
Data Structures and Algorithms

Rao Muhammad Umer
Lecturer,

CS and IT Department,
The University of Lahore.

Web: raoumer.com

Data Structure and Algorithms 1

http://raoumer.com/

outline

Trees

 What are Trees?

 Binary Trees Concepts

 Binary Search Tree

 Representation of Binary Tree
 As an Array

 As a Linked-list

 Operations on a BST
 Searching, Insertion, Deletion

 Expression Trees
 Prefix, Postfix, Infix expressions

 Reconstruction Tree

 Balanced Trees

 AVL Trees

Data Structure and Algorithms 2

Trees

Data Structure and Algorithms 3

 tree: A directed, acyclic structure of linked nodes.
 directed: Has one-way links between nodes.
 acyclic: No path wraps back around to the same node twice.
 binary tree: One where each node has at most two children.

 A binary tree can be defined as either:

 empty (null), or
 a root node that contains:

 Data
 a left subtree and a right subtree

 Either (or both) subtrees could be empty.

7 6

3 2

1

5 4

root

Trees in computer science

4

 folders/files on a computer

 family genealogy; organizational charts

 AI: decision trees

 compilers: parse tree

 a = (b + c) * d;

 cell phone T9

d +

* a

=

c b

Terminology

Data Structure and Algorithms 5

 node: an object containing a data value and left/right children

 root: topmost node of a tree

 leaf: a node that has no children

 branch: any internal node; neither the root nor a leaf

 parent: a node that refers to this one

 child: a node that this node refers to

 sibling: a node with common parent

7 6

3 2

1

5 4

root

Binary search trees

Data Structure and Algorithms 6

 Binary search tree ("BST"): a binary tree that is either:

 empty (null), or

 a root node R such that:

 every element of R's left subtree contains data "less than" R's data,

 every element of R's right subtree contains data "greater than" R's,

 R's left and right subtrees are also binary search trees.

 BSTs store their elements in sorted order, which is helpful
for searching/sorting tasks.

 See animation of building a BST

91 60

87 29

55

42 -3

overall root

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/building/building.exe

Exercise

Data Structure and Algorithms 7

x k

q g

m

e

b

42

18 10

11 5

8

4

2 7

20

18

-7 -1

-5

21.3 8.1

9.6 1.9

7.2

Which are BSTs?

Programming with Binary Trees

 Many tree algorithms are recursive
 Process current node, recurse on subtrees
 Base case is usually empty tree (null)

 traversal: An examination of the elements of a tree.
 A pattern used in many tree algorithms and methods

 Common orderings for traversals:
 pre-order: process root node, then its left/right subtrees

 See animation of working of pre-order

 in-order: process left subtree, then root node, then right
 See animation of working of pre-order

 post-order: process left/right subtrees, then root node
 See animation of working of pre-order

Data Structure and Algorithms 8

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/preorder/preorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/inorder/inorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/postorder/postorder.exe

Tree height calculation

 Height is max number of edges from root to leaf
 height(null) = -1

 height(1) = 0

 height(A)?

 Hint: it's recursive!

 Height = max (height(left), height(right)) + 1
 Height (null) = -1
 Runtime: O(N) visit each node once.

 Data Structure and Algorithms 9

A

hleft hright

Binary Trees: Some Numbers

 Recall: height of a tree = length of longest path from the root to a leaf.

 For binary tree of height h:

 max # of leaves:

 max # of nodes:

 min # of leaves:

 min # of nodes:

Data Structure and Algorithms 10

2h

2(h + 1) - 1

1

h + 1

Representation of a Binary Trees in Memory

 Node of Binary Tree:

 struct tnode

 {

 tnode *left;

 int data;

 tnode *rigth;

 }

 There are two ways to represent a binary tree:

 Linked representation of a binary tree

 Array representation of a binary tree

Data Structure and Algorithms 11

Representation of a Binary Trees in Memory

 Linked representation of a binary tree

 See animation of building tree using linked list

Data Structure and Algorithms 12

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/linked representation/build tree.exe

Representation of a Binary Trees in Memory

 Array representation of a binary tree

 See source code in C++ of building tree using array

 Data Structure and Algorithms 13

../Assignments/trees

Binary Search Tree (BST)

 Implementation of a binary search tree

 See source code in C++ of building binary search tree

 Operations on a BST

 Searching

 Insertion

 Deletion

Data Structure and Algorithms 14

../Assignments/trees

Operations of Binary Search Tree (BST)

