Data Structures and Algorithms

Rao Muhammad Umer
Lecturer,
CS and IT Department,
The University of Lahore.
Web: raoumer.com

Data Structure and Algorithms

http://raoumer.com/

outline

Trees = Expression Trees

= Prefix, Postfix, Infix expressions
= What are Trees? P

, = Reconstruction Tree
= Binary Trees Concepts

= Balanced Trees
= AVL Trees

= Binary Search Tree

= Representation of Binary Tree
= Asan Array
= As a Linked-list

= Operations on a BST

= Searching, Insertion, Deletion

Data Structure and Algorithms

Trees

" tree: A directed, acyclic structure of linked nodes.
" directed: Has one-way links between nodes.
" acyclic: No path wraps back around to the same node twice.
= binary tree: One where each node has at most two children.

= A binary tree can be defined as either: |
= empty (hull), or @
= aroot node that contains: T T~

= Data
" 3 left subtree and a right subtree /
" Either (or both) subtrees could be empty. @ @ @ @

Data Structure and Algorithms

Trees in computer science

=) My Documents

= _backup A
. = csel100
folders/files on a computer S
=2) cseld3 ‘
= I3 0Owi

. . .) assassin
family genealogy; organizational charts B exams /‘\ ‘
. . = grades
Al: decision trees & handouts
. = = homework ' '
COmpllerS: parse tree = [1-sortedintlist

u a - (b + C) * d; \{\“ | 5 “Platypus ﬁ

cell phone T9 opossam

Names: Root ﬁ e 4 ’n.
Joa :) ; ; | ' Human
Johin { d ? (Chimp
Jane |

— Mouse

.\.'\'.\.\. ‘
@ vl Monkey
- .

— Rat

Lﬂh-

@ : ;;"-
Horse
' 099 F e/
@ @ | 026 Dog | ' ' , "
-.‘ J " £ l
{,‘5 £y \

Terminology

node: an object containing a data value and left/right children
root: topmost node of a tree

leaf: a node that has no children

branch: any internal node; neither the root nor a leaf

parent: a node that refers to this one rolot
child: a node that this node refers to @
sibling: a node with common parent <« S

Data Structure and Algorithms

Binary search trees

Binary search tree ("BST"): a binary tree that is either:
" empty (null), or
" aroot node R such that:
" every element of R's left subtree contains data "less than" R's data,

" every element of R's right subtree contains data "greater than" R's,
= R's [eft and right subtrees are also binary search trees. overall root
BSTs store their elements in sorted order, which is helpful @

for searching/sorting tasks.
/ \

See animation of building a BST @ @
° @

Data Structure and Algorithms

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/building/building.exe

Which are BSTs?

Exercise

Data Structure and Algorithms

Programming with Binary Trees

" Many tree algorithms are recursive
" Process current node, recurse on subtrees
= Base case is usually empty tree (null)

= traversal: An examination of the elements of a tree.
" A pattern used in many tree algorithms and methods

= Common orderings for traversals:
= pre-order: process root node, then its left/right subtrees
= See animation of working of pre-order

" jin-order: process left subtree, then root node, then right
= See animation of working of pre-order

= post-order: process left/right subtrees, then root node
= See animation of working of pre-order

Data Structure and Algorithms

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/preorder/preorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/inorder/inorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/postorder/postorder.exe

Tree height calculation

Height is max number of edges from root to leaf
" height(null) =-1
" height(1)=0
" height(A)?
" Hint: it's recursive!

hieft hright

Height = max (height(left), height(right)) + 1
Height (null) = -1
Runtime: O(N) visit each node once.

Data Structure and Algorithms

Binary Trees: Some Numbers

Recall: height of a tree = length of longest path from the root to a leaf.
For binary tree of height h:
" max # of leaves:

Zh
= max # of nodes: 2(h+1) _ 1
= min # of leaves: 1
min # of nodes: h+1

Data Structure and Algorithms

10

Representation of a Binary Trees in Memory

" Node of Binary Tree:
struct thode

{
tnode *left;
Int data;
tnode *rigth;
}

" There are two ways to represent a binary tree:
" Linked representation of a binary tree
= Array representation of a binary tree

Data Structure and Algorithms

11

Representation of a Binary Trees in Memory

Linked representation of a binary tree Snade

- sl S

— - —

1 | o
e g— | . data

= See animation of building tree using linked list

Data Structure and Algorithms

12

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/linked representation/build tree.exe

