
To do …

Generating Research Ideas

Based on N. Feamster and A. Gray slides



General approach
Find a problem
Understand the problem
Make a plan for a solution, carry it out
Review the solution

“The most exciting phrase to hear in science, the one 
that heralds the most discoveries, is not "Eureka!" (I 
found it!) but 'That's funny...” 
Isaac Asimov

2



Finding problems
Hop on a trend
Find a nail that fits your hammer
Revisit old problems (with new perspective)
Making life easier
– Pain points
– Wish lists

“*-ations”
– Generalization
– Specialization
– Automation

3



Hop on a trend – where to find them?
Funding agencies
– Funded proposals; calls for proposals

Conference calls for papers
Industry/technology trends: trade rags

4



Finding a nail for your hammer
Become an expert at something
– You’ll become valuable to a lot of people

Build a system that sets you ahead of the pack

Apply your “secret weapon” to one or more 
problem areas
– Algorithm
– System
– Expertise

5



Revisiting problems
Previous solutions may have assumed certain 
problem constraints
– Layering is good; not enough memory; …

What has changed since the problem was 
“solved”?
– Processing power
– Cost of memory
– New protocols
– New applications
– …

6



Making life easier
Look for pain points
– Industry, other researchers, etc. for problems that 

recur
– In programming, if you have to do something more 

than a few times, script!
– In research, if the same problem is recurring and 

solved the same silly way, look for a better one …
Wish lists
– What systems do you wish you had that would make 

your life easier?
– What questions would you like answered to?

7



Automation, generalization, specialization
Automation
– Some tasks are manual and painful
– Could you automate it? Difficult because it requires 

complex reasoning
Generalize from specifics
– Previous work may outline points in the design space
– Is there a general algorithm, system, framework, etc., 

that solves a larger class of problems?
Specialize 
– Find general problems, “problem areas” (taxonomies 

and surveys)
– Applying constraints to the problem in different ways 

may yield a new class of problems (e.g., routing)
8



General approach
Find a problem
Understand the problem
Make a plan for a solution, carry it out
Review the solution

9



Exhaustive search
Collect data
– Can enhance your expertise as a side effect

Model the problem
– List all of the constraints to a problem space
– Consider the different angles within your model that 

you might be able to attack the problem
Consider many other examples
– May suggest general framework or approach
– You may also see a completely different approach

10



Formalization
Define metrics
– Ways to measure the quality of various solutions
– What constitutes a “good solution”
– Objective functions can be optimized

Formalization/modeling can lead to simplifying 
assumptions (hopefully not over-simplifying)
– Can also suggest ways to attack the problem
– …or an algorithm itself

11



Decomposition
Given a model, it often becomes easier to break 
a solution into smaller parts
Understand each part in detail, and how they 
interact
Then revisit the whole

12



General approach
Find a problem
Understand the problem
Make a plan for a solution, carry it out
Review the solution

13



Consider related problems and analogies
Try to restate the problem, or create an 
equivalent problem
– Consider different terminologies and representations

See if your problem matches a general form 
already formalized
Can you use the solution to a related problem?

Make an analogy to another problem, then look 
at its solution

14



Change the problem to one you can solve
Make simplifying assumptions
– Violate some of the constraints of the problem
– Define a sense of approximation to the ideal solution

Then revisit the original problem
Make the minimally-simpler problem; then relate 
the solutions to the two problems
– “mathematical induction”

15



Just start, with anything
Start with a strawman solution, then modify as 
needed
– e.g. (in algorithms): Propose a simple algorithm, 

check its correctness
– e.g. (in data modeling): Look at simple statistics of a 

dataset, then dive into anomalies
– e.g. (in systems): Just whip up some code

16



Work backward from the goal
Visualize the solution, and what it must look like, 
or probably looks like
See what’s needed to get there
Consider all the solutions that can’t work

17



Solve a part, or each part
Solve each part separately, then stitch the 
solutions together
– Start with the part which is most tractable
– “divide-conquer-merge”
– Be careful: it’s always best to avoid separate 

objective functions when possible
Perhaps finding a good solution to a part is a 
good problem in itself

18



Think in speech or pictures
Use dialogues with others
– Or yourself
– Talk to people who approach things differently

Draw pictures 
– Add auxiliary elements, to be able to relate to other 

problems/solutions

19



Come from all angles
Keep coming with a new twist on the problem
– Break out of a thinking pattern or dead end
– A new twist renews motivation

Keep track of all your ideas and partially-
completed paths

Finally, let your subconscious work
– Immersion
– Stay relaxed
– Or: use deadlines to force shortcuts

20



General approach
Find a problem
Understand the problem
Make a plan for a solution, carry it out
Review the solution

21



Look back at your solution
Check that it really works
– If it works, note the key to why, more abstractly
– Were all of the constraints, difficulties, and facts used 

and accounted for
Try to improve upon it
– Can you achieve the same thing more directly or 

easily

22



What else can your solution do?
Now you have a hammer
Can you use the solution for some other 
problem?
– A more general form of the problem?
– An interesting special case?
– A related problem or analogous problem?

23



Making a “theory”
If successful, you may have a “theory” = a 
framework for characterizing problems and/or 
solutions
– Says when it applies, when it doesn’t
– Characterizes the hardness of different problems

• May identify simple special cases

– Characterizes the quality of different solutions
• How long it takes, amount of resources it uses

– Show/characterize solution meeting criteria
• correctness, convergence, etc.

24


