Guest Lecture: Cloud Computing

CPENA400A - Building Modern Web Applications - Winter
2018-1

Julien Gascon-Samson

. ... . Electrical and
The Univerity of British Columbia ece | Computer

Department of Electrical and Computer Engineering Engineering
Vancouver, Canada

Thursday November 15, 2018

€



Definitions
®00000

Definitions

€ Definitions



Definitions
(] leleJele]

Guest Lecturer: Julien Gascon-Samson

@ Post-Doctoral Fellow at UBC

o PhD from McGill University (Montreal, 2017)

o Master's in Computer Engineering (Ecole Polytechnique de
Montréal, 2011)

o Undergrad in Software Engineering (Ecole Polytechnique de

Montréal, 2009)

o In Jan. 2019: will be appointed as Assistant Professor at ETS
Montréal / University of Quebec (Software & IT Engineering
Dept.)

o On the lookout for highly-motivated MSc / PhD students —
funded positions available :-)

@ Research

Internet Of Things (loT)

Cloud / Edge / Distributed Systems
Publish /Subscribe

Networking for Multiplayer Games

(*]

®© 6 o



Definitions
(e]e] leJele]

Distributed Computing

Distributed System: Definition (Wikipedia)

A system whose components are located on different
networked computers, which then communicate and
coordinate their actions by passing messages to one
another.

@ Very broad! Different models are possible:

o Centralized

o Peer-to-peer
o Hybrid



Definitions
(eJe]e] Jele]

Grid Computing

Grid Computing: Definition (Wikipedia)

A combination of computer resources from multiple
administrative domains applied to a common task.

Grid Node

Control Server




Definitions
(e]e]ele] le]

Utility Computing

Utility Computing: Definition (Wikipedia)

The packaging of computing resources (computa-
tion, storage etc.) as a metered service similar to a
traditional public utility.




Definitions
O0000e

Cloud Computing?

@ Grid Computing + Utility Computing?
@ Very hard to define — can mean so many different things to
different parties!

@ Many definitions

Cloud Computing: Definition (NIST)

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal man-
agement effort or service provider interaction. This
cloud model is composed of five essential characteristics,
three service models, and four deployment models.




Characteristics
@000

Cloud Characteristics

© Characteristics



Characteristics
000

Cloud Characteristics (1)

1. On-demand Self Service

@ Ability to provision computing capabilities without
intervention
o Computation (“aka machine”) time
o Storage




Characteristics
000

Cloud Characteristics (1)

1. On-demand Self Service

@ Ability to provision computing capabilities without
intervention

o Computation (“aka machine”) time
o Storage

4
2. Broad network access

o Capabilities available over the network

@ Accessible by thin and thick clients (e.g., desktop/laptops,
mobile devices, etc.)




Characteristics
[e]e] le]

Cloud Characteristics (2)

3. Resource pooling

@ Multi-tenancy: the same cloud infrastructure can serve
multiple customers, host multiple VMs, applications

o Computing resources are pooled (to serve multiple users)

o Storage
o Processing
o Memory
o Network

@ Physical and logical resources are dynamically assigned and
reassigned according to consumer demand
@ Location independence

o Precise location of the resources
o Only a general idea (e.g., Amazon EC2 US-east)




Characteristics
[e]e]e] )

Cloud Characteristics (3)

4. Rapid elasticity

@ Elastic provisioning — scaling up and down

@ Can be done automatically

@ To consumers: pool of resources might appear to be infinite

v




Characteristics
[e]e]e] )

Cloud Characteristics (3)

4. Rapid elasticity

@ Elastic provisioning — scaling up and down

@ Can be done automatically

@ To consumers: pool of resources might appear to be infinite

_4
5. Measured service

@ Metering of the different resources

CPU (e.g., $/CPU time in ms)
o Network bandwidth (e.g., $/gb)
o Processing (e.g., $/X requests)
o Storage (e.g., $/gb)

@ Monitoring, controlling, reporting

(]

@ Full transparency for cloud operator and consumer




Service Models
®0000000

Service Models

© Service Models



Service Models
00000000

Hierarchy of Service Models (Source)

Cloud Service Models

Packaged Software
OS & Application Stack End Users
Servers Storage Network Sa a S

0OS & Application Stack Application
Server Storage Network Pa a S Developers

Server Storage Network b=y = Infrastructure &

Network Architects




Service Models
O0@e00000

Infrastructure as a Service (laaS)

