CS 486/586, Fall 2018, Lecture 10

Normalization based on :
Functional Dependencies (FDs) | :::

e Normalization works on relations in a relational

Normalization database.

e Normalization based on FDs has been formalized

YY) and the theory has been completely worked out.
Thanks to Lois Delcambre ::' ° e Normalization makes it easier to update a database
® ® but may degrade query performance — an
o : o engineering tradeoff.
[X J
© Lois Delcambre, David Maier 2005-2018 1
© Lois Delcambre, David Maier 2005-2018 2
(X X] [X X]
(344 . . Goals for Normalization: (31
e%ce’ Normallzatlon Lossless, BCNF, Dep. Preserving b
(X] (X J
Normalization Strand Map oo Strand Map T F% oo
The Solution: What is a
All computer science students must learn to integrate bbegc&:mm e
theory and practice, to recognize the importance of based on EDs Cecotpositions
»' nd to appreciate the value of /\]
. €C2001 (http://www.sigcse.org/cc2001/) Null Values The Problem: How much should How can we
Adyv. & Disadv. “Troublesome" we decompose? preserve all
e This normalization strand map has two strands: T \/
the practical concepts and techniques and
. E ional EDs & Keys:
the formal concepts and results for normalization. erugrf;?:ges > (Sf_ormzl :
EDs) definition)
Keys
(reminder)

© Lois Delcambre, David Maier 2005-2018 3 practical aspects formal aspects 4

CS 486/586, Fall 2018, Lecture 10

Keys for a Table

(reminder)
000
The key(s) for a table must have unique (XX}
values and the key(s) for a table help us :.
understand what the table is “about.” ° :
[X J
[X J
Functional Dependencies
(FDs) generalize keys
Functional dependencies (FDs) for relational : : :
tables are a generalization of the notion (X)
[J [J
of key for a table. o0
[X J
[X J

© Lois Delcambre, David Maier 2005-2018

[1 X]

[X X]

Notice ... only one value for non-key | 32:

attributes (for each key value) 3

Employee ssn name salary job-codé
11111111 John Smith 40,000 15
1.NOT 123456789 ary Smith, 50,000 22
ecauec M) 129456709 Alarie-dones 150,000 24
ssn is key!

/

2. Only one name (and one salary and one job-code) for each row.

For one particular ssn value, 123-45-6789, there is only ONE

name because
1. there is only one tuple and
2. we assume that attributes values are atomic.

© Lois Delcambre, David Maier 2005-2018

Functional Dependencies

An FD, X — Y, where X is a set of attributes and Y

is a set of attributes

It is a statement that if two tuples agree on attributes
X they must agree on attributes Y

For each X value there is ONLY one Y value.

© Lois Delcambre, David Maier 2005-2018

CS 486/586, Fall 2018, Lecture 10

Functional Dependencies :.: .
(from semantics of the application)* Will FDs be enforced? *

Consider this table:
Emp(ssn, name, phone, dnum, dept-name)

Likely functional dependencies:
ssn — employee-name

course-number dept — course-title Suppose there is an FD from dnum — dept-name

Unlikely functional dependencies But ssn is the key for this table.

Z?;ftbc;;?k What will prevent two names for one dept?
irthdate)¢ ssn
. . ” oee]
(X] [] o0
W"! this !:D be enforced: Soee Functional Dependencies H
Let’s try it. 3 .

Consider this table: 7\ For an FD
Emp(ssn, name, phone, dnum, dept-name)

X =Y
Employee | ssn Name | Phone |Dnum | Depthage We say that X determines' Y
M1 | John |555-1234 |12 (sales
222222222 |Mary |555-7890 |12 \Marketing / o)
We want to know if it is always true in the

application.
Can we put these two rows in this table?

Yes, it doesn't violate the key constraint. , We can then use FDs to figure out the keys for tables
But, the FD from dept to dept-name is violated! We shouldn’t

haven’t two different names for dnum 12! and to normalize the tables.

© Lois Delcambre, David Maier 2005-2018 " © Lois Delcambre, David Maier 2005-2018 12

CS 486/586, Fall 2018, Lecture 10

Every key implies a set of FDs

Each key implies a set of functional dependencies (FDs)

from the key to the non-key attributes.

