundaries into send buffer

for(i=1;i<=N; i++) {

S[il = A[il1[1]1;

S[N+i] = A[i][NI;

S[2*N+i] = A[11[i];

S[3*N+i] = A[INI[il;

}

MPI_Neighbor_alltoall(S,N, MPI_FLOAT, R, N, MPI_FLOAT, cart)

// copy halo from receive buffer
for(i=1;i<=N; i++) {

ATil[o]l = R[il;
A[i][N] = RI[N+i];
A[11[i] = R[2*N+il;
A[N][i] = RI[3*N+il;

}

CS420 — Lecture 27

Can send chunks of different sizes, starting at different displacements, to different neighbors;
and same for receiving.

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, rectype, comm)

This will allow handling tiles that are not square

Can send chunks of different sizes, starting at different displacements, to different neighbors;
and same for receiving.

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, rectype, comm)

This will allow handling tiles that are not square

Can send chunks of different size, with different displacements and different datatypes to each
neighbor; and same for receiving.

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, rectypes, comm)

Displacements are in bytes.

This will avoid the additional copies

@ Can use a datateyp of MPT_F10AT to send
and receive the top and bottom rows

@ Can use a vector datatype to send and
receive the left and right columns

float A[N+2][N+2];

MPI_Datatypes types[4]; // same datatypes work for sending and receiving
int sdipls[4];

int rdispls [4];

int counts[4]; // same coutns work for sending and Teceiving

sdispls [0] (int) (&A[1][1]-&%A[0][0])*xsizeof (float);
sdispls [1] (int) (ZA[1]1[N]1-&A[0] [0])*sizeof (float);
sdispls [2] sdispls [0];

sdipls [3] = (int) (&A[MI[1]-&A[0]J[0])*sizeof (float);

rdispls [0] = (int)(&A[11[0]1-&A[0][0])*sizeof (float);
rdipls [1] = (int) (&A[1][N+1]-&A[0][0]])*sizeof (float);
rdispls[2] = (int) (&A[O0][1]1-&A[0]1[0])*sizeof (float);
rdipls [3] = (int))&A[M+1][1]-&A[0][0])*sizeof (float);

counts [0] counts [2] = 1; // will use one wector
counts [1] = counts[3] = N;

types [1] = types[3] = MPI_FLOAT

MPI_Type_vector (M, 1, N+2, MPI_FLOAT, &types[0]);
types [2] = types[0];

MPI_Type_commit (&types [0]);
MPI_Type_commit (&types[2]);

MPI_Neighbor_alltoallw(a, counts, sdipls, types, a,
counts, rdipls, types, cart);

MPI and Threads

#include <mpi.h>
#include <omp.h>

int main(argc, argv) {
MPI_Init_thread(argc, argv, xxx, &provided);

MPI_Isend(...);
#pragma omp parallel
{some code?}
MPI_Wait (...);
}

@ The code is multithreaded
e But MPI is invoked by only one thread (the master thread)
e Required mode is MPI_THREAD_FUNNELED

#include <mpi.h>
#include <omp.h>
#include <stdlib.h>

int main(argc, argv) {

MPI_Init_thread(argc, argv, MPI_THREAD_FUNNELED &provided);
if (provided < MPI_THREAD_FUNNELED) exit (EXIT_FAILURE);

MPI_Isend (...);
#pragma omp parallel
{some code}

MPI_Wait (...);

#include <mpi.h>
#include <omp.h>

int main(argc, argv) {
MPI_Init_thread(argc, argv, xxx, &provided);

#pragma omp parallel
{MPI_Send (...);}
}

@ The code is multithreaded
e MPI is invoked concurrently by multiple threads (each thread executes the send call)
@ Required mode is MPI_THREAD_MULTIPLE

#include <mpi.h>
#include <omp.h>
#include <stdlib.h>

int main(argc, argv) {
MPI_Init_thread(argc, argv, MPI_THREAD_MULTIPLE &provided);
if (provided < MPI_THREAD_MULTIPLE) exit (EXIT_FAILURE);

#pragma omp parallel

{MPI_Send(...);}
}

PGAS — UPC

Global address space

Shared | Shared | Shared | Shared

Segment | Segment | Segment | Segment

Private : Private : Private : Private
Segment [Segment 1 Segment 1 Segment
1 1 1
Rank 0 Rank 1 Rank 2 Rank 3

Each process (misleadingly called thread) executes the main program.
THREADS is the number of processes and MYTHREAD is the local process rank.
All processes can access locations in the shared segments

But read or write of remote location is expensive

e 6 6 o6 o

Arrays can be distributed across all processes

Bad code!

#include <upc_relaxed.h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {

int i;
// each thread picks a segment of the array indices
first = MYTHREAD*N/THREADS;
last = (MYTHREAD+1)*N/THREADS;
for(i=first; i<last; i++)
wlil = vi[il+v2[i]:

Thread Thread Thread

0 1 2

vi[o]| [vif]| |[vil
VA[3]| [Vvi[]| |[Vvi[5]
vi[el| [viE]| [vie]
ve[o]| |ver| |ver
v2[s]| |veral| | vers)
va[el| vy | verel
wio]| (w[1] w[2]
wi3]| (w[4] wi5]
wie]| (w[5] wl6]

Good:

Bad:

v1l, v2 and w are distributed the
same way across the processes

Most of the operations performed
by each process use operands that
are stored remotely.

#include <upc_relaxed.h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {

int i;
for (i=MYTHREAD; i<N; i+=THREADS)
wlil = v1[il+v2[i]:

@ A non-optimizing compiler may still use global pointers in the loop, slowing down
computation.

@ w[i] is stored on process i%THREADS, at displacement i/THREADS — integer division and
mod are expnesive operations.

#include <upc_relaxed.h>
define N 10000

shared float v1[N], v2[n], w[N];
int main () {
int i;
upc_forall(i=0; i<N; i++; i)
wl[il = vi[i]l+v2[il:

// distributed arrays

@ The call is collective (invoked by all processes)
@ upc_forall execute iteration i on process i%THREADS

@ The compiler generated code will loop on local members of the array.
@ Similar to the OpenMP parallel for construct.

#include <upc_relaxed.h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {

int i;
upc_forall(i=0; i<N; i++; wl[i])
wlil = v1[il+v2[i]:

@ lteration 1 is executed on the process that owns w[i].

@ Works fine provided that v1, v2 and w have same distribution, irrespective of what this
distribution is.

#include <upc_relaxed.h>

shared int a[THREADS] [THREADS];
shared int b[THREADS],
int main () {

int i, j;

upc_forall(i = 0

= ; 1 < THREADS
c[i]l = 0;

for (j= 0 ; j < THREADS
cl[i]l += alil[jl=*b[j1;

c[THREADS]

HENESD)

}

>

i++;

i) {

@ Process i computes
c[i] and accesses
elements from all the
other processes.

o It is preferable to
partition the matrix by
rows

u]

8
I
i
!
)

)

Tireai 0
A B

#include <upc_relaxed.h>

// partition a into chunks of size THREADS

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

int main () {
int i, j;

upc_forall(i = 0 ; i < THREADS ; i++; i)
cl[i]l = 0;

for (j= 0 ; j< THREADS ; j++)
clil += alil[jI*b[j];

}

{

