
SAMSUNG R&D CANADA

OCT 2018

SAMSUNG CONFIDENTIAL

Practical JavaScript
Irene Libby

NOV 2018

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Scope

• Closures

• Module Pattern

• Unit Test

• Asynchronous JS: Callbacks and Promises

Topics
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Javascript have two scopes: Global and Local

• Global Scope - variables and functions belongs to window

object of the browser, can be accessed on any level of your

code

• Function Level Scope - variables declared within a function

are only accessible within that function or by functions

inside that function

Examples: https://codesandbox.io/s/xovy28mkyo (scope.js)

Scope
Practical Javascript

https://codesandbox.io/s/xovy28mkyo

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Global variables: avoid using generic names to avoid

clashing of scope with local variables

• Declare variables with explicit values is preferred even if it’s

an “empty” or null value

• Nested functions: try to not use same variable or function

names on any levels of your nested functions

• Instead of too many levels of nested functions, use

CLOSURES!

Scope - Tips
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• An inner function that has access to the outer (enclosing)

function’s variables scope access

• Allows maintaining state of contained variables

• Closure has three scope accesses: its own, outer function’s

variable and parameters and all global variables

• Think of Closures like writing a class that has private and

public variables

Example: https://codesandbox.io/s/xovy28mkyo (closures.js)

Closures
Practical Javascript

https://codesandbox.io/s/xovy28mkyo

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Use Closures to:

• keep track of state of particular variables

• use less global variables

• Give proper access to variable and functions for your

application

Closures - Tips
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Design pattern that emulates concept of “class” similar to

other languages

• Allows us to create a public facing API methods we want to

expose while encapsulating private variables and methods

in a closure scope.

• Utilizes an immediately-invoked function expression

Module Pattern
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• A very common pattern used by libraries like jQuery,

Underscore etc.

• Reduces clutter with the global namespace

• Enables unit testability of code

Example: https://codesandbox.io/s/xovy28mkyo (module.js)

Module Pattern – Con’t
Practical Javascript

https://codesandbox.io/s/xovy28mkyo

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Check small snippets of code to ensure result of

implemented logic is what the application expects

• Self documents behaviour of application

• May give indication of whether a dependency could be

affected by code change while test fails

• Module pattern lends itself for code to be more “testable”

Example: https://codesandbox.io/s/xovy28mkyo

(module.test.js)

Unit Testing
Practical Javascript

https://codesandbox.io/s/xovy28mkyo

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• JavaScript program is single threaded and all code is

executed in a sequence

• While the execution of JavaScript is blocking, I/O operations

are not (asynchronous non-blocking I/O model”)

• Asynchronous operation has a result that points to a

function that will be executed once that result is ready and

that function is what is called a “Callback” function.

Asynchronous Javascript
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• Callbacks are necessary but has a few pitfalls:

• Passing of return values and errors involves nested callbacks

• Heavily interdependent async calls can easily create

”Callback hell”

• when callbacks are further nested, it’s hard to

read/understand

• Nested callbacks make unit testing impossible because we

have no reference of the nested functions

• We use Promises to “flatten” nested Callbacks

Asynchronous Javascript: Callbacks
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• An object which is used to hold the state of the result of an

asynchronous action that will eventually be completed

• Based on the Promise A+ spec, these states are:

• fulfilled (value returned)

• rejected (error returned)

• unfulfilled (in progress, but shall eventually become

fulfilled or rejected)

Asynchronous Javascript: Promises
Practical Javascript

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

• We use Promises because:

• code will move from continuation-passing style to one

where your functions return a value, called a promise,

that returns eventual results of that operation.

• can catching errors like synchronized functions

• Are much more “unit testable” and clean to read

Asynchronous Javascript: Promises – Con’t
Practical Javascript

Example: https://codesandbox.io/s/xovy28mkyo (async.js)

https://codesandbox.io/s/xovy28mkyo

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Asynchronous Javascript: Callback VS Promises
Practical Javascript

SAMSUNG R&D CANADA

OCT 2018

SAMSUNG CONFIDENTIAL

Event Loop
Raymond Leung

NOV 2018

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

JavaScript is Asynchronous

What is JavaScript

JavaScript is Single Threaded

How is this possible?