@ Consumer can provision virtualized computing resources (aka
VMs)

o Processing, storage, network, GPU
@ Can include OS and applications, or be bare metal

o Example: Amazon EC2, Azure
o Consumer doesn't manage the hardware (physical or
virtualized)

e But has control over the OS, storage, applications, and limited
network settings

e e.g., firewall, port redirection, VLans, etc



Service Models
O00e0000

Platform as a Service (PaaS)

@ Deployment onto cloud infrastructure (laaS) of consumer or
acquired applications

o Written into a variety of languages

o Using a variety of libraries, services, tools supported by the
provider

o e.g., Web apps (Heroku, Google App Engine)

@ No control over underlying cloud infrastructure!
@ Control over deployed applications

@ Might have limited control over configuration settings of the
hosting environment (e.g., Apache config files)



Service Models
O000e000

Software as a Service (SaaS)

@ Use the provider's specific applications

o Over the cloud provider's infrastructure (hardware + software)
@ Accessible from various clients

o Thin & thick clients, mobile, web (e.g., web-based email)

@ Consumer does not manage the underlying cloud
infrastructure (network, servers, OS, storage, applications)

@ Exception: limited user-specific application configuration
settings (e.g., GMail settings)



Service Models
O0000e00

Provisioning in Service Models (Source)

Customer

Private
Cloud

Applications

Data

Customer

OS

Virtualization

Servers

Provider

Storage

Networking

Infrastructure
as a Service

Applications

Data

Customer

0Ss
Virtualization

SEWEIS

Provider

Storage

Networking

Platform as a
Service

|: Applications

P OS

Data

Virtualization

Servers

Storage

8 Networking

Provider

Software as a
Service

Applications

DEIE]
OS
Virtualization
Servers

Storage

Networking




Service Models
O00000e0

Class Activity — Which service model?

Q Editing a document online on Google Docs

Q Testing a new Linux Kernel on an Amazon VM
© Purchasing gifts on Amazon

@ Accessing a MySQL database service

© Deploying a Python application

O Provisioning a virtual machine



Service Models
O000000e

Class Activity — Which service model? — Solution

Q Editing a document online on Google Docs = Saa$S

@ Testing a new Linux Kernel on an Amazon VM = laa$S
© Purchasing gifts on Amazon = Saa$S

@ Accessing a MySQL database service = PaaS or Saa$S
© Deploying a Python application = Saa$S

O Provisioning a virtual machine = laa$S



Deployment
@0000

Deployment Models

@ Deployment Models



Deployment

[e] Jelele]

Open use by general public

Owned by business, academic, government organization, or a
combination

Exists on premise of cloud provider

Example: Amazon, Google, MS Azure



Deployment
(e]e] le]e]

Private cloud

@ Exclusive use of a single organization with multiple consumers
o e.g. business units

@ Owned, managed, operated by organization, or a third-party,
or a combination

@ May exist on or off premises

o Example: A large company (e.g., Amazon Internal Cloud)



Deployment
(e]e]e] le]

Community cloud

@ Exclusive use of a specific community of consumers from
organizations with shared concerns

e Mission, security requirements, policy, compliance
considerations

@ Owned, managed, operated by one or more organizations in
the community, a third party, or a combination of them

@ May exist on or off premises

@ Examples: Amazon Government Cloud, clouds that comply
with BC data policies (e.g., UBC Workspace)



Deployment
(e]elele] ]

Hybrid cloud

@ A composition of two or more distinct cloud infrastructure



Virtualization
®00000

Virtualization

© Virtualization and Elasticity



Virtualization
000000

What is virtualization?

@ Decoupling from the physical computing resources (physical
hardware)

@ Cloud provider might have heterogeneous hardware

o Offering a consistent configuration to customers

o CPU performance
e Amount of memory
e Storage

e Network bandwidth

o Offering additional isolation (reliability)

o Virtualization of resources happen at different levels
based on the service model!



Virtualization
(e]e] leJele]

Virtualization: laaS

Hardware — lowest level of virtualization
@ 1 Physical machine = n virtual machines
@ Hypervisor: VMWare, VirtualBox, MS HyperV, Xen, etc.
@ Run over an OS or “bare-metal”
@ Nowadays, virtualization is hardware-assisted: can run at
near-native speeds

Virtualized Hardware

@ CPU (modern CPUs support virtualization extensions)

@ Memory: portions of the RAM of the host machine are
reserved

@ Storage: virtual hard drives

@ Network: virtual network adapters, virtualized
networks/subnets

@ GPU: for specific applications
o Other devices / pass-thru (e.g., USB)




Virtualization
(eJe]e] Jele]

Virtualization: PaaS / SaaS

Virtualization of the combined resources of a pool of machines
(VMs)

@ Build over laa$S virtualization layer
@ Processing power (CPU)

@ Pools of memory

@ Distributed data storage

@ Virtualized networking and adressing



Virtualization
(eJe]e)e] le}

Elasticity: laaS

Two approaches to scalability:
o Vertical: more powerful hardware (limited)

o Horizontal: partitioning / sharding

Elasticity: laaS (Infrastructure as a Service)

@ Allocating new VM instances
@ Deallocating instances which aren’'t needed anymore

o Allocating storage, RAM, network, etc. (can be properties of
the VMs)

@ Can be done manually (e.g., through the Amazon EC2 Web
Dashboard)...

