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Trees 

 What are Trees? 

 Binary Trees Concepts 

 Binary Search Tree 

 Representation of Binary Tree 
 As an Array 

 As a Linked-list 

 Operations on a BST 
 Searching, Insertion, Deletion 

 

 Expression Trees 
 Prefix, Postfix, Infix expressions 

 Reconstruction Tree 

 Balanced Trees 

 AVL Trees 

Data Structure and Algorithms 2 



Trees 
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 tree: A directed, acyclic structure of linked nodes. 
 directed: Has one-way links between nodes. 
 acyclic: No path wraps back around to the same node twice. 
 binary tree: One where each node has at most two children. 

 
 A binary tree can be defined as either: 

 empty (null), or 
 a root node that contains: 

 Data 
 a left subtree and a right subtree 

 Either (or both) subtrees could be empty. 
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Trees in computer science 

4 

 folders/files on a computer 

 

 family genealogy; organizational charts 

 AI: decision trees 

 compilers: parse tree 

 a = (b + c) * d; 

 cell phone T9 
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Terminology 
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 node: an object containing a data value and left/right children 

 root: topmost node of a tree 

 leaf: a node that has no children 

 branch: any internal node;  neither the root nor a leaf 

 parent: a node that refers to this one 

 child: a node that this node refers to 

 sibling: a node with common parent 
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Binary search trees 
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 Binary search tree ("BST"): a binary tree that is either: 

 empty (null), or 

 a root node R such that: 

 every element of R's left subtree contains data "less than" R's data, 

 every element of R's right subtree contains data "greater than" R's, 

 R's left and right subtrees are also binary search trees. 

 BSTs store their elements in sorted order, which is helpful 
for searching/sorting tasks. 

 See animation of building a BST 
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Exercise 

Data Structure and Algorithms 7 

x k 

q g 

m 

e 

b 

42 

18 10 

11 5 

8 

4 

2 7 

20 

18 

-7 -1 

-5 

21.3 8.1 

9.6 1.9 

7.2 

Which are BSTs? 



Programming with Binary Trees 

 Many tree algorithms are recursive 
 Process current node, recurse on subtrees 
 Base case is usually empty tree (null) 

 

 traversal: An examination of the elements of a tree. 
 A pattern used in many tree algorithms and methods 

 

 Common orderings for traversals: 
 pre-order: process root node, then its left/right subtrees 

 See animation of working of pre-order 

 in-order: process left subtree, then root node, then right 
 See animation of working of pre-order 

 post-order: process left/right subtrees, then root node 
 See animation of working of pre-order 
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Tree height calculation 

 Height is max number of edges from root to leaf 
 height(null) = -1 

 height(1) = 0 

 height(A)? 

 Hint: it's recursive! 

 

 

 
 Height = max ( height(left), height(right) ) + 1 
 Height (null) = -1 
 Runtime: O(N) visit each node once. 
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Binary Trees: Some Numbers 

 Recall: height of a tree = length of longest path from the root to a leaf. 

 For binary tree of height h: 

 max # of leaves:  

 

 max # of nodes: 

 

 min # of leaves: 

 

 min # of nodes: 
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Representation of a Binary Trees in Memory 

 Node of Binary Tree: 

  struct tnode 

   { 

    tnode *left; 

    int data; 

    tnode *rigth; 

   } 

 

 There are two ways to represent a binary tree: 

 Linked representation of a binary tree 

 Array representation of a binary tree 
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Representation of a Binary Trees in Memory 

 Linked representation of a binary tree 

 

 

 

 

 

 

 

 See animation of building tree using linked list 
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Representation of a Binary Trees in Memory 

 Array representation of a binary tree 

 

 

 

 
 

 

 See source code in C++ of building tree using array 
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Binary Search Tree (BST) 

 Implementation of a binary search tree 

 See source code in C++ of building binary search tree 
 

 Operations on a BST 

 Searching 

 Insertion 

 Deletion 
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Operations of Binary Search Tree (BST) 

 Operations on a binary search tree 

  See animation of operations on a BST 

 See source code of operations on a BST 
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Expression Binary Trees 

 Expression Trees 

 Arithmetic expression: A * B + C * D + E 

 

 Prefix form: 

 Pre-order traversal of expression tree 

 Infix form: 

 In-order traversal of expression tree 

 Postfix form: 

 Post-order traversal of expression tree 
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Preorder Of Expression Tree 

Data Structure and Algorithms 17 

+ * A B + * C D E 

Gives prefix form of expression! 



Inorder Of Expression Tree 
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+ * A B + * C D E 

Gives infix form of expression! 



Postorder Of Expression Tree 
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+ * A B + * C D E 

Gives postfix form of expression! 



Traversal Applications 

 Make a clone. 

 

 Determine height. 

 

 Determine number of nodes. 

 

 

Data Structure and Algorithms 20 

21 18 

20 8 

15 

14 2 

root 



Binary Tree Construction 

 Suppose that the elements in a binary tree are distinct. 

 

 Can you construct the binary tree from which a given traversal sequence came? 

 

 When a traversal sequence has more than one element, the binary tree is not 
uniquely defined. 

 

 Therefore, the tree from which the sequence was obtained cannot be reconstructed 
uniquely. 
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Some Examples 
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A Balanced Tree 

 Values: 2 8 14 15 18 20 21 

 Order added: 15, 8, 2, 20, 21, 14, 18 

 

 Different tree structures possible 

 Depends on order inserted 

 

 7 nodes, expected height log 7 ≈ 3 

 

 Perfectly balanced 
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Mostly Balanced Tree 

 Same Values: 2 8 14 15 18 20 21 

 Order added: 20, 8, 21, 18, 14, 15, 2 

 

 Mostly balanced, height 4 
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Degenerate Tree 

 Same Values: 2 8 14 15 18 20 21 

 Order added: 2, 8, 14, 15, 18, 20, 21 

 

 Totally unbalanced, height 6 
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Balanced Tree 

 Balanced Tree: a tree in which heights of sub-trees are approximately equal 
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AVL Trees 

 AVL tree: a binary search tree that uses modified add and remove operations 
to stay balanced as items are added to and remove from it 
 invented in 1962 by two mathematicians (Adelson-Velskii and Landis) 
 one of several auto-balancing trees (others in book) 
 specifically, maintains a balance factor of each node of 0, 1, or -1 

 i.e. no node's two child subtrees differ in height by more than 1 
 

 balance factor, for a tree node n : 
 height of n's right subtree minus height of n's left subtree 

 BFn = Heightn.right - Heightn.left 

 start counting heights at n 
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AVL tree examples 

 Two binary search trees: 

 (a) an AVL tree 

 (b) not an AVL tree (unbalanced nodes are darkened) 
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More AVL tree examples 
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Not AVL tree examples 
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Which are AVL trees? 
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AVL Trees: search, insert, remove 

 AVL search:  

 Same as BST search. 

 

 AVL insert:  

 Same as BST insert, except you need to check your balance and may need to 
“fix” the AVL tree after the insert. 

 

 AVL remove:  

 Remove it, check your balance, and fix it. 
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Testing the Balance Property 

 We need to be able to: 

1. Track Balance Factor 

2. Detect Imbalance 

3. Restore Balance 

 

 How do we accomplish each step? 
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Tracking Balance 
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