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

What is JavaScript
Event Loop

Event Loop

• Co-ordinates timing of
all tasks and actions,
from running code to
repainting the DOM

• Follows the principle
of “Run to
Completion”

• Can only move tasks to
Call Stack ONLY when
the Call Stack is empty

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Main Thread
Call Stack – Run to completion

Call Stack

function foo() {
bar();
console.log('hello from foo');

}

function bar() {
baz();
console.log('hello from bar');

}

function baz() {
console.log('hello from baz');

}

foo();

foo()

bar()

baz()

console.log()

console.log()

console.log()

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

The Event Loop
Timing

Rule #1 The only rule:
Don’t block the main thread!

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Async Calls
Callbacks - Message Queue

<button id=‘button’>while(true)</button>

const button = document.getElementById(‘button’);

button.addEventListener(‘click’, () => {
while(true);

});

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Blocking Main Thread

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

What about Async?

setTimeout()

setInterval()

requestAnimationFrame()

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Async Calls
Callbacks - Message Queue

Call Stack

function foo() {
bar();
console.log('hello from foo');

}

function bar() {
baz();
console.log('hello from bar');

}

function baz() {
setTimeout(() => {

console.log('hello from baz’);
}, 0);

}
Message Queue

foo()

bar()

baz()

setTimeout –
console.log()

console.log()

console.log()

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Async Calls
Callbacks - Message Queue

<button id=‘button’>while(true)</button>

function loop() {
console.log(‘calling loop’);
setTimeout(loop, 0);

}

const button = document.getElementById(‘button’);

button.addEventListener(‘click’, () => {
loop();

});

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Practical JavaScript
Module Pattern

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Async Calls
Callbacks - Message Queue

Call Stack

function loop() {
setTimeout(loop, 0);

}

loop();

Message Queue

loop() setTimeout –
loop()

setTimeout –
loop()

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Async Calls
Promises

setTimeout(() => {
console.log(‘setTimeout done’);

}, 0);

Promise.resolve().then(() => {
console.log(‘promise done’);

});

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Promises
Micro Task Queue

• Promises resolve to a Micro Task rather than Task

• Micro Tasks run in a separate queue

• Micro Tasks are checked just before the current Event Loop tick
is complete.

• Like Tasks, they can only be processed once the Call Stack is
empty

• Unlike the Task Queue, all new spawned Micro Tasks will be
processed before yielding the Call Stack

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Micro Tasks

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Event Loop
Queue timing and processing

Call Stack – Runs one thing at a time. Runs to completion so will not yield.

Micro Task – Will pop onto the Call Stack only when the Call Stack is empty.
Micro Task Queue is evaluated at the end of the current loop tick. Will not only
run to completion, but all new Micro Tasks that were spawned from this Micro
Task will be evaluated before yielding.

Message Queue – Will pop onto the Call Stack only when the Call Stack is
empty. This is evaluated at the beginning of the next Event Loop tick. Only one
Task in the queue will be evaluated. Any new Tasks that were spawned from
this will be put into the Queue to be processed whenever the Message Queue
can be evaluated again.

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

JavaScript is weird

button.addEventListener(‘click’, () => {
Promise.resolve().then(() => { console.log(‘Micro Task 1’) });
console.log(‘Listener 1’);

});

button.addEventListener(‘click’, () => {
Promise.resolve().then(() => { console.log(‘Micro Task 2’) });
console.log(‘Listener 2’);

});

button.click()

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Resources

Jake Archibald
In The Loop – JSConf Asia 2018

https://www.youtube.com/watch?v=cCOL7MC4Pl0

Shelley Vohr
Asynchrony: Under the Hood

https://www.youtube.com/watch?v=SrNQS8J67zc

SAMSUNG R&D CANADA SAMSUNG CONFIDENTIAL

Resources

Questions?