@ ... or automatically at a higher (PaaS) level




Virtualization

O0000e

Elasticity: PaaS and Saa$S

Elasticity: PaaS (Platform as a Service)

o Automatic provisioning of VM /physical resources (laaS layer)
to execute the Paa$S application

@ The elasticity of the application itself might or might not be
done automatically

e e.g., for a request-based application, the PaaS “execution
layer” could provision enough resources to satisfy the amount
of requests

Elasticity: SaaS (Software as a Service)

@ Fully managed provisioning of the Paa$S layer

o e.g., Gmail will provision enough combined resources at the
Paa$S layer, which in turn will provision enough resources at
the laa$S layer




Cloud Services
[ JeJe]

Data Storage in the Cloud

€ Definitions

© Characteristics

© Service Models

@ Deployment Models

© Virtualization and Elasticity

© Typical Cloud Services
@ Data Storage in the Cloud

@ Class Activity :-)
© Edge Computing



Cloud Services
(o] Je)

Data Storage in the Cloud

How data can be stored across different nodes?
@ Distributed File Systems

o Google FS, Hadoop
o Provides file-system like abstractions in a distributd manner

@ Block Storage
o Amazon S3 (storage of objects, can be files)

@ Databases:

o SQL
o NoSQL (e.g., Key-value Stores, MongoDB, etc.)



Cloud Services
(e]e] ]

Data Storage in the Cloud: Properties

@ Scalability
High availability
Low latency

)
)

@ Durability
@ Fault tolerant
)

Predictable costs



Cloud Services
(e]e] ]

Data Storage in the Cloud: Properties

@ Scalability
High availability
Low latency

)
)

@ Durability
@ Fault tolerant
)

Predictable costs

Tradeoff: the CAP Theorem

o Consistency
@ Availability

@ Partition tolerance

Pick only two :-)

@ Cloud storage systems often opt for eventual consistency



Cloud Services
0000000

Communications: Publish /Subscribe

o Definitions

Q Characteristics

e Service Models

0 Deployment Models

Q Virtualization and Elasticity
© Typical Cloud Services

@ Communications: Publish/Subscribe

@ Class Activity :-)
© Edge Computing



Cloud Services
(o] Jelelelelele)

Publish /Subscribe Paradigm

@ Provides an elegant way to decouple content producers
(publishers) from content consumers (subscribers)

@ Publications are matched against subscriptions

@ Many flavours of publish/subscribe

Publish /Subscribe - Example

_

Pub/Sub

a Service

Subscrib

Matching
+
Dispatching




Cloud Services
(o] Jelelelelele)

Publish /Subscribe Paradigm

@ Provides an elegant way to decouple content producers
(publishers) from content consumers (subscribers)

@ Publications are matched against subscriptions

@ Many flavours of publish/subscribe

Publish /Subscribe - Example

_

Pub/Sub
Service

M

Matching
+ Deliver
Dispatching




Cloud Services
[e]e] Jelelelele)

Topic-Based Publish/Subscribe

@ Very common flavour of pub/sub

@ Subscription language: a key (topic name)

@ Publications tagged with a topic T, sent to all subscribers of
T

Example - Weather Reports

Publishers Subscribers
Pub/SLb
Service {T=Montreal}
T=Montreal
-S1 _
-2 ubscribe
T=Ottawa Qttawg
-S3
_4




Cloud Services
[e]e] Jelelelele)

Topic-Based Publish/Subscribe

@ Very common flavour of pub/sub

@ Subscription language: a key (topic name)

@ Publications tagged with a topic T, sent to all subscribers of
T

Example - Weather Reports

Publishers

Subscribers

Publish
Pub/SLb

Service

T=Montreal

T=Montreal}} _s1
-S2
T=Ottawa
-S3 e




Cloud Services
[e]e]e] Jelelele)

Applications of Topic-Based Pub/Sub

Traffic alert systems Weather alert systems

Desirable properties:

@ Scalability &
Elasticity

Mobile notif. frameworks Social networks

@ Low Latency

@ Reduced &
Predictable

Multiplayer Games Costs

()

