@ej:m/vbmw/t o% @O/mj:)/lxl/t% Soi/e/iuve/o, and gg,
ggm %Mwmmlitj o¥ o@axﬂuo/w

Heap Data Structure

Rao Muhammad Umer
Lecturer,
CS and IT Department,
The University of Lahore.
Web: raoumer.com

http://raoumer.com/

Outlines
Heap

Max/Min Heap

Operations on Heap

Build Heap

Complexity Analysis of Heap
Binomial Heap

Fibonacci Heap

Applications of Heap

* Heap Sort

* Priority Queue

* Event-Driven Simulation

Heap Data Structure

»Heap: A special form of complete
binary tree that key value of each node is
no smaller (larger) than the key value of

Its C
> Hea

nildren (if any).

ns are based on the notion of

a complete tree

» A binary tree i1s completely full if it is of
height, h, and has 2"1-1 nodes.

Complete Binary Tree

« A binary tree of height, h, iIs complete Iff :
>itisempty OR

> Its left subtree Is complete of height h-1 and its
right subtree is completely full of height h-2 or

> Its left subtree is completely full of height h-1
and its right subtree Is complete of height h-1.

« A complete tree is filled from the left

A complete binary tree In nature

en

-
S
:

.

Binary tre

Computing

":“\;

\.‘ . - \‘ d

e o
\\
\
=5

‘\

Max/Min Tree

Max-Tree:

A max tree Is a tree in which the key
value in each node iIs no smaller than the
key values In its children.

Min-Tree:

A min tree Is a tree in which the key
value in each node is no larger than the
key values in its children.

Min Tree Example

O
@EE

Root has minimum element.

Max Tree Example

PN
PN @/@

Root has maximum element.

Max/Min Heap

Max-Heap: root node has the largest key.

A max heap Is a complete binary
tree that Is also a max tree.

Min-Heap: root node has the smallest key.

A min heap is a complete binary
tree that Is also a min tree.

10

Min Heap With 9 Nodes
/Q
/
O

Complete binary tree with 9 nodes.

11

Min Heap With 9 Nodes

Complete binary tree with 9 nodes
that 1s also a min tree.

12

Max Heap With 9 Nodes

& @

Complete binary tree with 9 nodes
that I1s also a max tree.

13

Heap Height

» Since a heap I1s a complete binary
tree, the height of an n node heap Is
log, (n+1).

14

A Heap Is Efficiently Represented As An Array

/‘

/

1 2 3 4 5 6 7 8 9 10

Moving Up And Down A Heap

16

Inserting An Element Into A Max Heap

& @

Complete binary tree with 10 nodes.

17

Inserting An Element Into A Max Heap

New element Is 5.

18

Inserting An Element Into A Max Heap

New element is 20.

19

Inserting An Element Into A Max Heap

oy
5 @O @

New element is 20.

20

Inserting An Element Into A Max Heap

oy
5 @O @

New element is 20.

21

Inserting An Element Into A Max Heap

'Y

New element is 20.

22

Inserting An Element Into A Max Heap

Complete binary tree with 11 nodes.

23

Inserting An Element Into A Max Heap

'Y

New element is 15.

24

Inserting An Element Into A Max Heap

§ 06 e

New element is 15.

25

Inserting An Element Into A Max Heap

§ 06 e

New element is 15.

26

Complexity Of Insert

§ 06 e

Complexity 1s O(log n), where n Is
heap size.

27

Removing The Max Element

Max element Is In the root.

28

Removing The Max Element

After max element 1s removed.

29

Removing The Max Element

&) @/

Heap with 10 nodes.
Reinsert 8 into the heap.

30

Removing The Max Element

'Y

Reinsert 8 into the heap.

31

Removing The Max Element

oy
5 @O @

Reinsert 8 into the heap.

32

Removing The Max Element

oy
5 @O @

Reinsert 8 into the heap.

33

Removing The Max Element

Max element i1s 15.

34

Removing The Max Element

After max element 1s removed.

35

Removing The Max Element

® © @

Heap with 9 nodes.

36

Removing The Max Element

& @

Reinsert 7.

37

Removing The Max Element

O
& @

Reinsert 7.

38

Removing The Max Element

O
& @

Reinsert 7.

39

Complexity Of Remove Max Element

& @

Complexity 1s O(log n).

40

Construction, Insertion and
Deletion of heap

 See animation of construction of heap

« See animation of insertion of heap

« See animation of deletion of heap

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/construction of heap/conheap.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/insertion heap/insertion.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion heap/deletion.exe

Initializing A Max Heap

BUILD-MAX-HEAP(A)

1

2 fori = |A.length/2| downto 1

3

A.heap-size = A.length

MAX-HEAPIFY (A, 1)

MAX-HEAPIFY (A, 1)

f—

P Nelile <BE TR R SR e R o

[= LEFT(i)

r = RIGHT(i)

if | < A.heap-size and A[l] > Ali]
largest = [

else largest = i

if r < A.heap-size and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest)

Initializing A Max Heap

° o o

Inputarray =1[-, 1,2, 3,4,5,6,7,8,9, 10, 11]

Initializing A Max Heap

¢ @

Start at rightmost array position that has a child.
Index Is n/2.

Initializing A Max Heap

oo o

Move to next lower array position.

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap
/®
/
(o)) (©)
(4 (&

Find a home for 2.

Initializing A Max Heap
/®

10;
(5

/

(o O,

Find a home for 2.

Initializing A Max Heap
/®
/
(o) (©)
@0 @ ©

Done, move to next lower array position.

Initializing A Max Heap

o6 o

Find home for 1.

Initializing A Max Heap
/‘
/
(o) (©)
@ @ ©

Find home for 1.

