
Promises in JavaScript
CPEN 400A – Winter Term 1 2018

Karthik Pattabiraman
Tuesday, November 5th, 2018

Outline

• Promises introduction

• Promises Examples

• Chaining Promises and Error Handling

• Multiple Promises

2

Call-backs in JavaScript

• JavaScript (esp. Node.js) allows you to have nested functions as call-backs
• Useful for remembering state and keeping track of deferred operations

var fs = require("fs");
var length = 0;
var fileName = "sample.txt";
fs.readFile(fileName, function(err, buf) {
if (err) {

console.log("Error in reading file " + err);
} else {

length = buf.length;;
console.log("Number of characters read = " + length); }

});

3

Call-back hell

• Too many call backs can lead to confusion - also known as call-back hell
• Difficult to keep track of order of call-backs and handle failures (if any)

Pyramid
of Doom

4

Promises: Introduction

• Allow deferred execution without explicitly using call-backs

• Return a promise object that is either resolved or rejected later

• Promise object can be passed around to functions etc.

• resolve handler is called if promise is successful

• reject handler is called if promise fails

5

Promises: Advantages

• Prevent race conditions between event setup and event firing
• Exactly once semantics - resolved or rejected

• Easier to compose together (promises returning promises)

• Allow multiple asynchronous events to be handled simultaneously

• Allow multiple handlers to be attached to same event
– Chaining of handlers
– Unified handling of errors

6

Support for Promises

• Promises were originally supported only in Node.JS
• Through custom third-party libraries (e.g., Bluebird, Q, Jasmine)
• Each had slightly different semantics and implementation
• Jquery has a completely different view of Promises (best avoided)

• Starting ES6, Promises are part of standard JavaScript (not just Node)
• Support for client-side and server-side code
• Npm module – promises – included in Node.Js since 2016 at least
• Supported on client-side by most ES6 compatible browsers
• We’ll only look at Promises in Node.Js on server-side though

7

Outline

• Promises introduction

• Promises Examples

• Chaining Promises and Error Handling

• Multiple Promises

8

ReadFile Example - 1
var fs = require("fs");
if (! fs) process.exit(1);

// This function reads a new file and returns a promise
// It doesn't wait for the read to be complete
function readFile(fileName) {

return new Promise(function(resolve, reject) {
console.log("Creating a new promise");
fs.readFile(fileName, function(err, buf) {

if (err) {
console.log("Rejecting the promise");
reject(err);

} else {
console.log("Resolving the promise");
resolve(buf);

}
}); // End of readFile

}); // End of promise
}; 9

ReadFile Example - 2
// Get a new promise when you call readFile
var promise = readFile(fileName);

// Setup the success and failure handlers for the promise
promise.then(function(contents) {

// fulfilment
console.log("Read " + contents.length + " bytes");

}, function(err) {
// rejection
console.log("Error reading file " + err);

}
);

console.log("End of program");

10

Points to Note

• New Promise returns right away and does not actually call resolve and
reject functions till the promise is resolved or rejected later

• .then specifies the resolve and reject functions after setup

• Resolve is called if promise is resolved, reject if it’s rejected

• It’s fine to set either (or both) resolve and reject to be null

11

Multiple .then blocks
// Setup the success and failure handlers for the promise
promise.then(function(contents) {

// fulfilment
console.log("Read " + contents.length + " bytes");

}, function(err) {
// rejection
console.log("Error reading file " + err);

}
);

// Setup another set of then handlers
promise.then(function(contents) {

// fulfilment
console.log("Another handler for then");

}, function(err) {
// rejection
console.log("Another handler for err: " + err.message);

}
); 12

.catch block

• Used to catch errors in the promise or when it is rejected
• Can be replaced with then(null, foo())

// Setup just an error handler, without a resolution handler
// Equivalent to promise.then(null, function(err) { });
promise.catch(function(err) {

// rejection
console.log("Yet another handler for err : " + err.message);

}
);

13

Settled Promises

• Promises can be rejected or resolved and they stay that way forever
• Sometimes you may want to create a settled promise (resolve/reject)

// Comment out the appropriate line of code below
var p = Promise.resolve("hello");
// var p = Promise.reject("hello");

p.then(function(str) {
console.log("Resolved: " + str);

}, function(err) {
console.log("Error: " + err);

}
);

14

Why create Settled Promises ?

