REST Architecture and RESTful
APIs

Lecture 10: CPEN 400A

Based on CS498RK taught at UIUC (used
with permission), and

Roy Fielding’s PhD thesis at UC Irvine

Outline

e What is REST ?

* HTTP and REST

e RestFul APIs

REST

e Stands for Representational State Transfer

* Proposed by Roy Fielding at UC Irvine as part
of his PhD dissertation

— Already implemented in Apache web server by
Roy

— Basis for much of the modern web and its design
— Original definition has been significantly extended

So what’s this REST thing ?

 REST is what you’ve been doing already in web
applications. Example: accessing a URL
— It’s an architectural style, NOT a standard

— Set of design principles and constraints that
characterize web applications

 But REST is a general principle that goes
beyond Web (web is one implementation)

Why REST ?

Performance

Scalability

Simplicity of interfaces

Modifiability of components to meet changing needs

Visibility of communication between components by
service agents

Portability of components by moving program code
with the data

Reliability or the resistance to failure at the system
level

The six principles of REST

Client-Server

Statelessness

Cacheable
Layered System
Uniform Interface (this is the most important)

Code on Demand (Optional)

Client-Server

* Clear separation between clients and servers

e Servers and clients can be replaced and
developed independently as long as the
interface between them is not altered

Stateless

* Server doesn’t know about client’s application
state — passed in by client

* Server is replaceable and can pass session
state to another server or database

* Pass representations around to change state

— Representation must contain all the needed info

Cacheable

e Caching improves performance, but can
compromise on freshness

* Responses are assumed to be cacheable by
default

* |f response does not wish to be cached, it
must explicitly mark itself as such

Layered System

* Client should not be able to tell if it is directly
connected to server or through an
intermediary (e.g., proxy, firewall etc)

* Allows scalability, e.g., through load balancing

* Security policies may be applied at proxy

Uniform Interface

|dentification of resources

Manipulation of resources through these
representations

Self-descriptive messages

hypermedia as the engine of application state
(HATEOAS)

Code on Demand

* This is the only optional principle

e Extend functionality of client by transferring
logic to the client side

* Examples are JavaScript code, Java Applets

Outline

e What is REST ?

* HTTP and REST

e RestFul APIs

HTTP

Hypertext Transfer Protocol

request-response protocol
“all about applying verbs to nouns”
nouns: resources (i.e., concepts)

verbs: GET, POST, PUT, DELETE

Resources

If your users might “want to create a hypertext link to
it, make or refute assertions about it, retrieve or
cache a representation of it, include all or part of it by
reference into another representation, annotate it, or
perform other operations on it”, make it a resource

can be anything: a document, a row in a database,
the result of running an algorithm, etc.

www.w3.0rg/TR/2004/REC-webarch-20041215/

URL

Uniform Resource Locator

every resource must have a URL
type of URI (Identifier)

specifies the location of a resource on a network

REPRESENTATION OF RESOURCES

when a client issues a GET request for a resource,
server responds with of resources
and not the resources themselves

any machine-readable document containing any
information about a resource

server may send data from its database as HTML,
XML, JSON, etc.

web.archive.org/web/20130116005443/http://tomayko.com/writings/rest-to-my-wife

Representational State Transfer

* Representations are transferred back and
forth from client and server

* Server sends a representation describing the
state of a resource

* Client sends a representation describing the
state it would like the resource to have

Multiple Representations

* Aresource can have more than one
representation: different languages, different
formats (HTML, XML, JSON)

* Client can distinguish between
representations based on the value of
Content-Type (HTTP header)

* Aresource can have multiple
representations—one URL for every
representation

e Get/Head
* Delete

* Post

* Put

* Patch

* Options

Http Methods

GET and Head Methods

Retrieve representations of resources

No side effects: not intended to change any
resource state

No data in request body

Response codes: 200 (OK), 302 (Moved
Permanently), 404 (Not Found)

Safe method (i.e., does not modify resources)

ldempotent (called many times, same result on
the server side — in this case no result)

Delete Method

° Destroy a resource on the server

* Success response codes: 200 (OK), 204 (No
Content), 202 (Accepted)

* Not safe, but idempotent (i.e., can be called
many times but will have same result on the
server side — need not return the same value)
— Why is this important ?