 Operations on a binary search tree

 See animation of operations on a BST

 See source code of operations on a BST

Data Structure and Algorithms 15

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion
E:/UOL_Courses/summer-2017-courses/DSA/DSA_Course/Assignments/trees

Expression Binary Trees

 Expression Trees

 Arithmetic expression: A * B + C * D + E

 Prefix form:

 Pre-order traversal of expression tree

 Infix form:

 In-order traversal of expression tree

 Postfix form:

 Post-order traversal of expression tree

Data Structure and Algorithms 16

E *

+ *

+

B A

root

C D

Preorder Of Expression Tree

Data Structure and Algorithms 17

+ * A B + * C D E

Gives prefix form of expression!

Inorder Of Expression Tree

Data Structure and Algorithms 18

+ * A B + * C D E

Gives infix form of expression!

Postorder Of Expression Tree

Data Structure and Algorithms 19

+ * A B + * C D E

Gives postfix form of expression!

Traversal Applications

 Make a clone.

 Determine height.

 Determine number of nodes.

Data Structure and Algorithms 20

21 18

20 8

15

14 2

root

Binary Tree Construction

 Suppose that the elements in a binary tree are distinct.

 Can you construct the binary tree from which a given traversal sequence came?

 When a traversal sequence has more than one element, the binary tree is not
uniquely defined.

 Therefore, the tree from which the sequence was obtained cannot be reconstructed
uniquely.

Data Structure and Algorithms 21

Some Examples

Data Structure and Algorithms 22

preorder

 = ab

a

b

a

b

inorder

= ab

b

a

a

b

postorder

= ab

b

a

b

a

A Balanced Tree

 Values: 2 8 14 15 18 20 21

 Order added: 15, 8, 2, 20, 21, 14, 18

 Different tree structures possible

 Depends on order inserted

 7 nodes, expected height log 7 ≈ 3

 Perfectly balanced

Data Structure and Algorithms 23

21 18

20 8

15

14 2

root

Mostly Balanced Tree

 Same Values: 2 8 14 15 18 20 21

 Order added: 20, 8, 21, 18, 14, 15, 2

 Mostly balanced, height 4

Data Structure and Algorithms 24

15

14

21 8

20

18 2

root

Degenerate Tree

 Same Values: 2 8 14 15 18 20 21

 Order added: 2, 8, 14, 15, 18, 20, 21

 Totally unbalanced, height 6

Data Structure and Algorithms 25

Balanced Tree

 Balanced Tree: a tree in which heights of sub-trees are approximately equal

Data Structure and Algorithms 26

unbalanced tree balanced tree

AVL Trees

 AVL tree: a binary search tree that uses modified add and remove operations
to stay balanced as items are added to and remove from it
 invented in 1962 by two mathematicians (Adelson-Velskii and Landis)
 one of several auto-balancing trees (others in book)
 specifically, maintains a balance factor of each node of 0, 1, or -1

 i.e. no node's two child subtrees differ in height by more than 1

 balance factor, for a tree node n :
 height of n's right subtree minus height of n's left subtree

 BFn = Heightn.right - Heightn.left

 start counting heights at n

Data Structure and Algorithms 27

AVL tree examples

 Two binary search trees:

 (a) an AVL tree

 (b) not an AVL tree (unbalanced nodes are darkened)

Data Structure and Algorithms 28

More AVL tree examples

Data Structure and Algorithms 29

0

0 0 -1

-1 0

0

1

-1 0

0 -1 1

0 0

Not AVL tree examples

Data Structure and Algorithms 30

-2

-1

0

-2

2 0

0

-1

1

-1 2

0 1

0

Which are AVL trees?

Data Structure and Algorithms 31

AVL Trees: search, insert, remove

 AVL search:

 Same as BST search.

 AVL insert:

 Same as BST insert, except you need to check your balance and may need to
“fix” the AVL tree after the insert.

 AVL remove:

 Remove it, check your balance, and fix it.

Data Structure and Algorithms 32

Testing the Balance Property

 We need to be able to:

1. Track Balance Factor

2. Detect Imbalance

3. Restore Balance

 How do we accomplish each step?

Data Structure and Algorithms 33

Tracking Balance

Data Structure and Algorithms 34

Acknowledgement
 Mostly Slides taken from Book: “Data Structures through C++” by Yashavant P.

Kanetkar

35

