
CS420 – Lecture 27

Marc Snir

Fall 2018

Marc Snir CS420 – Lecture 27 Fall 2018 1 / 34

MPI Cartesian Mesh and Neightorhood Collectives
aka Sparse Collectives

Marc Snir CS420 – Lecture 27 Fall 2018 2 / 34

2D Jacobi

Marc Snir CS420 – Lecture 27 Fall 2018 3 / 34

2D Jacobi – Distribute on 6 processes

Marc Snir CS420 – Lecture 27 Fall 2018 4 / 34

Needed process topology

0

3

1

4

2

5

Each node (process) has
four outgoing edges and
four incoming edges.

Marc Snir CS420 – Lecture 27 Fall 2018 5 / 34

Creating a Cartesian topology

...
int size , dims [2], periods [2];
MPI_Comm cart;

// find number of processes
MPI_Comm_size (MPI_COMM_WORLD , &size)

/* find 2 numbers a,b so that a*b=size , and the numbers
are as close to one another as possible */

MPI_Dims_create (size , 2, dims)

// we want a periodic mesh
periods [0]= periods [1]=1;

/* Create Cartesian communicator
it is a copy of MPI_COMM_WORLD , expect that processes
also have Cartesian coordinates */

MPI_Cart_create (MPI_COMM_WORLD , 2, dims , periods , 0, &cart);

Marc Snir CS420 – Lecture 27 Fall 2018 6 / 34

Neighborhood Collective – Allgather

0

3

1

4

2

5

Process 0
send buffer

recv buffer

2

3

3

1

Marc Snir CS420 – Lecture 27 Fall 2018 7 / 34

Allgather

MPI_Neighbor_allgather(const void* sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, intrecvcount, MPI_Datatype recvtype, MPI_Comm
comm)

Each process sends its data through all of its outgoing edges. It gathers data from all of it
incoming edges.
In a 2D Cartesian mesh, a process send its data to all of its four neighbors and receives, in
one contiguous buffer, from each of them.
Not what we need; for Jacobi, each process has to send a distinct datum to each neighbor

Marc Snir CS420 – Lecture 27 Fall 2018 8 / 34

Neighborhood Collective – Alltoall

0

3

1

4

2

5

Process 0send buffer

recv buffer

2

3

3

1

Marc Snir CS420 – Lecture 27 Fall 2018 9 / 34

Allgather

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, intrecvcount, MPI_Datatype recvtype, MPI_Comm
comm)

Each process sends the k-th chunck of its send buffer though its k-th outgoing edge. It
receives data into the k-th chunk of its receive buffer from its k-th incoming edge.
In a 2D Cartesian mesh, a process send data chunks to all of its four neighbors and
receives, data chuncks from each of them.
Closer to what we need – but will require us to copy the boundaries intoa contiguous send
buffer and copy into the ghost cells from a contiguous recevive buffer, and requires square
matrix (same number of elements sent to all neightboirs)

Marc Snir CS420 – Lecture 27 Fall 2018 10 / 34

send
buffer

recv
buffer

Marc Snir CS420 – Lecture 27 Fall 2018 11 / 34

Halo exchange code

...
float A[N+2][N+2];
float sendbuf S[4*N]
float recvbuf R[4*N];
int i;
...
// copy boundaries into send buffer
for(i=1;i<=N; i++) {

S[i] = A[i][1];
S[N+i] = A[i][N];
S[2*N+i] = A[1][i];
S[3*N+i] = A[N][i];

}
MPI_Neighbor_alltoall (S,N, MPI_FLOAT , R, N, MPI_FLOAT , cart)

Marc Snir CS420 – Lecture 27 Fall 2018 12 / 34

// copy halo from receive buffer
for(i=1;i<=N; i++) {

A[i][0] = R[i];
A[i][N] = R[N+i];
A[1][i] = R[2*N+i];
A[N][i] = R[3*N+i];

}

Marc Snir CS420 – Lecture 27 Fall 2018 13 / 34

All2all variants

Can send chunks of different sizes, starting at different displacements, to different neighbors;
and same for receiving.
MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, rectype, comm)
This will allow handling tiles that are not square

Can send chunks of different size, with different displacements and different datatypes to each
neighbor; and same for receiving.
MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, rectypes, comm)
Displacements are in bytes.
This will avoid the additional copies

Marc Snir CS420 – Lecture 27 Fall 2018 14 / 34

All2all variants

Can send chunks of different sizes, starting at different displacements, to different neighbors;
and same for receiving.
MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, rectype, comm)
This will allow handling tiles that are not square

Can send chunks of different size, with different displacements and different datatypes to each
neighbor; and same for receiving.
MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, rectypes, comm)
Displacements are in bytes.
This will avoid the additional copies

Marc Snir CS420 – Lecture 27 Fall 2018 14 / 34

Datatypes

M

N

Can use a datateyp of MPI_FlOAT to send
and receive the top and bottom rows
Can use a vector datatype to send and
receive the left and right columns

