
CS 486/586, Fall 2018, Lecture 10

1

1

Normalization

Thanks to Lois Delcambre

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 2

Normalization based on
Functional Dependencies (FDs)
l  Normalization works on relations in a relational

database.
l  Normalization based on FDs has been formalized

and the theory has been completely worked out.
l  Normalization makes it easier to update a database

but may degrade query performance – an
engineering tradeoff.

© Lois Delcambre, David Maier 2005-2018 3

Normalization Strand Map

All computer science students must learn to integrate
theory and practice, to recognize the importance of
abstraction, and to appreciate the value of good
engineering design. CC2001 (http://www.sigcse.org/cc2001/)

l  This normalization strand map has two strands:
l  the practical concepts and techniques and
l  the formal concepts and results for normalization.

© Lois Delcambre, David Maier 2005-2018 4

Goals for Normalization:
Lossless, BCNF, Dep. Preserving

What is a
correct

decomposition?

The Solution:
Decompose

based on FDs

How much should
we decompose?

(2NF, 3NF, BCNF)

How can we
preserve all

FDs?

Null Values
Adv. & Disadv.

The Problem:
“Troublesome”

FDs

FDs & Keys:
(formal

definition)

Functional
Dependencies

(FDs)

Keys
(reminder)

practical aspects formal aspects

Normalization
Strand Map

CS 486/586, Fall 2018, Lecture 10

2

5

Keys for a Table
(reminder)

The key(s) for a table must have unique
values and the key(s) for a table help us
understand what the table is “about.”

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 6

Notice … only one value for non-key
attributes (for each key value)

For one particular ssn value, 123-45-6789, there is only ONE

name because
 1. there is only one tuple and
 2. we assume that attributes values are atomic.

Employee ssn name salary job-code

111111111 John Smith 40,000 15

123456789 Mary Smith 50,000 22

123456789 Marie Jones 50,000 24

1. NOT
allowed
because
ssn is key!

2. Only one name (and one salary and one job-code) for each row.

7

Functional Dependencies
(FDs) generalize keys

Functional dependencies (FDs) for relational
tables are a generalization of the notion
of key for a table.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 8

Functional Dependencies

An FD, X → Y, where X is a set of attributes and Y
is a set of attributes

It is a statement that if two tuples agree on attributes
X they must agree on attributes Y

For each X value there is ONLY one Y value.

CS 486/586, Fall 2018, Lecture 10

3

© Lois Delcambre, David Maier 2005-2018 9

Functional Dependencies
(from semantics of the application)

Likely functional dependencies:
 ssn → employee-name
 course-number dept → course-title

Unlikely functional dependencies
 dept → book
 birthdate → ssn

X
X

© Lois Delcambre, David Maier 2005-2018 10

Will FDs be enforced?
Consider this table:
Emp(ssn, name, phone, dnum, dept-name)

Suppose there is an FD from dnum → dept-name

But ssn is the key for this table.
What will prevent two names for one dept?

© Lois Delcambre, David Maier 2005-2018 11

Will this FD be enforced?
Let’s try it.
Consider this table:
Emp(ssn, name, phone, dnum, dept-name)

Can we put these two rows in this table?
Yes, it doesn’t violate the key constraint.
But, the FD from dept to dept-name is violated! We shouldn’t

haven’t two different names for dnum 12!

Employee ssn Name Phone Dnum Dept-name
111111111 John 555-1234 12 Sales

222222222 Mary 555-7890 12 Marketing

…

© Lois Delcambre, David Maier 2005-2018 12

Functional Dependencies

For an FD
 X → Y
We say that X determines Y

We want to know if it is always true in the
 application.

We can then use FDs to figure out the keys for tables

and to normalize the tables.

CS 486/586, Fall 2018, Lecture 10

4

© Lois Delcambre, David Maier 2005-2018 13

Employee (ssn, name, salary, job-code)"

Each key implies a set of functional dependencies (FDs)"
"from the key to the non-key attributes."

Every key implies a set of FDs

FDs implied by the key:"
 ssn → name"
 ssn → salary"
 ssn → job-code"

© Lois Delcambre, David Maier 2005-2018 14

But, some FDs are NOT implied
by the key.