Google




Cloud Services
[e]e]e]e] lelele)

Dynamoth [ICDCS 2015]: Scalability & Elasticity

Cloud topic-based publish/subscribe service for latency-constrained
applications

@ Massive Multiplayer Online Games



Cloud Services
[e]e]e]e] lelele)

Dynamoth [ICDCS 2015]: Scalability & Elasticity

Cloud topic-based publish/subscribe service for latency-constrained
applications

@ Massive Multiplayer Online Games

Scalability & Elasticity

o Load increases (#players) — more publishers, subscribers and
publications

@ Spawn more servers
o Migrate load accross servers

o Load varies over time

@ Free and add resources




slanlas (sipay) gns/gnd Jo JaquinN

o o N~ © 1 < ™M N «H O
o
* 7o)
*
o
n
<
*
o
o
o) <
o O
o2 ¢
20 o
o 0 * 0
(%206} o™
e}
.m *
o
O . o
o
* (90}
>
o
-+ N T}
O A
e *
i)
0 . S
(@v] N
Ll X N\
* < o
N— 5 s}
n . z -
(]
+ o 2
— e w22 0o
S u
) o0 8
n ¢+ TES —
(D) B 99
R * # # X
i o
1 o]
_ * i ® N\l teeaua .
[ :
]
i '
i) ' o
O o o o o o o o o o o
o o o o o o o o o
m (o] [e6] N~ © Lo < (40] N —
(V] s1akeld Jo JaquinN
c

Time (seconds)



Cloud Services
O00000e0

MultiPub [ICDCS 2017]: Latency & Cost Optimization 40

Challenge

@ More and more applications are global-scale
@ Some applications have very strict latency needs
o Auvailability of clouds in several regions

@ Cloud usage incurs bandwidth costs

o Regions have highly varying bandwidth costs




Cloud Services
0000000 e

EC2 Cloud Regions (~2016)

Region Location | $ per outgoing GB
us-east-1 N. Virginia 0.09
us-west-1 N. California 0.09
us-west-2 Oregon 0.09
eu-west-1 Ireland 0.09

eu-central-1 Frankfurt 0.09
ap-northeast-1 Tokyo 0.14
ap-northeast-2 Seoul 0.126
ap-southeast-1 Singapore 0.12
ap-southeast-2 Sydney 0.14

sa-east-1 Sao Paulo 0.25




Cloud Services
[ JeleleJe}

Batch Processing: Map/Reduce

o Definitions

Q Characteristics

e Service Models

0 Deployment Models

© Virtualization and Elasticity
© Typical Cloud Services

@ Batch Processing: Map/Reduce

@ Class Activity :-)
© Edge Computing



Cloud Services
(] leleJe}

Map/Reduce (Source)

@ Functional Decomposition:
o Breaking a large problem broken into a set of small problems
@ Each small problem:

e can be solved by a functional transformation of input data
e can be executed in complete isolation (parallel computing)

Examples (next slides) — what do these Linux programs do?

o grep
o wc (word count)




Cloud Services

[e]e] lele]

grep with MapReduce

grep matches solution

>




Cloud Services
[e]ele] To)

wc with MapReduce

counts solution

»




Cloud Services
O000e

grep and wc with MapReduce

solution

concat >

w

solution

merge | »

w

AN
\

MAP DATA REDUCE
PARTITIONING




Cloud Services
[ Je)

Serveless Computing / Function as a Service

o Definitions

Q Characteristics

e Service Models

0 Deployment Models

Q Virtualization and Elasticity
© Typical Cloud Services

@ Serveless Computing / Function as a Service
@ Class Activity :-)
© Edge Computing



Cloud Services

Function as a Service (Faa$S)

@ Application made of a set of functions

@ Executed upon certain events being triggered

o Web request
o File upload
o Change to DB
o Timer
o Executed within containers (thin VMs)

o Full isolation
o FaaS functions are stateless!

@ Changes in state must be persisted to durable storage

@ Example: Amazon Lambda, Google Cloud Functions, MS
Azure Functions



Activity
[ Jelel®)

Class Activity :-)

o Definitions

Q Characteristics

e Service Models

0 Deployment Models

© Virtualization and Elasticity
© Typical Cloud Services

0 Class Activity :-)
© Edge Computing



Activity
(o] leJe)

Class Activity — Load Balancing HT TP Requests

@ Consider a cloud with 4 machines that accepts HTTP
requests. Each requests triggers some “heavy” processing, and
one server would not be enough to satisfy the demand —
hence, we need to spread the requests between the 4 node

SErvers.

