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Background

• Real-time traffic classification may solve difficult network management
problems for Internet service providers (ISPs) and their equipment vendors.

E.g. DOS detection, QoS and lawful interception (LI)

• Traditional methods:
1. Port based IP traffic classification: src and dest port and IP

Problem: not register their ports such as P2P system, ports are dynamically allocated

2. Payload based IP traffic classification: interpret payloads

Problem: privacy

• Recognize statistical patterns of traffic using machine learning
E.g., packet lengths and inter-packet arrival times
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Main Idea

• Review and critique emerging ML-based techniques for IP traffic
classification.
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ML Metrics

Classified T F

T TP FN

F FP TN
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• Recall = TP/(TP+FN)

• Precision = TP/(TP+FP)

• Accuracy = (TP+TN)/All

Flow accuracy and byte accuracy

Classified Cat Dog

Cat 8 2

Dog 4 6

Toy example of classification result of ML

• Recall = 8/10 = 0.8

• Precision = 8/12 = 0.67

• Accuracy = 0.7

Confusion Matrix



Limitation of traditional methods

• Port based IP traffic classification
Limitation:

❖ Some applications may not have their ports registered with IANA (P2P)

❖ Server ports are dynamically allocated as needed (RealVideo)

❖ Less than 70% accuracy for port based classification

• Payload based IP traffic classification
Limitation:

❖ Imposes significant complexity and processing load on the identification device

❖ Impossible when dealing with encrypted traffic
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Machine learning methods

• Two main ML methods
➢ Supervised learning method: Native Bayes, Decision tree

▪ Training and test. Need to label data

➢ unsupervised learning method: EM, K means, AutoClass
▪ Do not need to train the model, but the number of cluster is greater than application

• Features selection
➢ Filter method: make independent assessment based on general

characteristics of the data

➢ Wrapper method: evaluate the performance of different subsets using the ML
algorithm that will ultimately be employed for learning
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ML framework—training and test
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ML framework--training
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ML framework—operational traffic
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Challenges for operational traffic

• Timely and continuous classification
❖ Few packets as possible from each flow

• Directional neutrality
❖ Application flows are often assumed to be bi-directional

• Efficient use of memory and processors
❖ CPU cycles and memory consumption

• Portability and Robustness
❖ A variety of network locations & consistent accuracy
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Main works—EM algorithm

1. Flow clustering using Expectation Maximization [McGregor 2014]

• HTTP, FTP, SMTP, IMAP, NTP and DNS traffic

• Features
❖ Packet length statistics (min, max, quar- tiles, ...)

❖ Inter-arrival statistics

❖ Byte counts

❖ Connection duration

❖ Number of transitions between transaction mode and bulk transfer mode

❖ Idle time
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A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using machine learning techniques,” in Proc. 

Passive and Active Measurement Workshop (PAM2004), Antibes Juan-les-Pins, France, April 2004.

Problem: EM is unsupervised method but it may suffer from local minimum



Main works--AutoClass

2. Auto class:
❖ Repeats EM searches starting from pseudo-random points.

❖ Preconfigured with the number of classes

❖ Median accuracy is ≥ 80% for all applications across all traces
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S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classifi- cation and application identification using machine

learning,” in IEEE 30th Conference on Local Computer Networks (LCN 2005), Sydney, Australia, November 2005.

Problem: this work has not addressed the trade-offs between number of 

features used and their consequences of computational overhead



Main works--K-Means

3. K-Means for TCP-based application
❖ Allowed early detection of traffic flow by looking at only the first few packets

❖ Used Euclidean distance to measure similarity between flows 

❖ More than 80% accuracy by using the first five packets of each TCP flow
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L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic classification on the fly,” ACM Special 

Interest Group on Data Communication (SIGCOMM) Computer Communication Review, vol. 36, no. 2, 2006.

Problem: Assumes that the classifier can always capture the start of each flow



Main works—network core

4. Identifying Web and P2P traffic in the network core
❖ Used K-means to classify traffic at the core of the network

❖ Flow and byte accuracies improved as k increased from 25 to 400

❖ Server-to-client dataset: 95% flow accuracy and 79% byte accuracy

❖ Random dataset: flow and byte accuracy is 91% and 67%

❖ Client-to-server dataset: 94% flow and 57% byte accuracy
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Problem: it only works with TCP, not other transport protocol traffic

J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and discriminating between web and peer-to-peer

traffic in the network core,” in WWW ’07: Proc. 16th international conference on World Wide Web. Banff, Alberta,

Canada: ACM Press, May 2007, pp. 883–892.