Emp(ssn, name, phone, dnum, dept-name)

There is an FD from dnum → dept-name

15

The Problem:
“Troublesome” FDs

“Troublesome” FDs (FD where the left-hand-side of
the FD is NOT a key for the table where its
attributes appear) cause redundancy and
update anomalies.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 16

Advantages & Disadvantages of
Redundancy
l  Disadvantage: Any time information is stored more

than once, it has the possibility of being inconsistent.
l  Phone numbers in your laptop
l  Phone numbers in your cell phone
l  Phone numbers in your address book

If someone changes his or her phone number, do you
remember to change it in every place?

l  Advantage: Redundant information may improve

retrieval speed

CS 486/586, Fall 2018, Lecture 10

5

© Lois Delcambre, David Maier 2005-2018 17

Sometimes Redundancy is
Caused by FDs
Consider this table:

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

Then dname and dmgr are stored redundantly – whenever there

are multiple employees in a department.

This redundancy is caused by what we informally call

“troublesome” FDs. The FDs shown in blue are “troublesome”.

© Lois Delcambre, David Maier 2005-2018 18

Redundancy Caused by
Troublesome FD – Sample Data

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)
 John 111 June 3 123 St. D1 sales 222
 Sue 222 May 15 455 St. D1 sales 222
 Max 333 Mar. 5 678 St. D2 research 333
 Wei 444 May 2 999 St. D2 research 333
 Tom 555 June 22 888 St. D2 research 333

We have the department name and manager twice for D1 and

three times for D2!

© Lois Delcambre, David Maier 2005-2018 19

The name and the manager of the department is
repeated, for each employee that works in that
department."
"
Redundancy! "
"
If you replicate information, the copies might be
inconsistent."

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

What’s wrong?

© Lois Delcambre, David Maier 2005-2018 20

Insertion anomalies: "
 if you insert an employee with a department"

"then you need to know the descriptive information for 
" "that department."

 if you want to insert a department, you can’t ... until"
"there is at least one employee."

"
Deletion anomalies: if you delete an employee, is that dept."

"gone? Was this the last employee in that dept.?"
"
Modification anomalies: If you want to change dname, for  

"example, you need to change it everywhere! And you  
"have to find them all first. "

"
Troublesome FDs cause (redundancy and) update anomalies."

Update Anomalies
caused by “troublesome” FDs
EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

CS 486/586, Fall 2018, Lecture 10

6

21

Aside: Null Values –
Advantages &

Disadvantages

Null values can help with some
update issues

but they can make SQL
queries more complex.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 22

Null Values are Useful
Consider
 Employee(ssn, name, DOB, partner)

Null values make it simpler to insert data, for
example

l  before you know the partner name
l  when there is no partner

Allowing null values makes the DB more flexible.

© Lois Delcambre, David Maier 2005-2018 23

Null Values Cause Problems for
Aggregate Operators
Employee (ssn, name, salary)

SELECT AVG(salary) FROM Employee;

SELECT SUM(salary) INTO salsum FROM Employee;
SELECT COUNT(*) INTO total FROM Employee;

salsum/total might be different from first query answer.

How could that happen?

They can also complicate joins and WHERE clauses

© Lois Delcambre, David Maier 2005-2018 24

Use two tables:"
Employee (ssn, name, DOB)"
Employee-extra (ssn, partner) "
"
Rather than:"
Employee(ssn, name, DOB, partner)

Generally, it is better to reduce the use of null values,  
if you can. The first design, above, doesn’t require the "
use of null values for partner."

Splitting Tables Reduces the
Need for Null Values

CS 486/586, Fall 2018, Lecture 10

7

25

The Solution: Lifting
“Troublesome” FDs

Normalization by decomposition, based on
FDs (where “troublesome” FDs are lifted
into a separate table), reduces
 redundancy and update anomalies.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 26

Example:
Finding Troublesome FDs

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

We have a problem!
dnum is NOT the key for this table!

So these blue FDs will not be enforced
automatically by the DBMS (using only keys).