@ We will not be using a real could — you will be emulating this
setup on your local machine.



Activity
[eJe] Jo)

Class Activity — Load Balancing HTTP Requests (2) &,

@ wasteCycles.js is a Node program that serves the following
HT TP requests:
o /cycles: occupies the CPU for one second

o (any string ending with .html or .js): returns the contents of
the file (as you did in class)

@ Due to the single-threadness of Node, if you execute more

than one request per second, the program will delay the
processing of further requests

e The program takes as input a port number to listen to.

@ waste.js is a Node program that submits a request to
wasteCycles.js every 800ms.

@ Upon running waste.js, you will notice that the processing
time goes well above 1000ms



Activity
oooe

Your task:

@ You should launch four instances of wasteCycles.js to emulate
four cloud servers

e node wasteCycles.js 8080, node wasteCycles.js 8081, node
wasteCycles.js 8082, node wasteCycles.js 8083
@ Implement loadBalancer.js , a Node program accepts requests
on port 8079 and submits them in a round-robin fashion to
one of the node servers (wasteCycles)

@ To test, modify the port number in waste.js to be 8079

@ If your implementation is correct, the processing time should
be stable around 1000ms



Edge Computing
[ o]

Edge Computing

© Edge Computing
@ ThingsJS: an loT Runtime Middleware [mé4iot 2017]
@ loT Application Migration: ThingsMigrate [ECOOP 2018]
@ Web Dashboard



Edge Computing

ce

Edge Computing

@ loT devices are getting more
and more powerful!




Edge Computing

ce

Edge Computing

@ loT devices are getting more
and more powerful!

@ Running computations on
the devices (edge computing)




Edge Computing
oce

Edge Computing

@ loT devices are getting more
and more powerful!

@ Running computations on
the devices (edge computing)

Cloud: Challenges and Limitations

@ Connectivity

o Avoid reliance towards the
cloud




Edge Computing

ce

Edge Computing

@ loT devices are getting more
and more powerful!

@ Running computations on
the devices (edge computing)

Cloud: Challenges and Limitations

@ Connectivity

o Avoid reliance towards the
cloud

@ Cost effectiveness

e Saving costs of using the
cloud




Edge Computing

ce

Edge Computing

@ loT devices are getting more
and more powerful!

@ Running computations on
the devices (edge computing)

Cloud: Challenges and Limitations

@ Connectivity

o Avoid reliance towards the
cloud

@ Cost effectiveness

e Saving costs of using the
cloud

@ Performance

o Reduced latencies




Edge Computing
®000000

ThingsJS: an loT Runtime Middleware

@ Current state of the loT:

o Many devices

o Different APls,
frameworks, languages

e Incompatible protocols

4




Edge Computing

®000000

ThingsJS: an loT Runtime Middleware

@ Current state of the loT:

o Many devices

o Different APls,
frameworks, languages

e Incompatible protocols

4

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)




Edge Computing
®000000

ThingsJS: an loT Runtime Middleware

@ Current state of the loT: JavaSCFI pt J

e Many devices

o Different APlIs,
frameworks, languages

e Incompatible protocols

@ Programmers are typically
more productive in
higher-level languages

U @ JavaScript: strong user base

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)



Edge Computing
®000000

ThingsJS: an loT Runtime Middleware

@ Current state of the loT: JavaSCFI pt J

e Many devices

o Different APlIs,
frameworks, languages

e Incompatible protocols

@ Programmers are typically
more productive in
higher-level languages

U @ JavaScript: strong user base

@ ThingsJS: a framework for LEESTEE Wiis on e

@ Samsung loT js, Intel XDK,

developing and deploying
DukServer, Smart.js

high-level applications on loT
devices (edge computing) @ Node.js, ChakraCore,
SpiderMonkey on loT devices




Edge Computing
0000000

Motivational Use Case: Video-surveillance Application 56

= e
sseee sseee
e

&
ay —V
S
A
seesd




Edge Computing
0000000

Motivational Use Case: Video-surveillance Application 56




Edge Computing

O@00000

Motivational Use Case: Video-surveillance Application

56

ThingsJS:

Executing High-Level
Applications on
loT/Edge devices.