Main works--Bayesian analysis

5. Classification using Bayesian analysis techniques
❖ Adopted Naive Bayes method to categorize Internet traffic by application

❖ 248 full-flow based features were used to train the classifier

❖ 65% flow accuracy

❖ Extend it with Bayesian neural network and Naive Bayes Kernel Estimation 
(NBKE), 95% accuracy
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T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: Multilevel traffic classification in the dark,” in Proc. of the 

Special Interest Group on Data Communication conference (SIGCOMM) 2005, Philadelphia, PA, USA, August 2005.

Problem: Bayesian assumes that all the features are independent



Main works—sub-flows

6. Real-time traffic classification using Multiple Sub-Flows 
features

❖ Extract two or more sub-flows (of N packets) from every flow

❖ Each sub-flow should be taken from different places (start, middle of flow)

❖ Used Naive Bayes classifier to train these sub-flows

❖ Achieved 95% Recall and 98% Precision (flow accuracy)
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Problem: it only identifies an online game application (UDP), may have

interference with Web, P2P.

T. Nguyen and G. Armitage, “Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-

world IP networks,” in Proc. IEEE 31st Conference on Local Computer Networks, Tampa, Florida, USA, November 2006.



Main works--GA

7. GA-based classification techniques
❖ Used Genetic Algorithm (GA) to select features

❖ Adopted Naive Bayesian classifier with Kernel Estimation (NBKE), Decision 
Tree J48 and the Reduced Error Pruning Tree (REPTree) classifier
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Problem: accuracy result is provided as overall result. It is not clear how it 

would be different for different types of Internet applications.

J. Park, H.-R. Tyan, and K. C.-C.J., “GA-Based Internet Traffic Classi- fication Technique for QoS Provisioning,” in Proc. 2006 
International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, California, 
December 2006.



Main works—Hybrid method

8. Semi- supervised traffic classification approach
❖ A training dataset consisting of labeled flows combined with unlabeled 

flows are fed into a clustering algorithm

❖ The available labeled flows are used to obtain a mapping from the 
clusters to the different known classes

❖ Achieved 94% flow accuracy
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Problem: This paper did not mention the training time with labelled flows

J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Semi- supervised network traffic classification,” ACM 

International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS) Performance 

Evaluation Review, vol. 35, no. 1, pp. 369–370, 2007.



Comparison of algorithms

• Unsupervised clustering algorithms
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Algorithms Auckland dataset Calgary dataset

AutoClass 92.4% 88.7%

K-Means 79% 84%

DBSCAN 75.6% 72%

Dataset: University of Auckland and one self-collected trace from the University of Calgary.



Comparison of algorithms

• Unsupervised learning vs. supervised learning
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Algorithms Accuracy Precision Recall

AutoClass 91.2% > 90% (6/9) > 90% (6/9)

Naïve Bayes 82.5% > 80% (6/9) > 80% (6/9)

Dataset: 72-hour data traces provided by the University of Auckland



Comparison of algorithms

• Supervised ML algorithms
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Algorithms Accuracy

Naive Bayes with 
Discretisation (NBD)

>95%

Naive Bayes with Kernel 
Density Estimation (NBK)

> 80%

C4.5 Decision Tree >95%

Bayesian Network >95%

Naive Bayes Tree >95%

Dataset: three public NLANR traces



Other methods

• Unsupervised approach for protocol inference using flow content

• BLINC: Multilevel traffic classification in the dark
❖ Based on the behaviors of the source host at the transport layer

• Pearson’s Chi-Square test and Naive Bayes classifier
❖ Identify Skype traffic in real time
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Conclusion and Future work

Conclusion:

• This paper reviewed the works about machine learning based IP traffic 
classification

• Compared the performance of different ML algorithms

• Summarized the advantages and disadvantages of different algorithms

Future work:

• Parallel processing for real- time classification for millions of concurrent
flows

• Apply ML in skype video, intrusion detections, anomaly detection in 
user data and control, routing traffic and so on
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Pros and Cons

Pros:
• Reviewed a large number of papers about Internet traffic classification

• Summarized the advantages and disadvantages of different algorithms in 
the published papers

• Gave some insights of future work for Internet traffic classification. 

Cons:
• Did not discuss some advanced machine learning algorithms such as 

random forest and deep neural networks for classification.

• The background of introducing machine learning on Page 4 is a little bit 
redundant. For example, In 1983 Simon noted  “Learning denotes changes 
in the system……”.

• Naïve Bayes assumes that the features are independent. But this paper did 
not comment it. 
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Thank you very much!!
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