And there can be redundancy and update
anomalies

© Lois Delcambre, David Maier 2005-2018 27

Example:
Lifting Troublesome FDs

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

1. Lift the “troublesome” FD into its own table
 with dnum as the key. Now they will be enforced.

Dept(dnum, dname, dmgr)

New-Emp(name, ssn, birthdate, address, dnum)

2. Leave the LHS of the “troublesome” FDs behind.
 Define a foreign key where
 New-Emp.dnum REFERENCES Dept.dnum

© Lois Delcambre, David Maier 2005-2018 28

Table is Split onto New Schemas
New-EMP(name, ssn, birthdate, address, dnum)
 John 111 June 3 123 St. D1
 Sue 222 May 15 455 St. D1
 Max 333 Mar. 5 678 St. D2
 Wei 444 May 2 999 St. D2
 Tom 555 June 22 888 St. D2

Dept(dnum, dname, dmgr)
 D1 sales 222
 D2 research 333

Less redundancy! Tastes better! Fewer update issues!

CS 486/586, Fall 2018, Lecture 10

8

© Lois Delcambre, David Maier 2005-2018 29

Basic Idea:
Normalize based on FDs
•  Identify all the (non-trivial) FDs in an

application.
•  Identify FDs that are implied by the keys.
•  Identify FDs that are NOT implied by the keys –

the “troublesome” ones.

•  Decompose a table with a “troublesome” FD into two
or more tables by “lifting” each troublesome FD into
a table of its own. Note: when there are two or more
“troublesome” FDs with the same left side, then they
can be lifted, together, into a single table.

© Lois Delcambre, David Maier 2005-2018 30

Can Define a View to Get Original
Table

Emp(name, ssn, birthdate, address, dnum, dname, dmgr)

split into

 Dept(dnum, dname, dmgr)

 New-Emp(name, ssn, birthdate, address, dnum)

If there are applications that currently query Emp, can define a

view:
 CREATE VIEW Emp AS

SELECT *
FROM Dept NATURAL JOIN New-Emp

Update statements will require changes in most cases

© Lois Delcambre, David Maier 2005-2018 31

Advantages of Normalization
based on Decomposition
When this table:
Emp(name, ssn, birthdate, address, dnum, dname, dmgr)

is replaced by these two tables:
Dept(dnum, dname, dmgr)
New-Emp(name, ssn, birthdate, address, dnum)

Are there any update anomalies in the new tables?

© Lois Delcambre, David Maier 2005-2018 32

Let’s Check the Update
Anomalies

Insertion anomalies:
 if you insert an employee with a department

 then you need to know the descriptive information for
 that department. NO – ONLY THE NUMBER

 if you want to insert a department, you can’t ... until
 there is at least one employee. NO PROBLEM

Deletion anomalies: if you delete an employee, is that dept.

 gone? Was this the last employee in that dept.? NO PROBLEM

Modification anomalies: If you want to change dname, for

 example, you need to change it everywhere! And you
 have to find them all first. dname is only stored once!

Is there any redundancy? Some – in the foreign key.

CS 486/586, Fall 2018, Lecture 10

9

© Lois Delcambre, David Maier 2005-2018 33

Questions about normalization
l  How do we know which FDs we have?

Talk to domain experts; identify FDs; use them as
the starting point for normalization.

l  How do we know if the decomposition is correct?
l  How do we know how much to normalize?

How far should we go?
l  How do we know if all of the FDs of interest are

being enforced – by using keys for tables?
We need the formal definition of FDs to be able to
answer these questions.

34

FDs and Keys:
Formal Definition

A functional dependency is formally defined as
a functional relationship between two sets
of attributes. This leads to the definition of
trivial FDs and superkeys.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 35

Remember the definition of a function:

x f(x) x g(x) x h(x)
1 2 1 2 1 10
1 3 2 2 2 20
2 5 3 5 3 30
3  5

Which of these are functions?

An FD is a functional relationship
(that always holds in a relation)
among attribute values

Definition of a function

© Lois Delcambre, David Maier 2005-2018 36

Remember the definition of a function:

x f(x) x g(x) x h(x)
1 2 1 2 1 10
1 3 2 2 2 20
2 5 3 5 3 30
3 5

Answer (concerning functions)

f is NOT a function because for an input of “1”
there are two answers (“2” and “3”).
g and h are functions.