Edge Computing
[e]e] lele]e]e]

Architectural Model

Things)S Device Declaration

Things)S App Source Code Physical
things3jsl | things0jsl cloudl (Node.js) Constraints
Description
SEEEESE OSSO S S Component: Component:
Sensor.js Actuator.js
Component Declaration

{sensorl,sensor2},
{actuatorl,actuator2}, regulatorl

Logical
Component: Constraints
Regulator.js Description

Things)S Manager

i e

)

A 4

things3jsl things0js1 cloudl

<K
=< K

<LK
= LK

Thing Runtime

000

Things|S Runtime
actuatorl

O<<(<(<<<
= KKK

Things|S Runtime
regulatorl




Architectural Model

Things)S Device Declaration ThingsJS App Source Code CPhysic_aI
i i i j (Node.js) onstraints
things3jsl | things0jsl cloudl Description
o= [©= llo= Component: Component
Sensor.js Actuator.js -
Component Declaration L09|c§l
{sensorl,sensor2}, Constraints
{actuatorl,actuator2}, regulatorl Regulator.js Description

@ ThingsJS Application: package containing components,

metadata, constraints (more later)

Edge Computing
[e]e] lele]e]e]

UBC




Edge Computing
[e]e] lele]e]e]

Architectural Model

/\) Things)S Manager ‘/_\
things3jsl things0js1 cloudl
= = O=
Things|S Runtime Things|S Runtime Thin Runtime
m actuatorl regulatorl

@ ThingsJS Application: package containing components,
metadata, constraints (more later)

@ ThingsJS Infastructure: APIs, services, scheduling, etc.
(more later)




Edge Computing
[e]e]e] le]ele]

JavaScript-Centric Programming Model

1~ y*things.meta a
2 requiredMemory: 5@

3 */

4

5~ /* Basic ThingsJS-compatible factorial calculator.

6 * Note we cannot use a while loop or a recursive function as doing so would
7 * plock the thread, preventing the migration signal from being processed.

8 * We use a setImmediate to call the next step of the factorial computation
9 *
10 * Set the "target" variable to specify the argument.
11 * In this example this code will compute factorial(100000).
12 * %/

13 var target = 120008;
14  var timer;

15 wvar count = @;

16 wvar digits = [ 1 ];

17

18 v function factorial(){

19 count ++;

29 var carry = 9;

21 var product = 8;

22 ~ for (var i=@; i < digits.length; i++){
23 product = digits[i] * count;

24 product += carry;

25 digits[i] = product % 19;

26 carry = Math.floor(product / 18);
27 }

28 ~ while (carry > @){ -

20 Aimi+e nuchlirarme € 10



Global File-System

Edge Computing
0000e00

o Unified file system (built over MongoDB)

@ Usable by all 1oT /edge apps

@ Stores text and binary files in a folder
hierarchy:
e Source code for application
o Configuration files
o Live data (similar to Unix)

@ Also stores JavaScript (JSON) objects

i schedule

@8 application

8 apps

8 proc

I dev

i codes

[ factorial js

I motion-detector js

I video-streamer js



Edge Computing

0000080

Pub/Sub (MQTT) Communication Service

Centralized Pub/Sub




Edge Computing

0000080

Pub/Sub (MQTT) Communication Service v

Centralized Pub/Sub Distributed Pub/Sub




Edge Computing
O00000e

Scheduling loT Applications on Edge & Cloud Devices 61

O Given a set of loT applications (“components”)
Q Given a set of devices

© Given a set of constraints



Edge Computing
O00000e

Scheduling loT Applications on Edge & Cloud Devices 61

O Given a set of loT applications (“components”)

Q Given a set of devices

© Given a set of constraints

What is the optimal mapping of components to devices?

video_camera .
= motion_detect

~ vV -5 vy
eoecs] 1
Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C

/ web_dashboa%l

{ )
v E (— N
/ \
)

( |

il Ge

. /
i B stream_viewer “
oo O] /

\ O o
\Cloud Server
RN L 4




Edge Computing
O00000e

Scheduling loT Applications on Edge & Cloud Devices 61

O Given a set of loT applications (“components”)

Q Given a set of devices

© Given a set of constraints

What is the optimal mapping of components to devices?

VIEE_ G motion_detect motion_detect

S, @ o
= s

Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C

/ web_dashboa%l

{ )
v E (> N
/ \
)i

( |

il Ge

. /
i B stream_viewer “
oo O] /

\ O o
\Cloud Server
RN L 4

= What if we must dynamically alter the current schedule? )




Edge Computing
[ leleJole]

Migrating JavaScript loT Applications: ThingsMigrate 62




Edge Computing
[ leleJole]

Migrating JavaScript loT Applications: ThingsMigrate 62




Edge Computing
[ leleJole]

Migrating JavaScript loT Applications: ThingsMigrate 62




Edge Computing
[ leleJole]

Migrating JavaScript loT Applications: ThingsMigrate 62




Edge Computing
(o] JeJole]