Marc Snir CS420 – Lecture 27 Fall 2018 15 / 34

...
float A[N+2][N+2];
MPI_Datatypes types [4]; // same datatypes work for sending and receiving
int sdipls [4];
int rdispls [4];
int counts [4]; // same coutns work for sending and receiving

sdispls [0] = (int)(&A[1][1] -&A [0][0])* sizeof (float);
sdispls [1] = (int)(&A[1][N]-&A [0][0])* sizeof (float);
sdispls [2] = sdispls [0];
sdipls [3] = (int)(&A[M][1] -&A [0][0])* sizeof (float);

rdispls [0] = (int)(&A[1][0] -&A [0][0])* sizeof (float);
rdipls [1] = (int)(&A[1][N+1] -&A [0][0]])* sizeof (float);
rdispls [2] = (int)(&A[0][1] -&A [0][0])* sizeof (float);
rdipls [3] = (int))&A[M+1][1] -&A [0][0])* sizeof (float);

Marc Snir CS420 – Lecture 27 Fall 2018 16 / 34

counts [0] = counts [2] = 1; // will use one vector
counts [1] = counts [3] = N;

types [1] = types [3] = MPI_FLOAT

MPI_Type_vector (M, 1, N+2, MPI_FLOAT , &types [0]);
types [2] = types [0];

MPI_Type_commit (& types [0]);
MPI_Type_commit (& types [2]);

...
MPI_Neighbor_alltoallw (a, counts , sdipls , types , a,

counts , rdipls , types , cart);

Marc Snir CS420 – Lecture 27 Fall 2018 17 / 34

MPI and Threads

Marc Snir CS420 – Lecture 27 Fall 2018 18 / 34

include <mpi.h>
include <omp.h>

int main(argc , argv) {
MPI_Init_thread (argc , argv , xxx , & provided);
...
MPI_Isend (...);

pragma omp parallel
{some code}
MPI_Wait (...);

}

The code is multithreaded
But MPI is invoked by only one thread (the master thread)
Required mode is MPI_THREAD_FUNNELED

Marc Snir CS420 – Lecture 27 Fall 2018 19 / 34

include <mpi.h>
include <omp.h>
include <stdlib .h>
...
int main(argc , argv) {

MPI_Init_thread (argc , argv , MPI_THREAD_FUNNELED & provided);
if (provided < MPI_THREAD_FUNNELED) exit(EXIT_FAILURE);
...
MPI_Isend (...);
pragma omp parallel
{some code}
MPI_Wait (...);

}

Marc Snir CS420 – Lecture 27 Fall 2018 20 / 34

include <mpi.h>
include <omp.h>

int main(argc , argv) {
MPI_Init_thread (argc , argv , xxx , & provided);
...
pragma omp parallel
{ MPI_Send (...);}

}

The code is multithreaded
MPI is invoked concurrently by multiple threads (each thread executes the send call)
Required mode is MPI_THREAD_MULTIPLE

Marc Snir CS420 – Lecture 27 Fall 2018 21 / 34

include <mpi.h>
include <omp.h>
include <stdlib .h>
...

int main(argc , argv) {
MPI_Init_thread (argc , argv , MPI_THREAD_MULTIPLE & provided);
if (provided < MPI_THREAD_MULTIPLE) exit(EXIT_FAILURE);

...
pragma omp parallel
{ MPI_Send (...);}

}

Marc Snir CS420 – Lecture 27 Fall 2018 22 / 34

PGAS – UPC

Marc Snir CS420 – Lecture 27 Fall 2018 23 / 34

PGAS

1 Introduction

UPC++ is a C++11 library that supports Partitioned Global Address Space (PGAS) programming. It is
designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The PGAS
model is single program, multiple-data (SPMD) in which each separate thread of execution (referred to as a
process) has access to private memory as well as a global address space. This global address space is accessible
to all processes and is allocated in shared segments that are distributed over the processes (see Figure 1).
UPC++ provides various convenient methods for accessing and using this global memory, as will be described
later in this guide. In UPC++, all accesses to remote memory are explicit, via a special set of methods.
There is no implicit communication. This design decision was made to encourage programmers to be aware of
the cost of data movement, which may incur expensive communication. Moreover, all remote-memory access
operations are asynchronous by default. Together, these two constraints are intended to enable programmers
to write code that performs well at scale.

Figure 1: Figure 1. PGAS Memory Model.

This guide describes the LBNL implementation of UPC++, which uses GASNet for communication across a
wide variety of platforms, ranging from Ethernet-connected laptops to commodity InfiniBand clusters and
supercomputers with custom high-performance networks. GASNet is a language-independent, networking
middleware layer that provides network-independent, high-performance communication primitives tailored for
implementing parallel global address space languages and libraries such as UPC, UPC++, Co-Array Fortran,
Legion, Chapel, and many others. For more information about GASNet, visit http://gasnet.lbl.gov.