CS 486/586, Fall 2018, Lecture 10

10

© Lois Delcambre, David Maier 2005-2018 37

Example of an FD – a function
Employee (ssn, name, phone, salary)

Since ssn → name is an FD
If we know that there is only one name for an ssn,

then we know that ssn → name is a function

We don’t expect salary → phone to be function.

© Lois Delcambre, David Maier 2005-2018 38

Another Example

Employee (ssn, name, phone, dept, dept-mgr)

dept → dept-mgr
If we know that there is only one dept-mgr for a dept,

then we know that dept → dept-mgr is a function!

© Lois Delcambre, David Maier 2005-2018 39

Trivial FD
We have a trivial FD whenever the attributes on the

right side of an FD are a subset of the attributes on
the left side of the FD:

name phone → phone

Trivial FDs aren’t “troublesome” and won’t help us
decompose a table. Ignore them.

© Lois Delcambre, David Maier 2005-2018 40

Definition of a
Superkey for a Relation
A superkey is a set of attributes from a relation that contains a

key.

Every key is (automatically) a superkey.
A superkey is NOT necessarily a key.

Example:
Emp (ssn, name, phone, dept)
ssn is a key (and hence a superkey) for this relation.
(dept, ssn) is a superkey for this relation (but not a key).

CS 486/586, Fall 2018, Lecture 10

11

© Lois Delcambre, David Maier 2005-2018 41

Definition of a Key for a Relation
A key is a minimal set of attributes in a relation whose

values are guaranteed to uniquely identify tuples in
the relation.

l  Two distinct tuples have distinct key values
l  (minimal) No subset of the fields that comprise a key

is a key
l  Can be more than one key for a table (not just a single

declared key as in SQL)

© Lois Delcambre, David Maier 2005-2018 42

Keys and FDs are Constraints
l  We need to know if keys and FDs (always) hold in

the application.

l  We need to consult a domain expert to find out what
the keys and FDs are. The keys and FDs serve as
input to the database design process.

43

2NF, 3NF, BCNF:
Normal forms based on

FDs

Given a set of FDs and one or more tables,
three increasingly stronger normal forms,
namely 2NF, 3NF, and BCNF, have been
defined.

BCNF implies 3NF.
3NF implies 2NF.
(BCNF = Boyce-Codd Normal Form)

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 44

Informal Definitions
Normal Forms Based on FDs

1NF - all attribute values (domain values) are atomic
 (part of the definition of the relational model)
2NF - all non-key* attributes must depend on a whole key (no

partial dependencies)
 r (A B C D E) B → C violates 2NF
3NF – table is in 2NF and all non-key attributes must depend

on only a key (no transitive dependencies)
 r (A B C D E) C → D violates 3NF
BCNF – every left side of an FD is a key for the table

(All FDs are implied by the keys)
 r (A B C D E) C → A violates BCNF (but not 3NF)"
* “non-key” = not part of any key

CS 486/586, Fall 2018, Lecture 10

12

© Lois Delcambre, David Maier 2005-2018 45

Examples of Violations
2NF - all non-key attributes must depend on a whole key
 Assigned-to (a-project, a-emp, emp-name, percent)

3NF - all non-key attributes must depend on only a key
Employee (ssn, name, address, project, p-title)

BCNF - every determinant (LHS of an FD) is a key for this table

 (all FDs are implied by the keys) emp-ID → ssn

Assigned-to (emp-ID, a-project, ssn, percent)

© Lois Delcambre, David Maier 2005-2018 46

Fix violations of Normal Forms
by lifting “troublesome” FDs

 Assigned-to (a-project, a-emp, emp-name, percent)

 Employee (a-emp, emp-name)

1. Lift the troublesome FD(s) into a table of its own.

Key for new table is left hand side of the troublesome FD.

2. Leave the left side of the FD behind in the original table.

Assigned-to (a-project, a-emp, percent)

3. Eliminate emp-name from the Assigned-to table.

© Lois Delcambre, David Maier 2005-2018 47

Formal definition of BCNF

For a table R, every FD X → A that occurs among
attributes of R then either:

l  A is an element of X (X → A is trivial), or
l  X is a superkey of R

For 3NF there is one other option:
l  A is part of a key

48

Dependency Preservation:
Using a sound & complete

set of inference rules

Dependency preservation requires the use of a
sound and complete set of rules of
inference to compute F+, the closure of a
set F of FDs. Given the original set of FDs,
F. Let G consist of the FDs in F+ whose
attributes appear in any relation scheme
(after normalization). Dependency
preservation is when F+ = G+.