UBC

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT
devices



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT
devices

@ More flexible than
terminating and restarting



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT
devices

@ More flexible than
terminating and restarting

@ Migration between
devices, and between
devices and the cloud



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT
devices

@ Portability: heterogeneous devices,
cloud (cloud-edge computing)

o No modifications to VM

@ More flexible than
terminating and restarting

@ Migration between
devices, and between
devices and the cloud



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT

devices @ Portability: heterogeneous devices,

cloud (cloud-edge computing)

@ More flexible than o No modifications to VM

terminating and restarting _ o
o @ Supporting stateful applications
@ Migration between

devices, and between
devices and the cloud



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT

devices @ Portability: heterogeneous devices,

cloud (cloud-edge computing)

@ More flexible than o No modifications to VM

terminating and restarting _ o
@ Supporting stateful applications

@ Publish/Subscribe (MQTT) for all
communications

@ Migration between
devices, and between
devices and the cloud



Edge Computing

ThingsMigrate: Motivation & Requirements

@ Supporting migration on
resource-constrained loT

devices @ Portability: heterogeneous devices,

cloud (cloud-edge computing)

@ More flexible than o No modifications to VM

terminating and restarting _ o
@ Supporting stateful applications

@ Publish/Subscribe (MQTT) for all
communications

@ Migration between
devices, and between

devices and the cloud
@ JavaScript programs are

single-threaded: developers should
avoid blocking the main thread



Edge Computing

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!




Edge Computing

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript application

© Closures / data encapsulation in functions

1
i 1 function Counter() { |
| 2 var value = 0; |
13 |
| 4 return function () { |
| 5 value 4= 1; |
| 6 return value; |
| 7 } |
|8 1 |
| 9 var ¢ = Counter(); // value in c is 0 |
|10 console.log( c() ); // prints 1 |
|1]. console.log( c() ); // prints 2 |




Edge Computing
(e]e] Jole]

UBC

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript application

Q Closures / data encapsulation in functions
@ Timers

function Counter() {
var value = 0;

return function () {
value += 1;
return value;
}
i
var ¢ = Counter(); // value in c is 0
console.log( c() ); // prints 1
console.log( c() ); // prints 2
setinterval (function() { <(); },1000);

=
HFOOONOOITRWNH

—==
N




Edge Computing
(e]e] Jole]

UBC

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript application

Q Closures / data encapsulation in functions
Q Timers
© C(lasses and prototypes

function Counter() {
var value = 0;

return function () {
value += 1;
return value;
}
i
var ¢ = Counter(); // value in c is 0
console.log( c() ); // prints 1
console.log( c() ); // prints 2
setinterval (function() { <(); },1000);

=
HFOOONOOITRWNH

—==
N




Edge Computing
(e]e] Jole]

UBC

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript application

Q Closures / data encapsulation in functions
Q Timers

© Classes and prototypes

© Asynchronous Model (Event-Based)

function Counter() {
var value = 0;

return function () {
value += 1;
return value;
}
i
var ¢ = Counter(); // value in c is 0
console.log( c() ); // prints 1
console.log( c() ); // prints 2
setinterval (function() { <(); },1000);

=
HFOOONOOITRWNH

—==
N




Edge Computing

Approach: Code Instrumentation & Reconstruction

[t
NHEFOOOONOOTREWN -

function Counter() {
var value = 0;

return function() {
value += 1;
return value;
}
}i
var ¢ = Counter(); // value in c is 0
console.log( c() ); // prints 1
console.log( c() ); // prints 2
setinterval (function() { <(); },1000);

OoO~NOOTAWN

var global = new Scope("global");

function Counter() {
counter. = new Scope(global, "Counter");
var value = 0;
counter.addVar("value", value);

var anonl = function() {
anonl = new Scope(createcounters, "anonl");
value 4= 1;
anonl.setVar("value", value);

return value;

}

counter.addFunction("anonl", anonl);
return anonl;




Edge Computing

Case Study: Motion Detection

Publish/Subscribe
(MQTT) Service

motion_detect

2 -

== e ‘ Y — / /Qii

THIN=a) A— 55 eanes
o of /

\ [on / -
\quud Server / Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C
BN L

Reachable vs target “frames per second” (FPS):

45

40 Actual FPS
% e e Required FPS
30

25 i I

20

15

10

Frame Per Second

0 60 120 180 240 300 360 420 480 540

Time (seconds)