" A
Employee (Ssn, name, salary, job-code)

FDs implied by the key:
ssh — name
ssn — salary
ssn — job-code

© Lois Delcambre, David Maier 2005-2018

The Problem:
“Troublesome” FDs

“Troublesome” FDs (FD where the left-hand-side of
the FD is NOT a key for the table where its
attributes appear) cause redundancy and
update anomalies.

© Lois Delcambre, David Maier 2005-2018

But, some FDs are NOT implied §
by the key. 3T

Emp(ssn, name, phone, dnum, dept-name)

There is an FD from dnum — dept-name

© Lois Delcambre, David Maier 2005-2018 14

Advantages & Disadvantages of E-.
Redundancy e

e Disadvantage: Any time information is stored more
than once, it has the possibility of being inconsistent.
Phone numbers in your laptop
Phone numbers in your cell phone
Phone numbers in your address book
If someone changes his or her phone number, do you
remember to change it in every place?

e Advantage: Redundant information may improve
retrieval speed

© Lois Delcambre, David Maier 2005-2018 16

CS 486/586, Fall 2018, Lecture 10

Sometimes Redundancy is s
Caused by FDs HH

Consider this table:

EMP(name, ﬁ,jbirthdate, address, dnum, dname, dmgr)

Then dname and dmgr are stored redundantly — whenever there
are multiple employees in a department.

This redundancy is caused by what we informally call
“troublesome” FDs. The FDs shown in blue are “troublesome”.

© Lois Delcambre, David Maier 2005-2018 17

What’s wrong? -

4\ ﬁ‘
EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

The name and the manager of the department is
repeated, for each employee that works in that
department.

Redundancy!

If you replicate information, the copies might be
inconsistent.

© Lois Delcambre, David Maier 2005-2018 19

Redundancy Caused by 3
Troublesome FD — Sample Data | :::

EMP(name, i; birthdate, address, dnum, dname, dmg: r)

John 111 June3 123St. D1 sales 222
Sue 222 May 15 455 St. D1 sales 222
Max 333 Mar.5 678St. D2 research 333
Wei 444 May2 999St. D2 research 333
Tom 555 June 22 888 St. D2 research 333

We have the department name and manager twice for D1 and
three times for D2!

© Lois Delcambre, David Maier 2005-2018 18

[X X]
[XX]

Update Anomalies *2:e
caused by “troublesome” FDs 3

EMP(name, ssn, birthdate, address, dnum, dname, dmgr
Insertion anomalies:
if you insert an employee with a department
then you need to know the descriptive information for
that department.
if you want to insert a department, you can't ... until
there is at least one employee.

Deletion anomalies: if you delete an employee, is that dept.
gone? Was this the last employee in that dept.?

Modification anomalies: If you want to change dname, for

example, you need to change it everywhere! And you
have to find them all first.

Troublesome FDs cause (redundancy and) update anomalies.

© Lois Delcambre, David Maier 2005-2018 20

CS 486/586, Fall 2018, Lecture 10

Aside: Null Values —
Advantages &

Disadvantages
_ (YY)
Null values can help with some | ee@e®
update issues :' o ®
but they can make SQL o0
queries more complex. | o : 4

© Lois Delcambre, David Maier 2005-2018 21

Null Values Cause Problems for
Aggregate Operators oo

Employee (ssn, name, salary)
SELECT AVG(salary) FROM Employee;

SELECT SUM(salary) INTO salsum FROM Employee;
SELECT COUNT(*) INTO total FROM Employee;

salsum/total might be different from first query answer.
How could that happen?

They can also complicate joins and WHERE clauses

© Lois Delcambre, David Maier 2005-2018 23

Null Values are Useful 4

Consider
Employee(ssn, name, DOB, partner)

Null values make it simpler to insert data, for
example

before you know the partner name

when there is no partner

Allowing null values makes the DB more flexible.

© Lois Delcambre, David Maier 2005-2018 22

Splitting Tables Reduces the 1355
Need for Null Values e

Use two tables:
Employee (ssh, name, DOB)
Employee-extra (ssn, partner)

Rather than:
Employee(ssn, name, DOB, partner)

Generally, it is better to reduce the use of null values,
if you can. The first design, above, doesn’t require the
use of null values for partner.