• Test cases where you want to test all handlers of a promise

• Sometimes a library expects a promise as argument, but you already
know the results of the call are not going to succeed

• For composing promises together, some of which may have their
results known in advance but not others

15

Outline

• Promises introduction

• Promises Examples

• Chaining Promises and Error Handling

• Multiple Promises

16

Chaining Promises

• Promises can be chained together (i.e., executed one after another)

• Simulates multiple asynchronous handlers executing in sequence

• Each promise can be handled by a separate reject handler or a
generic catch handler at the end of the chain

• Values can be passed down the chain from one handler to the next

17

Example of Chaining
var randomPromise = function(threshold) {

console.log("Calling randomPromise");
var r = Math.random();
console.log("Random " + r);
return (r > threshold) ? Promise.resolve() : Promise.reject();

};

var p = randomPromise(0.5);
var foo = function() {

console.log("Resolved");
}
var bar = function() {

console.log("Rejected");
}
// This is how you'd chain promises
// Can you predict the output of this sequence ?
p.then(foo, bar).then(foo, bar).then(foo, bar);

18

Example of Chaining and Value Passing
var p = randomPromise(0.5, 100);

var foo = function(val) {
console.log("Resolved: " + val);
return val + 1;

}

var bar = function(val) {
console.log("Rejected: " + val);
return val + 1;

}

// This is how you'd chain promises
// Can you predict the output of this sequence ?
p.then(foo, bar).then(foo, bar).then(foo, bar).then(foo, bar);

19

Error Handling

• Catch handler at end can handle errors in the original promise or its
preceding then handlers – sort of like a “catch all” block in try-catch
var p = errorPromise("Original");

// The same handler can handle both errors in the
// original promise and in any resolution handlers
p.then(function() {

console.log("resolved");
}

).then(function() {
throw new Error("Resolution");

}
).catch(function(err) {

console.log("Error : " + err.message);
}

); 20

Outline

• Promises introduction

• Promises Examples

• Chaining Promises and Error Handling

• Multiple Promises

21

Multiple Promises: Sequential Execution
• A promise handler can itself return promises for downstream handlers
var delayedPromise = function(delay) {

return new Promise(function(resolve, reject) {
console.log("Delayed promise = " + delay);
setTimeout(resolve, delay);

});
}
var p = delayedPromise(1000);
p.then(function() {

console.log("First promise");
return delayedPromise(2000);

}).then(function() {
console.log("Second promise");
return delayedPromise(3000);

}).then(function() {
console.log("Done");

});
22

Multiple Promises: Parallel Execution (all)
• Multiple promises can be issued in parallel and “joined” by Promise.all
• Resolved when all the promises are resolved (rejected if even one is rejected)

var promises = []
for (var i=0; i<5; i++) {

promises.push(valuePromise(i));
}
// Wait for all the promises to be resolved
var result = Promise.all(promises);
// Add a resolution function to get the values of each promise
result.then(function(values) {

console.log("All promises resolved");
for (var j=0; j<values.length; j++)

console.log("Promise " + j + " returned " + values[j]);
}).catch(function(value) {

console.log("Promise not resolved " + value);
}

); 23

Multiple Promises: Parallel Execution (Race)

• Multiple promises can be issued in parallel and “joined” by Promise.race
• Resolved (or rejected) when any of the promises are resolved (or rejected)

var promises = []
// Initialize the promises array with 'n' promises
for (var i=0; i<n; i++) {

promises.push(valuePromise(i));
}
// Wait for any of the promises to be resolved
var result = Promise.race(promises);
// Add a resolution function to get the values of each promise
result.then(function(value) {

console.log("Promise resolved : " + value);
}).catch(function(value) {

console.log("None of the promises resolved");
}); 24

Class Activity

• Write a node.js program to read from two different text files and
concatenate their contents using Promises. After both reads are
complete, you should write the contents of the two files to a third
file. You can assume that the order of reads is not important. You
should not block for file read, nor read the files sequentially.

• How will you modify the above program if you wanted to write to the
third file without waiting for both files to complete reading, again
using promises ? Make sure that you follow the same constraints.

25

Outline

• Promises introduction

• Promises Examples

• Chaining Promises and Error Handling

• Multiple Promises

26

