
REST Architecture and RESTful
APIs

Lecture 10: CPEN 400A
Based on CS498RK taught at UIUC (used 

with permission), and
Roy Fielding’s PhD thesis at UC Irvine



Outline

• What is REST ?

• HTTP and REST

• RestFul APIs



REST

• Stands for Representational State Transfer

• Proposed by Roy Fielding at UC Irvine as part 
of his PhD dissertation
– Already implemented in Apache web server by 

Roy
– Basis for much of the modern web and its design
– Original definition has been significantly extended



So what’s this REST thing ?

• REST is what you’ve been doing already in web 
applications. Example: accessing a URL
– It’s an architectural style, NOT a standard
– Set of design principles and constraints that 

characterize web applications

• But REST is a general principle that goes 
beyond Web (web is one implementation)



Why REST ?
• Performance
• Scalability
• Simplicity of interfaces
• Modifiability of components to meet changing needs 
• Visibility of communication between components by 

service agents
• Portability of components by moving program code 

with the data
• Reliability or the resistance to failure at the system 

level



The six principles of REST
• Client-Server

• Statelessness

• Cacheable

• Layered System

• Uniform Interface (this is the most important)

• Code on Demand (Optional)



Client-Server

• Clear separation between clients and servers

• Servers and clients can be replaced and 
developed independently as long as the 
interface between them is not altered 



Stateless

• Server doesn’t know about client’s application 
state – passed in by client

• Server is replaceable and can pass session 
state to another server or database

• Pass representations around to change state
– Representation must contain all the needed info



Cacheable

• Caching improves performance, but can 
compromise on freshness

• Responses are assumed to be cacheable by 
default

• If response does not wish to be cached, it 
must explicitly mark itself as such



Layered System

• Client should not be able to tell if it is directly 
connected to server or through an 
intermediary (e.g., proxy, firewall etc)

• Allows scalability, e.g., through load balancing

• Security policies may be applied at proxy



Uniform Interface
• Identification of resources 

• Manipulation of resources through these 
representations 

• Self-descriptive messages 

• hypermedia as the engine of application state 
(HATEOAS) 



Code on Demand

• This is the only optional principle

• Extend functionality of client by transferring 
logic to the client side

• Examples are JavaScript code, Java Applets



Outline

• What is REST ?

• HTTP and REST

• RestFul APIs



HTTP



Resources







Representational State Transfer

• Representations are transferred back and 
forth from client and server 

• Server sends a representation describing the 
state of a resource 

• Client sends a representation describing the 
state it would like the resource to have 



Multiple Representations

• A resource can have more than one 
representation: different languages, different 
formats (HTML, XML, JSON) 

• Client can distinguish between 
representations based on the value of 
Content-Type (HTTP header) 

• A resource can have multiple 
representations—one URL for every 
representation 



Http Methods
• Get/Head

• Delete

• Post

• Put

• Patch

• Options



GET and Head Methods

• Retrieve representations of resources 
• No side effects: not intended to change any 

resource state 
• No data in request body 
• Response codes: 200 (OK), 302 (Moved 

Permanently), 404 (Not Found) 
• Safe method (i.e., does not modify resources)
• Idempotent (called many times, same result on 

the server side – in this case no result)



Delete Method

• Destroy a resource on the server 
• Success response codes: 200 (OK), 204 (No 

Content), 202 (Accepted) 
• Not safe, but idempotent (i.e., can be called 

many times but will have same result on the 
server side – need not return the same value)
– Why is this important ?
– Can return 404 second time to indicate error



Post Request

• Upload data from the browser to server 
– Usually means “create a new resource,” but can be 

used to convey any kind of change: PUT, DELETE, etc. 
– Side effects are likely 

• Data contained in request body 
• Success response codes: 
– 201 (Created): Location header contains URL for 

created resource; 
– 202 (Accepted): new resource will be created in the 

future 
• Neither safe nor idempotent 



Put Method
• Request to modify resource state 
• Success response codes: 
– 200 (OK)
– 204 (No Content) 
– 201 (Created) – see below

• Not safe, but idempotent (why ?)
• Can also be used like POST idempotent 
– Will create the resource if it does not exist
– URI can be chosen by the client (may be risky)
– Not widely used in practice



Patch Method

• Representations can be big: PUTs can be 
inefficient 

• Send the server the parts of the document 
you want to change 

• Neither safe nor idempotent 



Outline

• What is REST ?

• HTTP and REST

• RestFul APIs



Web API

• Application program interface (API) to a 

defined request-response message system 

between clients and servers 

– Accessible via standard HTTP methods

• Request URLs that transfer representations 

(JSON, XML) 



Rest Vs. Soap
(spf13.com/post/soap-vs-rest)

• Resources (REST) Vs. operations (SOAP) 

• SOAP: security, ACID transactions, reliable 
messaging 

• REST: simplicity, scalability and extensibility



Restful APIs: Features

• Application program interface to a defined 

request-response message system between 

clients and servers 

• Accessible via standard HTTP methods 

• Request URLs that transfer representations 

(JSON, XML) 



Designing Restful APIs



Collections



Elements



Using Parameters for Queries



Example: Pagination



CheckList: Restful APIs
• Use nouns but no verbs 
• Always Use plural nouns.
• Don’t expose irrelevant nouns 
• GET method and query parameters should not 

alter the state (safe)
• PUT and DELETE methods should be idempotent
• Use parameters to filter, sort, and select fields 

from collections 
• Use offset and limit parameters to paginate 

results 



Class Activity

• Design a simple REST API to perform the 
following actions in a Phonebook application
– Retrieve the list of all contacts in the phonebook
– Retrieve a specific contact given their key
– Retrieve the info of a specific contact given their 

first name and last name
– Add a new contact to the phonebook
– Modify the details of an existing contact
– Remove a contact from the phonebook



Solution to the Activity - Retrieval

• Use nouns rather than verbs 
– To request all contacts, use
• GET foo.com/contacts

– To request a specific contact given a key, use
• GET foo.com/contacts/12345

– To find a contact (by first-name and last name), 
• GET foo.com/contacts?fname=“ABC”&lname=“XYZ”

– To paginate the contacts, 
• GET foo.com/contacts?offset=100&limit=20



Solution to the Activity - Add

• Add should be a POST request as it modifies 
the state of contacts, and is not idempotent

POST foo.com/Contacts/

Send contact details in the body of the request, 
as JSON formatted object (say)
NOTE: We Post on the collection Contacts



Solution to the Activity - Modify

• Can use PUT if key is known (better than POST 
as it’s idempotent). Can also use PATCH for 
partial updates to save bandwidth, if needed.

PUT foo.com/Contacts/12345

Send the new data (to be modified) in the body 
of the PUT request – assumes key is present



Solution to the Activity – Delete

• Use Delete method in HTTP to remove the 
object given its key (idempotent). Should not 
do anything if contact is not present in server.

DELETE foo.com/contacts/12345
can also be used for multiple contacts as follows

DELETE foo.com/contacts?firstName=“Jack”