Initializing A Max Heap
/‘
10, >
(o)) (©)
@ @ ©

Find home for 1.

Initializing A Max Heap
/‘
/
5 @\®\@

Find home for 1.

Initializing A Max Heap

10)
(2 (5

Cost of Max-Heapify (A, 1) is O(log n)

Number of node/elements to be processed is n.

Total Time Complexity is O(n log n).

BINOMIAL HEAPS

Binomial Tree

Def. A binomial tree of order k 1s defined
recursively:

 Order 0: single node.

e Order k: one binomial tree of order k -1
linked to another of order k — 1.

Binomial Tree

; LG@M

Binomial Heap

Def. A binomial heap Is a sequence of
binomial trees such that:

 Each tree Is heap-ordered

 There 1s either O or 1 binomial tree of order
k

Binomial Heap

30 23 22 48 31 17

45 32 24 50

55

18

-
,-*"f /
- f//
.f'"f /
29 “
/
/
/
/
@ 3117

30

binomial heap

Binomial Heap

i7

18 | PR - PR

leftist power-of-2 heap representation

FIBONACCI HEAPS

Fibonaccl Heap
Basic ldea

 Similar to binomial heaps, but less rigid
structure

« Binomial heap: eagerly consolidate trees
after each INSERT; implement

DECREASE-KEY by repeatedly
exchanging node with its parent

N e

FIBONACCI HEAPS
IN NATURE

pinecone

cauliflower

» Sorting(Heap Sort)

Application of Heap

» Priority Queues

Event-driven simulation.
Numerical computation.
Data compression.
Graph searching.
Number theory.
Artificial intelligence.
Statistics.

Operating systems.
Discrete optimization.

Spam filtering.

customers in a line, colliding particles]
reducing roundoff error]
Huffman codes]

Dijkstra's algorithm, Prim's algorithm]

[

[

[

[

[sum of powers]
[A* search]
[maintain largest M values in a sequence]
[load balancing, interrupt handling]

[bin packing, scheduling]

[

Bayesian spam filter]

Heap Sort

 Algorithm for Heap Sort

HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 fori = A.length downto 2

3 exchange A[1] with Ali]

- A.heap-size = A.heap-size — 1
MAX-HEAPIFY (A, 1)

* Time Complexity i1s O(n log n).

Heap Sort

« Array interpreted as a binary tree
1 2 3 45 6 7 8 9 10
26 577 161 11 59 15 48 19

Input file

71

Heap Sort

« Adjust It to a MaxHeap

72

Heap Sort

» Exchange and adjust

73

Heap Sort

74

Heap Sort

[S]Q/ [9]‘ [10] ‘
(d)

75

Heap Sort

[S]Q/ [9]‘ [10]

(f)

76

Heap Sort

m(L)
[3]

e
oo 3 "o

77

Heap Sort

[6] [7]

[8]

(1)

e SO0 results
77 61 59 48 26 19 15 11 5 1

78

Priority Queue

A priority queue Is a data structure for
maintaining a set S of elements, each with
an associated value called a key.

« Two kinds of priority queues:
* Min priority queue
« Max priority queue

Min Priority Queue

e Collection of elements.
» Each element has a priority or key:.

 Supports following operations:
= empty
= Size
= Insert an element into the priority queue (push)
= get element with min priority (top)
= remove element with min priority (pop)

Max Priority Queue

e Collection of elements.
» Each element has a priority or key:.

 Supports following operations:
= empty
= Size
= Insert an element into the priority queue (push)
= get element with max priority (top)
= remove element with max priority (pop)

Priority Queue

 Algorithm for Priority Queue

HEAP-EXTRACT-MAX(A)

it A.heap-size < 1

error “heap underflow™
max = A[l]
A[l] = A[A.heap-size]
A.heap-size = A.heap-size — 1
MAX-HEAPIFY (A, 1)
return max

-~ O h & W=

Complexity Of Operations

Using a heap:
* empty, size, and top => O(1) time
* Insert (push) and remove (pop) =>

O(log n) time where n Is the size of the
priority queue

Priority Queue

Use max-priority queues to schedule jobs on a
shared computer

The max-priority queue keeps track of the jobs
to be performed and their relative priorities

When a job is finished or interrupted, the
scheduler selects the highest-priority job from
among those pending by calling EXTRACT-
MAX

The scheduler can add a new job to the queue
at any time by calling INSERT

Event-Driven Simulation

« Goal: Simulate the motion of N moving
particles that behave according to the laws
of elastic collision.

Event-Driven Simulation

Significance: Relates macroscopic
observables to microscopic dynamics

« Maxwell-Boltzmann: distribution of speeds
as a function of temperature.

 Einstein: explain Brownian motion of
pollen grains

Over-All Analy3|s of Heap
O(1)

MAKE-HEAP (1) (1)
|s-EMPTY o(1) o(1) 0(1) o(l)
INSERT (1) (log n) O(log n) o)
EXTRACT-MIN O(n) O(log n) O(log n) Oflog n)
DECREASE-KEY 1) O(log n) Oflog n) o(1)
DELETE 0(1) O(log n) O(log n) Oflog n)
MELD o(1) O(n) Olog n) o(l)

FIND-MIN O(n) 0(1) O(log n) o

Some More Food

Heaps of heaps

 b-heaps.

« Fat heaps.

« 2-3 heaps.

» Leaf heaps.

* Thin heaps. :

» Skew heaps. o AR S
« Splay heaps. | - :
« Weak heaps. 7 W : /
+ Leftist heaps. (! ‘/ :
* Quake heaps. 1k = e
» Pairing heaps. Rt
« Violation heaps.

» Run-relaxed heaps.

« Rank-pairing heaps.

« Skew-pairing heaps.
* Rank-relaxed heaps.
« Lazy Fibonacci heaps.