Although our implementation of UPC++ uses GASNet, in this guide, only the Installing, Compiling
and Running section is specific to the implementation. The LBNL implementation of UPC++ adheres
to the implementation-independent specification. Both are available at the UPC++ homepage at http:
//upcxx.lbl.gov/. Please report any problems in the issue tracker, http://upcxx.lbl.gov/issues.

UPC++ has been designed with modern object-oriented concepts in mind. Novices to C++ should avail
themselves of good-quality tutorials and documentation to refresh their knowledge of Template Meta
programming, the C++ standard library (std::), and lambda functions, which are used heavily in UPC++.

2 Installing, Compiling and Running UPC++ Programs

We present a brief description of how to install UPC++ and compile and run UPC++ programs. For more
detail, consult the INSTALL.md file that comes with the distribution.

Installing

This programming guide assumes that the source code file has been extracted to a directory,
<upcxx-source-path>. From the top-level of this directory, run the install script:

./install <upcxx-install-path>

3

Marc Snir CS420 – Lecture 27 Fall 2018 24 / 34

Each process (misleadingly called thread) executes the main program.
THREADS is the number of processes and MYTHREAD is the local process rank.
All processes can access locations in the shared segments
But read or write of remote location is expensive
Arrays can be distributed across all processes

Marc Snir CS420 – Lecture 27 Fall 2018 25 / 34

Vector addition

Bad code!
include <upc_relaxed .h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {

int i;
// each thread picks a segment of the array indices

first = MYTHREAD *N/ THREADS ;
last = (MYTHREAD +1)*N/ THREADS ;
for(i=first; i<last; i++)

w[i] = v1[i]+v2[i]:

Marc Snir CS420 – Lecture 27 Fall 2018 26 / 34

Why Bad?

V1[3]
V1[0]

V1[6]

V2[5]
V2[2]

V2[6]

V1[4]
V1[1]

V1[5]

Thread
0

Thread
1

Thread
2

V2[3]
V2[0]

V2[6]

V1[5]
V1[2]

V1[6]

V2[4]
V2[1]

V2[5]

w[5]
w[2]

w[6]
w[3]
w[0]

w[6]
w[4]
w[1]

w[5]

Good: v1, v2 and w are distributed the
same way across the processes

Bad: Most of the operations performed
by each process use operands that
are stored remotely.

Marc Snir CS420 – Lecture 27 Fall 2018 27 / 34

Better code

include <upc_relaxed .h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {
int i;
for(i= MYTHREAD ; i<N; i+= THREADS)
w[i] = v1[i]+v2[i]:

A non-optimizing compiler may still use global pointers in the loop, slowing down
computation.
w[i] is stored on process i%THREADS, at displacement i/THREADS – integer division and
mod are expnesive operations.

Marc Snir CS420 – Lecture 27 Fall 2018 28 / 34

Best code

include <upc_relaxed .h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {

int i;
upc_forall (i=0; i<N; i++; i)
w[i] = v1[i]+v2[i]:

The call is collective (invoked by all processes)
upc_forall execute iteration i on process i%THREADS
The compiler generated code will loop on local members of the array.
Similar to the OpenMP parallel for construct.

Marc Snir CS420 – Lecture 27 Fall 2018 29 / 34

Better

include <upc_relaxed .h>
define N 10000

shared float v1[N], v2[n], w[N]; // distributed arrays
int main () {
int i;
upc_forall (i=0; i<N; i++; w[i])
w[i] = v1[i]+v2[i]:

Iteration i is executed on the process that owns w[i].
Works fine provided that v1, v2 and w have same distribution, irrespective of what this
distribution is.

Marc Snir CS420 – Lecture 27 Fall 2018 30 / 34

Other Distributions – matrix-vector product

include <upc_relaxed .h>

shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS] ;
int main () {

int i, j;
upc_forall (i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for (j= 0 ; j < THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

Marc Snir CS420 – Lecture 27 Fall 2018 31 / 34

Bad distribution

November 14, 2005UPC Tutorial 23

Data Distribution

Th. 0

Th. 1

Th. 2

*

A B

Thread 0

Thread 1

Thread 2

=

C

Th. 0

Th. 1

Th. 2

Process i computes
c[i] and accesses
elements from all the
other processes.
It is preferable to
partition the matrix by
rows

Marc Snir CS420 – Lecture 27 Fall 2018 32 / 34

November 14, 2005UPC Tutorial 24

A Better Data Distribution

C

Th. 0

Th. 1

Th. 2

*=

A B

Thread 0

Thread 1

Thread 2

Th. 0

Th. 1

Th. 2

Marc Snir CS420 – Lecture 27 Fall 2018 33 / 34

Code

include <upc_relaxed .h>
// partition a into chunks of size THREADS
shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

int main () {
int i, j;

upc_forall (i = 0 ; i < THREADS ; i++; i) {
c[i] = 0;
for (j= 0 ; j< THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

Marc Snir CS420 – Lecture 27 Fall 2018 34 / 34