© Lois Delcambre, David Maier 2005-2018 24

CS 486/586, Fall 2018, Lecture 10

Example:
Finding Troublesome FDs

The Solution: Lifting
“Troublesome” FDs e,

,—/__A\‘
EMP(name, ssn, birthdate, addres

, dnum, dname, dmgr)

Normalization by decomposition, based on ::: We have a problem! -
FDs (where “troublesome” F’Ds are lifted (X) [) dnum is NOT the key for this table!
into a separate table), reduces ® o
redundancy and update anomalies. ool So these blue FDs will not be enforced
o0 automatically by the DBMS (using only keys).
And there can be redundancy and update
anomalies
Example: selie
Lifting Troublesome FDs HH Table is Split onto New Schemas

New-EMP(name, ssn, birthdate, address, dnum)
John 111 June3 123St. D1
Sue 222 May 15 455 St. D1
Max 333 Mar.5 678St. D2
Wei 444 May2 999St. D2
Tom 555 June22 888 St. D2

/‘\
EMP(name, ssn, birthdate, address| dnum, dname, dmgr)

1. Lift the “troublesome” FD into its own table
with dnum as the key. Now they wil\be enforced.

Dept(dnum, dname, dmgr

Dept(dnum, dname, dmgr)

2. Leave the LHS of the “troublesome” FD$ behind. D1 sales 222
Define a foreign key where D2 research 333
New-Emp.dnum REFERENCES Dept.dn

New-Emp(name, ssn, birthdate, address, dnum) Less redundancy! Tastes better! Fewer update issues!

© Lois Delcambre, David Maier 2005-2018 27 © Lois Delcambre, David Maier 2005-2018

CS 486/586, Fall 2018, Lecture 10

(X X] [1 X]
Basic Idea: selce Can Define a View to Get Original | s2°:
- [X) [X)
Normalize based on FDs 34 Table 34
. Identify all the (non—trivial) FDs in an Emp(qa_me, ssn, birthdate, address, dnum, dname, dmgr)
application. split into
Identify FDs that are implied by the keys. Dept(dnum, dname, dmgr)
Identify FDs that are NOT implied by the keys — _
the “troublesome” ones. New-Emp(name, ssn, birthdate, address, dnum)
If th_ere are applications that currently query Emp, can define a
- Decompose a table with a “troublesome” FD into two view.
or more tables by “lifting” each troublesome FD into CSEEI'_AETSTV*'EW Emp AS
a table of its own. N(_)te: when there are two or more FROM Dept NATURAL JOIN New-Emp
“troublesome” FDs with the same left side, then they Update statements will require changes in most cases
can be lifted, together, into a single table.
11 4
Advantages of Normalization $eie Let’s Check the Update oo
. o0 . o0
based on Decomposition 3 Anomalies 3+
. Insertion anomalies:
When this table: %‘\ if you insert an employee with a department
Emp(name, ssn, birthdate, address, dnum, dname, dmgr) then you need to know the descriptive information for
that department. NO — ONLY THE NUMBER
. if you want to insert a department, you can't ... until
IS replaced by these two tables: there is at least one employee. NO PROBLEM
Dept(dm, dname, dmgr) Deletion anomalies: if you delete an employee, is that dept.
New-Emp(name, ssn, birthdate, address, dnum) gone? Was this the last employee in that dept.? NO PROBLEM

L Modification anomalies: If you want to change dname, for
Are there any update anomalies in the new tables? example, you need to change it everywhere! And you
have to find them all first. dname is only stored once!

Is there any redundancy? Some — in the foreign key.

© Lois Delcambre, David Maier 2005-2018 31 © Lois Delcambre, David Maier 2005-2018 32

CS 486/586, Fall 2018, Lecture 10

Questions about normalization

e How do we know which FDs we have?
Talk to domain experts; identify FDs; use them as

the starting point for normalization.

e How do we know if the decomposition is correct?
e How do we know how much to normalize?

How far should we go?

e How do we know if all of the FDs of interest are
being enforced — by using keys for tables?

We need the formal definition of FDs to be able to

answer these questions.

© Lois Delcambre, David Maier 2005-2018

Definition of a function

Remember the definition of a function:

X |f(x X |g(x) x |h(x)
1] 2 1 2 1] 10
11 3 2| 2 2| 20
215 3| 5 3] 30
315

Which of these are functions?