— Can return 404 second time to indicate error

Post Request

Upload data from the browser to server

— Usually means “create a new resource,” but can be
used to convey any kind of change: PUT, DELETE, etc.

— Side effects are likely
Data contained in request body

Success response codes:

— 201 (Created): Location header contains URL for
created resource;

— 202 (Accepted): new resource will be created in the
future

Neither safe nor idempotent

Put Method

Request to modify resource state

Success response codes:
— 200 (OK)

— 204 (No Content)

— 201 (Created) — see below

Not safe, but idempotent (why ?)
Can also be used like POST idempotent
— Will create the resource if it does not exist

— URI can be chosen by the client (may be risky)
— Not widely used in practice

Patch Method

* Representations can be big: PUTs can be
inefficient

* Send the server the parts of the document
you want to change

* Neither safe nor idempotent

Outline

e What is REST ?

* HTTP and REST

 RestFul APIs

Web API

* Application program interface (APIl) to a

defined request-response message system
between clients and servers

— Accessible via standard HTTP methods

* Request URLs that transfer representations
(JSON, XML)

Rest Vs. Soap
(spfl3.com/post/soap-vs-rest)

e Resources (REST) Vs. operations (SOAP)

* SOAP: security, ACID transactions, reliable
messaging

* REST: simplicity, scalability and extensibility

Restful APls: Features

* Application program interface to a defined
request-response message system between
clients and servers

e Accessible via standard HTTP methods

* Request URLs that transfer representations
(JSON, XML)

Designing Restful APIs

K’@ewww
Apply Verbs to Nouns

%mﬂw&/

Collections

http://example.com/users

Return all the objects in the collection

Create a new entry in the collection;
automatically assign new URI and return it

PUT and DELETE not generally used

Elements

http://example.com/users/1234

Return the specific object in collection
Replace object with another one
Delete element

POST not generally used

Using Parameters for Queries

http://example.com/users/12345?
where={"num posts":{"$gt":100}}}

&\\\““ékmvawmﬁlgﬂ%w
other parameters can be used to select fields, sort, etc.

parameters can also be URL-encoded

Example: Pagination

http://example.com/users”?
offset=60&1imit=20

offsetithobject & limit
1imit number of returned objects

can also use Link header to specify next,
prev, first, last URLs

CheckList: Restful APls

Use nouns but no verbs
Always Use plural nouns.
Don’t expose irrelevant nouns

GET method and query parameters should not
alter the state (safe)

PUT and DELETE methods should be idempotent

Use parameters to filter, sort, and select fields
from collections

Use offset and limit parameters to paginate
results

Class Activity

* Design a simple REST API to perform the
following actions in a Phonebook application
— Retrieve the list of all contacts in the phonebook
— Retrieve a specific contact given their key

— Retrieve the info of a specific contact given their
first name and last name

— Add a new contact to the phonebook
— Modify the details of an existing contact
— Remove a contact from the phonebook

Solution to the Activity - Retrieval

e Use nouns rather than verbs
— To request all contacts, use
* GET foo.com/contacts
— To request a specific contact given a key, use
* GET foo.com/contacts/12345
— To find a contact (by first-name and last name),
 GET foo.com/contacts?fname="ABC” &lhame=“XYZ"

— To paginate the contacts,
* GET foo.com/contacts?offset=100&Ilimit=20

Solution to the Activity - Add

 Add should be a POST request as it modifies
the state of contacts, and is not idempotent

POST foo.com/Contacts/

Send contact details in the body of the request,
as JSON formatted object (say)

NOTE: We Post on the collection Contacts

Solution to the Activity - Modify

 Can use PUT if key is known (better than POST
as it’s idempotent). Can also use PATCH for
partial updates to save bandwidth, if needed.

PUT foo.com/Contacts/12345

Send the new data (to be modified) in the body
of the PUT request — assumes key is present

Solution to the Activity — Delete

* Use Delete method in HTTP to remove the
object given its key (idempotent). Should not
do anything if contact is not present in server.

DELETE foo.com/contacts/12345

can also be used for multiple contacts as follows

DELETE foo.com/contacts?firstName="“Jack”