© Lois Delcambre, David Maier 2005-2018

CS 486/586, Fall 2018, Lecture 10

13

© Lois Delcambre, David Maier 2005-2018 49

Example
Consider the following table:
Employee (ssn, name, phone, dept, dept-name)

Original FDs F:
 ssn→name ssn→phone ssn→dept
 ssn→dept-name dept→dept-name

Employee (ssn, name, phone, dept)
Department (dept, dname)
Resulting FDs G:

 ssn→name ssn→phone ssn→dept
 dept→dept-name

What about ssn→dept-name? Is it lost? Can there be two
department names for one ssn?

© Lois Delcambre, David Maier 2005-2018 50

Example (cont.)
Employee (ssn, name, phone, dept, dept-name)

Original FDs F:
 ssn→name ssn→phone ssn→dept
 ssn→dept-name dept→dept-name

Employee (ssn, name, phone, dept)
Department (dept, dname)
Resulting FDs G:

 ssn→name ssn→phone ssn→dept
 dept→dept-name

What about ssn→dept-name? Is it lost? Can there be two department
names for one ssn?

NO! It’s not lost. One ssn has only one dept. And one dept has only

one dept-name. So ssn has only one dept-name.

© Lois Delcambre, David Maier 2005-2018 51

We need to derive all FDs from a
given set of FDs. We need rules.
For sets of attribute X and Y
Reflexivity
If Y is a subset of X, then X → Y
As an example, for all attributes, A → A

 examples: name → name, gender → gender
Augmentation
If FD X → Y holds, then so does XZ → YZ, for all Z
As an example, augmentation creates superkeys from keys.
Transitivity
If FDs X → Y and Y → Z hold,

 then so does X → Z

© Lois Delcambre, David Maier 2005-2018 52

Use the rules to compute closure
Let F be a set of FDs.
F+ is the set of all FDs implied (or derivable) from F
 using a sound & complete set of inference rules

 Reflexivity: If Y is a set of attrs, Y subset of X, then X → Y 	

 Augmentation: If X → Y, and Z is a set of attrs, then XZ → XY	
   Transitivity: If X→ Y, Y → Z, then X → Z

Compute F+ by applying rules until no new FDs arise.
F+ is called the closure of F)

CS 486/586, Fall 2018, Lecture 10

14

© Lois Delcambre, David Maier 2005-2018 53

Definition of Dependency
Preserving
Suppose F is the original set of FDs.

 Compute F+.
 G is set of FDs from F+ that are present in individual
relations in G.
 Compute G+.
If F+ = G+

 then the decomposition is dependency preserving

For a complex design, you may want to implement one

of the known algorithms for testing F+ = G+.
 54

Decomposition is
correct when it is

lossless

The decomposition algorithm (based on lifting
“troublesome” FDs into a separate table)
guarantees that the decomposition of the
original table is lossless.

© Lois Delcambre, David Maier 2005-2018

© Lois Delcambre, David Maier 2005-2018 55

Decompose: Project Operator
“Recompose”: Join Operator
When
Emp(name, ssn, birthdate, address, dnum, dname, dmgr)

is replaced by these two tables:
Department(dnum, dname, dmgr)
NewEmp (name, ssn, birthdate, address, dnum)

We use the project operator to decompose
Department = πdnum,dname,dmgrEmp
NewEmp = πname,ssn,birthdate,address,dnumEmp
And we use the join operator to put the pieces together
Emp = Department ⋈ D.dnum=NE.dnum NewEmp

© Lois Delcambre, David Maier 2005-2018 56

What is a lossless (and a lossy)
decomposition?
We want to make sure that we haven’t thrown away

any information from the original schema.