An FD is a functional relationship

(that always holds in a relation)

among attribute values

© Lois Delcambre, David Maier 2005-2018

35

FDs and Keys:
Formal Definition

A functional dependency is formally definedas | g @ @
a functional relationship between two sets | ® ® (
of attributes. This leads to the definition of | ® :

trivial FDs and superkeys. .:
[X J
[X X]
e
Answer (concerning functions) ooee

Remember the definition of a function:

l9x) x|h(x)
2 1] 10
2 2| 20
5 3] 30

fis NOT a function because for an input of “1”
there are two answers (“2” and “3”).
g and h are functions.

© Lois Delcambre, David Maier 2005-2018 36

CS 486/586, Fall 2018, Lecture 10

(X X]
(X X)
(X]
]

Example of an FD — a function HH

Employee (ssn, name, phone, salary)

Since ssn — name is an FD

If we know that there is only one name for an ssn,

then we know that ssn — name is a function

We don’t expect salary — phone to be function.
(X X]
(X X)
(X]
Soee

Trivial FD oo

We have a trivial FD whenever the attributes on the
right side of an FD are a subset of the attributes on
the left side of the FD:

name phone — phone

Trivial FDs aren’t “troublesome” and won’t help us
decompose a table. Ignore them.

© Lois Delcambre, David Maier 2005-2018 39

Another Example 3+

Employee (ssn, name, phone, dept, dept-mgr)

dept — dept-mgr
If we know that there is only one dept-mgr for a dept,

then we know that dept — dept-mgr is a function!

© Lois Delcambre, David Maier 2005-2018 38

Definition of a $ocet
. oo
Superkey for a Relation 3
A superkey is a set of attributes from a relation that contains a
key.

Every key is (automatically) a superkey.
A superkey is NOT necessarily a key.

Example:
Emp (ssn, name, phone, dept)

ssn is a key (and hence a superkey) for this relation.
(dept, ssn) is a superkey for this relation (but not a key).

© Lois Delcambre, David Maier 2005-2018 40

10

CS 486/586, Fall 2018, Lecture 10

Definition of a Key for a Relation

A key is a minimal set of attributes in a relation whose
values are guaranteed to uniquely identify tuples in

the relation.

Two distinct tuples have distinct key values

(minimal) No subset of the fields that comprise a key

is a key

Can be more than one key for a table (not just a single

declared key as in SQL)

© Lois Delcambre, David Maier 2005-2018

2NF, 3NF, BCNF:
Normal forms based on
FDs

a1

Given a set of FDs and one or more tables,
three increasingly stronger normal forms,
namely 2NF, 3NF, and BCNF, have been
defined.

BCNF implies 3NF.
3NF implies 2NF.
(BCNF = Boyce-Codd Normal Form)

© Lois Delcambre, David Maier 2005-2018

43

Keys and FDs are Constraints .

e We need to know if keys and FDs (always) hold in
the application.

e We need to consult a domain expert to find out what
the keys and FDs are. The keys and FDs serve as

input to the database design process.

© Lois Delcambre, David Maier 2005-2018

Informal Definitions oo

Normal Forms Based on FDs

1NF - all attribute values (domain values) are atomic
(part of the definition of the relational model)

2NF - all non-key* attributes must depend on a whole key (no
partial dependencies)

r(AB C D E) B— Cviolates 2NF

3NF —table is in 2NF and all non-key attributes must depend
on only a key (no transitive dependencies)

r(AB C D E)C — D violates S3NF

BCNF — every left side of an FD is a key for the table
(All FDs are implied by the keys)

r(AB C D E)C — A violates BCNF (but not 3NF)
* “non-key” = not part of any key

© Lois Delcambre, David Maier 2005-2018

11

CS 486/586, Fall 2018, Lecture 10

(X X) [X X J
selce Fix violations of Normal Forms selce
[X) - - [X)
Examples of Violations el by lifting “troublesome” FDs el
Assigned-to (a-| D, emp-name,,percent)
3NF - all non-key attributes must depend on only a key
P —a Employee (a-emp, emp-name)
Employee (ssn, name, address, project, p-title) >
- 1. Lift the troublesome FD(s) into a table of its own.
BCNF - every determinant (LHS of an FD) is a key for this table Key for new table is left hand side of the troublesome FD.
(all FDs are implied by the keys) emp-ID — ssn
2. Leav_e the left side (_)f the ED_behind in the original table.
Assigned-to (emp-ID, a-project, ssn, percent) Assigned-to (a-pro ect percent)
3. Eliminate emp-name from the Assigned-to table.
[X X)
. . °slle
Formal definition of BCNF occe)
388 Dependency Preservation:
For a table R, every FD X — A that occurs among USI“g a sound & complete
attributes of R then either: set of inference rules
A is an element of X (X — A is trivial), or YY)
X is a superkey of R Dependency preservation requires theuse ofa | @ @ @
sound and complete set of rules of (X] (]
For 3NF th . th tion: inference to compute F*, the closure of a L 4 ®
or ere Is one other option: set F of FDs. Given the original set of FDs, ° : L4
A'is part of a key F. Let G consist of the FDs in F+ whose oo
attributes appear in any relation scheme
(after normalization). Dependency

preservation is when F* = G*.