Edge Computing

Predicting loT Application Failures

Predicting failures in high-level apps running on loT devices

A Safe exec. on a computer B Crash exec. on a Pi 3B C Safe exec.onaPiB
g W W« 60 &0
g g S o MW%WHNMMMW
2 2000 > 400 >
£ ] I
5} £ £ 40
s s 3
S 1000 E 200 2 —
£ ® ® 200
s, Y o
Time Time Time
= BuffCaches = AvailableMem = BuffCaches = AvailableMem = BuffCaches = AvailableMem
D Crash exec. on a Pi OW E Multitanancy crash exec. on a Pi 3B F Crash exec. on a computer
150 800 ~ 4000
@ o g
?3 E 600 < 3000
2 100 2 g
[} o
E £ 40 £ 2000
Q
z g b :
[01] a
g (2 200 g 1000
o [N
&y 0 O
Time Time Time
= BuffCaches = AvailableMem = BuffCaches = AvailableMem = BuffCaches = AvailableMem




Edge Computing

Web Dashboard

© Github

m odes pot | States ereen console

Components
% pi3-01 loliz CPU | Memory
Applications 100 %
! IDLE
3-02
Schedules % =
50 %
] IDLE
Files xeon-01
0%
Debug 10:35:58 10:36:20 10:36:40 10:36:58
N ction | Video Stream - xeon-01 v Status | Graph | Console
35.45 MB
35MB
34.44 MB
10:35:57 103620 10:36:40 10:36:57

— Select Code — v m e

loT (and cloud) devices




Edge Computing

Web Dashboard

Nodes jmuzyaoc v || Workflow | Graph | Console | Output Components

Components
_ Q

Program Run time ID:jmuZyaoc

Applications
Code Name video-streamer.js*1 Status Running Code Name ~ Runtime  Status Running
Schedules D Device
Files PROGRAM HISTORY motion- IfynBgmF  Running = pi3-02
show|  v|lines detector js*1
Debug . ) .
Device Start Time End time Status on device video- jmuzyaoc  Running  xeon-01
streamer.js*1
xeon-01 Aug 9, 2018 10:34:38 AM "Fake" Running
IfynBgmF v Workflow | Graph | Console = Output

@m CPU | Memory
100 %

50 %

0%
10:40:43 10:41:00 10:41:20 10:41:40 10:42:00 10:42:21

loT components currently executing ]




Web Dashboard

ThingsJ

Nodes Available Code
Components

factorial.js
Applications

motion-detector js
Schedules

video-streamer js
Files
Debug

My App  Detailed Components

Video Surveillance  Detailed Components

BOA

Selected Components

factorialjs  num_instances:

motion-detector.js  num_instances:

Name:{New App|

Application Prototype

Applications: logical grouping of components

Edge Computing

API Docs O Github

Clear All

required_memory:

required_memory:

remove
Confirm




Edge Computing

Web Dashboard

Nodes

-— Select Schedule — v | Device-View Mode = Code-View Mode | Time-based Dynamic View
Components
Applications Show Last 10 Records
Schedule Name Schedule 1 Schedule current
Schedules
Date&Time Aug 9, 2018 10:33:52 AM Aug 9, 2018 10:40:08 AM
Files
Devices eon-01 eon-01
Debug
hi3-02 |+ video-streamer js;jmuZyaoc
ni3-02
ni3-01
|+ motion-detector js:IfynBgmF
i3-01

Device Available Memory Graph For schedule

@ xeon-01 pi3-02 @ pi3-01

20249.02 MBT\\\

Scheduling of components to devices J




Edge Computing

Web Dashboard

ThingsJS APIDocs  © Github

Nodes @
reate New Create Directory

Applications factorial.js
@ schedule
Schedules
8 application
Files
W apps
Debug
i proc
i dev
13 var target = 1000002; 8 codes
14 var timer;
15  var count
16 var digits = [ 1 ]; [ factorial js
17
18 » function factorial(){
19 count ++; [ motion-detector js
20 var carry = 0;
21 var product = @;
22+ for (var i=e; i < digits.length; i++){ : video-streamer js
23 product = digits[i] * count; & )
24 product += carry;
25 digits[i] = product % 10;
26 carry = Math.floor(product / 10);
27 ¥
28~ while (carry > @){ .
2a Atmite muichlranme € 101.

Electrical and Computer Engineering -

File system and file/code editor




Edge Computing

Table of Contents

€ Definitions
© Characteristics
© Service Models
0 Deployment Models
© Virtualization and Elasticity
© Typical Cloud Services
@ Data Storage in the Cloud
@ Communications: Publish/Subscribe

@ Batch Processing: Map/Reduce
@ Serveless Computing / Function as a Service

@ Class Activity :-)
© Edge Computing
@ ThingsJS: an loT Runtime Middleware [mé4iot 2017]

@ loT Application Migration: ThingsMigrate [ECOOP 2018]
@ Web Dashboard



