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Trees

" tree: A directed, acyclic structure of linked nodes.
" directed: Has one-way links between nodes.
" acyclic: No path wraps back around to the same node twice.
= binary tree: One where each node has at most two children.

= A binary tree can be defined as either: |
= empty (hull), or @
= aroot node that contains: T T~

= Data
" 3 left subtree and a right subtree /
" Either (or both) subtrees could be empty. @ @ @ @
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Trees in computer science
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Terminology

node: an object containing a data value and left/right children
root: topmost node of a tree

leaf: a node that has no children

branch: any internal node; neither the root nor a leaf

parent: a node that refers to this one rolot
child: a node that this node refers to @
sibling: a node with common parent <« S
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Binary search trees

Binary search tree ("BST"): a binary tree that is either:
" empty (null), or
" aroot node R such that:
" every element of R's left subtree contains data "less than" R's data,

" every element of R's right subtree contains data "greater than" R's,
= R's [eft and right subtrees are also binary search trees.  overall root
BSTs store their elements in sorted order, which is helpful @

for searching/sorting tasks.
/ \

See animation of building a BST @ @
° @
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E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/building/building.exe

Which are BSTs?

Exercise
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Programming with Binary Trees

" Many tree algorithms are recursive
" Process current node, recurse on subtrees
= Base case is usually empty tree (null)

= traversal: An examination of the elements of a tree.
" A pattern used in many tree algorithms and methods

= Common orderings for traversals:
= pre-order: process root node, then its left/right subtrees
= See animation of working of pre-order

" jin-order: process left subtree, then root node, then right
= See animation of working of pre-order

= post-order: process left/right subtrees, then root node
= See animation of working of pre-order
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E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/preorder/preorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/inorder/inorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/postorder/postorder.exe

Tree height calculation

Height is max number of edges from root to leaf
" height(null) =-1
" height(1)=0
" height(A)?
" Hint: it's recursive!

hieft hright

Height = max ( height(left), height(right) ) + 1
Height (null) = -1
Runtime: O(N) visit each node once.

Data Structure and Algorithms



Binary Trees: Some Numbers

Recall: height of a tree = length of longest path from the root to a leaf.
For binary tree of height h:
" max # of leaves:

Zh
= max # of nodes: 2(h+1) _ 1
= min # of leaves: 1
min # of nodes: h+1
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Representation of a Binary Trees in Memory

" Node of Binary Tree:
struct thode

{
tnode *left;
Int data;
tnode *rigth;
}

" There are two ways to represent a binary tree:
" Linked representation of a binary tree
= Array representation of a binary tree
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Representation of a Binary Trees in Memory

Linked representation of a binary tree Snade
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= See animation of building tree using linked list
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E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/linked representation/build tree.exe

Representation of a Binary Trees in Memory

= Array representation of a binary tree

= See source code in C++ of building tree using array
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Binary Search Tree (BST)

Implementation of a binary search tree

= See source code in C++ of building binary search tree

Operations on a BST
= Searching
" |nsertion
= Deletion

Data Structure and Algorithms

14


../Assignments/trees

Operations of Binary Search Tree (BST)

= Operations on a binary search tree

= See animation of operations on a BST

= See source code of operations on a BST

Data Structure and Algorithms

15


E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion
E:/UOL_Courses/summer-2017-courses/DSA/DSA_Course/Assignments/trees

Expression Binary Trees

Expression Trees

= Arithmetic expression: A*B+C*D+E @

" Prefix form:
" Pre-order traversal of expression tree /
" Infix form: @

" In-order traversal of expression tree
" Postfix form:
" Post-order traversal of expression tree
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Preorder Of Expression Tree

++*AB++*CDE

Gives prefix form of expression!
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Inorder Of Expression Tree

Ax*xB +C*D+E

Gives Infix form of expression!
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Postorder Of Expression Tree

AB*CD*E+ +

Gives postfix form of expression!
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Traversal Applications

Make a clone.

Determine height.

Determine number of nodes.

/®\
©

ONONONC
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Binary Tree Construction

Suppose that the elements in a binary tree are distinct.
Can you construct the binary tree from which a given traversal sequence came?

When a traversal sequence has more than one element, the binary tree is not
uniquely defined.

Therefore, the tree from which the sequence was obtained cannot be reconstructed
uniquely.
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preorder
= ab

inorder
= ab

postorder
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A Balanced Tree

Values: 2 8 14 15 18 20 21 t
oo
= Order added: 15, 8, 2, 20, 21, 14, 18 |

Different tree structures possible

/ \
= Depends on order inserted
7 nodes, expected height log 7 = 3 @ @

Perfectly balanced
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Mostly Balanced Tree

Same Values: 2 8 14 15 18 20 21
= QOrder added: 20, 8, 21, 18, 14, 15, 2

/
Mostly balanced, height 4 /
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Degenerate Tree

Same Values: 2 8 14 15 18 20 21
= Order added: 2, 8, 14, 15, 18, 20, 21

root

Totally unbalanced, height 6
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Balanced Tree

Balanced Tree: a tree in which heights of sub-trees are approximately equal
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AVL Trees

AVL tree: a binary search tree that uses modified add and remove operations
to stay balanced as items are added to and remove from it

" invented in 1962 by two mathematicians (Adelson-Velskii and Landis)
" one of several auto-balancing trees (others in book)
= specifically, maintains a balance factor of each node of 0, 1, or -1

" i.e. no node's two child subtrees differ in height by more than 1

balance factor, for a tree node n :
" height of n's right subtree minus height of n's left subtree
" BF,= HEightn.right ) HEightn.left
= start counting heights at n
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AVL tree examples

Two binary search trees:
"= (a)an AVL tree
= (b) not an AVL tree (unbalanced nodes are darkened)

(a)
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More AVL tree examples
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Not AVL tree examples
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AVL Trees: search, insert, remove

AVL search:

= Same as BST search.

AVL insert:

= Same as BST insert, except you need to check your balance and may need to
“fix” the AVL tree after the insert.

AVL remove:
= Remove it, check your balance, and fix it.
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Testing the Balance Property

= \We need to be able to:
1. Track Balance Factor
2. Detect Imbalance

3. Restore Balance

= How do we accomplish each step?
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Tracking Balance
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children
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