© Lois Delcambre, David Maier 2005-2018 48

© Lois Delcambre, David Maier 2005-2018 47

12

CS 486/586, Fall 2018, Lecture 10

(XX] (X X J
(X X) [X X]
(X] [] [X]
[] [J []
[X) [J
Example HH Example (cont.) HH
Consider the following table: Employee (ssn, name, phone, depﬁme)
T
Employee (ssn, name, phone, dept, dept-name) Original FDs F:
Original FDs F: ssn—name ssn—phone ssn—dept
ssn—name ssn—phone ssn—dept ssn—dept-name dept—dept-name
Employee (ssn, name, phone, dept)
ssn—dept-name dept—dept-name
Department (dept, dname)
Employee (ssn, name, phone, dept) Resulting FDs G:
Department (dept, dname) ssn—nhame ssn—phone ssn—dept
Resulting FDs G: dept—dept-name
ssn—name ssn—phone ssn—dept What about ssn—dept-name? Is it lost? Can there be two department
dept—dept-name names for one ssn?
What about ssn—dept-name? s it lost? Can there be two
department names for one ssn? NO! It's not lost. One ssn has only one dept. And one dept has only
one dept-name. So ssn has only one dept-name.
© Lois Delcambre, David Maier 2005-2018 49 © Lois Delcambre, David Maier 2005-2018 50
11 4
We need to derive all FDs from a | g2 o
. oo oo
given set of FDs. We need rules. |::: Use the rules to compute closure | ::
For sets of attribute X and Y Let F be a set of FDs.
Reflexivity F* is the set of all FDs implied (or derivable) from F
If Y is a subset of X, then X =Y using a sound & complete set of inference rules
As an example, for all attributes, A — A Reflexivity: If Y is a set of attrs, Y subset of X, then X —»Y
examples: name — name, gender — gender Augmentation: If X — Y, and Z is a set of attrs, then XZ — XY
Augmentation Transitivity: If X—»Y, Y —>Z, then X—>Z
If FD X — Y holds, then so does XZ — YZ, for all Z
As an example, augmentation creates superkeys from keys. Compute F* by applying rules until no new FDs arise.
Transitivity F* is called the closure of F)

If FDs X = Y and Y — Z hold,
then so does X — Z

© Lois Delcambre, David Maier 2005-2018 51 © Lois Delcambre, David Maier 2005-2018 52

CS 486/586, Fall 2018, Lecture 10

(XX]
Definition of Dependency $elie .
Preserving s Decomposition is
Suppose F is the original set of FDs. correct When It IS
Compute F+. lossless
G is set of FDs from F* that are present in individual
relations in G. (XX
Compute G*. The decomposition algorithm (based on lifting ::.
fF+=G* “troublesome” FDs into a separate table) ° ®
e . guarantees that the decomposition of the (X J
then the decomposition is dependency preserving original table is lossless. . : ®
For a complex design, you may want to implement one
of the known algorithms for testing F* = G*.
(X X] [X X]
u (X X) [XX]
Decompose: Project Operator $eiee . e
“Recompose”: Join Operator sast What is a lossless (and a lossy) 2as
W decomposition?
en
Emp(name, ssn, birthdate, address, dnum, dname, dmgr) We want to make sure that we haven’t thrown away

any information from the original schema.
is replaced by these two tables:

Department(dnum, dname, dmgr) . .
NewEmp (name, ssn, birthdate, address, dnum) When table R is decomposed into tables R1 and R2

then the decomposition is lossless (correct) if:

We use the project operator to decompose R o q | =
- > is identical to joi
Department = 1y, dname,dmgrEMP () natural join

NeWEmp = J":name,ssn,birthdate,address,dnumEmp
And we use the join operator to put the pieces together

Emp = Department >4 p 4m=ne.dnum NEWEMP

If it is a lossy decomposition, then R1 < R2 gives
you TOO MANY tuples.