Representation of a Binary Trees in Memory

= Array representation of a binary tree

= See source code in C++ of building tree using array

Data Structure and Algorithms

13

../Assignments/trees

Binary Search Tree (BST)

Implementation of a binary search tree

= See source code in C++ of building binary search tree

Operations on a BST
= Searching
" |nsertion
= Deletion

Data Structure and Algorithms

14

../Assignments/trees

Operations of Binary Search Tree (BST)

= Operations on a binary search tree

= See animation of operations on a BST

= See source code of operations on a BST

Data Structure and Algorithms

15

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion
E:/UOL_Courses/summer-2017-courses/DSA/DSA_Course/Assignments/trees

Expression Binary Trees

Expression Trees

= Arithmetic expression: A*B+C*D+E @

" Prefix form:
" Pre-order traversal of expression tree /
" Infix form: @

" In-order traversal of expression tree
" Postfix form:
" Post-order traversal of expression tree

Data Structure and Algorithms

16

Preorder Of Expression Tree

++*AB++*CDE

Gives prefix form of expression!

Data Structure and Algorithms

17

Inorder Of Expression Tree

Ax*xB +C*D+E

Gives Infix form of expression!

Data Structure and Algorithms

18

Postorder Of Expression Tree

AB*CD*E+ +

Gives postfix form of expression!

Data Structure and Algorithms

19

Traversal Applications

Make a clone.

Determine height.

Determine number of nodes.

/®\
©

ONONONC

Data Structure and Algorithms

20

Binary Tree Construction

Suppose that the elements in a binary tree are distinct.
Can you construct the binary tree from which a given traversal sequence came?

When a traversal sequence has more than one element, the binary tree is not
uniquely defined.

Therefore, the tree from which the sequence was obtained cannot be reconstructed
uniquely.

Data Structure and Algorithms 21

preorder
= ab

inorder
= ab

postorder
=ab

Someﬁnples ‘\‘
¢ %
¢ %

Data Structure and Algorithms

22

A Balanced Tree

Values: 2 8 14 15 18 20 21 t
oo
= Order added: 15, 8, 2, 20, 21, 14, 18 |

Different tree structures possible

/ \
= Depends on order inserted
7 nodes, expected height log 7 = 3 @ @

Perfectly balanced

Data Structure and Algorithms

23

Mostly Balanced Tree

Same Values: 2 8 14 15 18 20 21
= QOrder added: 20, 8, 21, 18, 14, 15, 2

/
Mostly balanced, height 4 /

Data Structure and Algorithms

24

Degenerate Tree

Same Values: 2 8 14 15 18 20 21
= Order added: 2, 8, 14, 15, 18, 20, 21

root

Totally unbalanced, height 6

Data Structure and Algorithms

25

Balanced Tree

Balanced Tree: a tree in which heights of sub-trees are approximately equal

50
@/ \ F#af’“f.fﬁ HR.H"“‘HMHW m

0 @0 voB W B

@. @ ORI 67

unbalanced tree balanced tree

Data Structure and Algorithms

26

AVL Trees

AVL tree: a binary search tree that uses modified add and remove operations
to stay balanced as items are added to and remove from it

" invented in 1962 by two mathematicians (Adelson-Velskii and Landis)
" one of several auto-balancing trees (others in book)
= specifically, maintains a balance factor of each node of 0, 1, or -1

" i.e. no node's two child subtrees differ in height by more than 1

balance factor, for a tree node n :
" height of n's right subtree minus height of n's left subtree
" BF,= HEightn.right) HEightn.left
= start counting heights at n

Data Structure and Algorithms 27

AVL tree examples

Two binary search trees:
"= (a)an AVL tree
= (b) not an AVL tree (unbalanced nodes are darkened)

(a)

Data Structure and Algorithms

(b)

28

More AVL tree examples

Data Structure and Algorithms

29

Not AVL tree examples

Data Structure and Algorithms

30

AN
A

Data Structure and Algorithms

8

AVL Trees: search, insert, remove

AVL search:

= Same as BST search.

AVL insert:

= Same as BST insert, except you need to check your balance and may need to
“fix” the AVL tree after the insert.

AVL remove:
= Remove it, check your balance, and fix it.

Data Structure and Algorithms

32

Testing the Balance Property

= \We need to be able to:
1. Track Balance Factor
2. Detect Imbalance

3. Restore Balance

= How do we accomplish each step?

Data Structure and Algorithms

33

Tracking Balance

Data Structure and Algorithms

data
height

children

34

Acknowledgement

Mostly Slides taken from Book: “Data Structures through C++” by Yashavant P.
Kanetkar

35