When table R is decomposed into tables R1 and R2

then the decomposition is lossless (correct) if:

 (R1 ⋈ R2) is identical to R

If it is a lossy decomposition, then R1 ⋈ R2 gives
you TOO MANY tuples.

natural join

CS 486/586, Fall 2018, Lecture 10

15

© Lois Delcambre, David Maier 2005-2018 57

original
Employee(emp-number, name, p-num, p-title)

 1 smith p1 accounting
 2 jones p1 accounting
 3 smith p2 billing

decomposition:
Employee (emp-number, name) Project (p-num, p-title, name)

 1 smith p1 account smith
 2 jones p1 account jones
 3 smith p2 billing smith

now with natural join: you get at least one extra tuple!

 1 smith p2 billing

Example: a lossy decomposition

© Lois Delcambre, David Maier 2005-2018 58

One Guarantee for a
Lossless Decomposition
Consider a table:

 R (a, b, c, d, e) with a troublesome FD d→e.
Decompose it into two tables:

 R1(a, b, c, d)
 R2(d, e)

As long as

 the attributes in common are a key for (at least) one of the
relations, R1 or R2
then we know that the decomposition is lossless.

For this example d is the attribute in common.
And d is a key for R2, the second table.

© Lois Delcambre, David Maier 2005-2018 59

Is the Decomposition Algorithm
Lossless?
1. Lift the “troublesome” FD(s) (all the FDs with the same LHS)

into a table of their own. Key for new table is left hand side of
the troublesome FD(s).

2. Leave the left side of the FD behind in the original table.

3. Eliminate the RHS attributes from the original table.

Yes, we are guaranteed that the decomposition is lossless. The

attribute in common is definitely a key for the new “lifted”
table.

© Lois Delcambre, David Maier 2005-2018 60

Employee(emp-number, name, p-num, p-title)

decomposition: Employee (emp-number, name)
 Project (p-num, p-title, name)

Notice that the common attribute, name, is not a key

for either of these tables.

Example of a Lossy
Decomposition (revisited)

CS 486/586, Fall 2018, Lecture 10

16

© Lois Delcambre, David Maier 2005-2018 61

Three Goals for Normalization!

lossless decomposition "
" don’t throw any information away"
" be able to reconstruct the original relation"

"
dependency preservation"

"all of the original, non-trivial FDs can be derived  
"from FDs implied by the keys of resulting tables"

"
Boyce-Codd normal form (BCNF) - no redundancy"

"beyond foreign keys; all FDs implied by keys"

© Lois Delcambre, David Maier 2005-2018 62

It is not always possible to have BCNF  
AND dependency preservation!

"lossless decomposition "
" ""

"
"

"dependency preservation"
" ""

"
"

"Boyce-Codd normal form (BCNF)"

Required!

Desirable
but not
always

possible
to have both

© Lois Delcambre, David Maier 2005-2018 63

Original table – a table that holds US addresses

addr(number street city state zip)

The original FDs are:

number street city state → zip
zip → state

Counterexample
(a table that can’t be decomposed into
BCNF with dependency preservation)

© Lois Delcambre, David Maier 2005-2018 64

Counterexample (cont.)
Based on the FDs:

number street city state → zip
zip → state

There are two keys for this table
 addr(number street city state zip)

Since all attributes are key attributes, this table is

automatically in 3NF and 2NF.
But zip → state violates BCNF

CS 486/586, Fall 2018, Lecture 10

17

© Lois Delcambre, David Maier 2005-2018 65

Counterexample (cont.)
Let’s decompose
addr(number street city state zip)

using this “troublesome” FD:
zip → state

Addr2 (number, street, city, zip)
Zip-state (zip, state)

We’ve lost the FD number street city state → zip

If we put this table back in the design, we are back where we

started. And we violate BCNF.

© Lois Delcambre, David Maier 2005-2018 66

1. set D := { R } (the current set of relations)
2. while there is a relation in R that is not in BCNF relative
 to FDs F

 begin
 choose a relation Q that is not in BCNF
 find FD X → Y from F+ in Q that violates BCNF
 replace Q in D by two relations: (Q - Y) and
 (X U Y)
 end;

Algorithm for lossless join
decomposition into BCNF relations  
(not necessarily dependency preserving)!

Finding a “troublesome” FD
Lifting “troublesome” FD