© Lois Delcambre, David Maier 2005-2018 55 © Lois Delcambre, David Maier 2005-2018 56

CS 486/586, Fall 2018, Lecture 10

(XX] (X X J
S e
3 One Guarantee for a 333
. H [. []
Example: a lossy decomposition |:: Lossless Decomposition 3
original : .
Employee(emp-number, name, p-num, p-title) Consider a table:
1 smith p1 accounting R (a, b, c, d, e) with a troublesome FD d—e.
2 jones p1 accounting Decompose it into two tables:
3 smith p2 billing R,(a, b, ¢, d)
decomposition: R (d e)
Employee (emp-number, name) Project (p-num, p-title, name) 2=
1 smith p1 account smith
2 jones p1 account jones As long as
3 smith p2 billing smith the attributes in common are a key for (at least) one of the
relations, R, or R,
now with natural join: you get at least one extra tuple! then we know that the decomposition is lossless.
1 smith p2 billing For this example d is the attribute in common.
And d is a key for R,, the second table.
11 4
Is the Decomposition Algorithm | s2:c° Example of a Lossy L
(X] - - - (X J
Lossless? HH Decomposition (revisited) S H

1. Lift the “troublesome” FD(s) (all the FDs with the same LHS)
into a table of their own. Key for new table is left hand side of

the troublesome FD(s). Employee(emp-number, name, p-num, p-title)
2. Leave the left side of the FD behind in the original table. decomposition: Employee (emp-number, name)

I . - Project (p-num, p-title, name)
3. Eliminate the RHS attributes from the original table.

Notice that the common attribute, name, is not a key

Yes, we are guaranteed that the decomposition is lossless. The for either of these tables.
attribute in common is definitely a key for the new “lifted”
table.

© Lois Delcambre, David Maier 2005-2018 59 © Lois Delcambre, David Maier 2005-2018 60

15

CS 486/586, Fall 2018, Lecture 10

Three Goals for Normalization

lossless decomposition
don’t throw any information away
be able to reconstruct the original relation

dependency preservation
all of the original, non-trivial FDs can be derived
from FDs implied by the keys of resulting tables
Boyce-Codd normal form (BCNF) - no redundancy
beyond foreign keys; all FDs implied by keys

© Lois Delcambre, David Maier 2005-2018

Counterexample
(a table that can’t be decomposed into
BCNF with dependency preservation)

Original table — a table that holds US addresses
addr(number street city state zip)

The original FDs are:
number street city state — zip
Zip — state

© Lois Delcambre, David Maier 2005-2018

61

63

It is not always possible to have BCNF| ; ;3¢
AND dependency preservation

Required! ———*lossless decomposition

Desirable dependency preservation
but not /

always \
possible Boyce-Codd normal form (BCNF)
to have both

© Lois Delcambre, David Maier 2005-2018 62

Counterexample (cont.) H
Based on the FDs:

number street city state — zip
zip — state

There are two keys for this table
addr(nulmber stgeet clitv state ZiP)

Since all attributes are key attributes, this table is
automatically in 3NF and 2NF.

But zip — state violates BCNF

© Lois Delcambre, David Maier 2005-2018 64

16

CS 486/586, Fall 2018, Lecture 10

(XX] (X X J
eo0o . . eoo
i Algorithm for lossless join H it
b g - . b
Counterexample (cont.) oo decomposition into BCNF relations see
(not necessarily dependency preserving)
Let's decompose ¥\
addr(number street city state zip) 1. setD:={R} (the current set of relations)
l 1 1 1 A 2. while there is a relation in R that is not in BCNF relative
using this “troublesome” FD: to FDs F
zip — state begin

choose a relation Q that is not in BCNF

find FD X — Y from F* in Q that violates BCNF

replace Q in D by two relations: (Q - Y) and
XuYy)

Addr2 (number, street, city, zip)
Zip-state (zip, state)

We've lost the FD number street city state — zip end;

Lifting “troublesome” FD

If we put this table back in the design, we are back where we L. " "
Finding a "troublesome” FD

started. And we violate BCNF.

© Lois Delcambre, David Maier 2005-2018 65 © Lois Delcambre, David Maier 2005-2018 66

17

