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Objectives

•Simple Shaders

- Vertex shader

- Fragment shaders

•Programming shaders with GLSL

•Finish first program
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Vertex Shader Applications

•Moving vertices

- Morphing 

- Wave motion

- Fractals

•Lighting

- More realistic models

- Cartoon shaders
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Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



6

Fragment Shader Applications

Texture mapping

smooth shading environment

mapping

bump mapping
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Writing Shaders

•First programmable shaders were 

programmed in an assembly-like manner

•OpenGL extensions added functions for 

vertex and fragment shaders

•Cg (C for graphics) C-like language for 

programming shaders

- Works with both OpenGL and DirectX

- Interface to OpenGL complex

•OpenGL Shading Language (GLSL)
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GLSL

•OpenGL Shading Language

•Part of OpenGL 2.0 and up

•High level C-like language

•New data types
- Matrices

- Vectors

- Samplers

•As of OpenGL 3.1, application must 
provide shaders
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Simple Vertex Shader

attribute vec4 vPosition;

void main(void)

{

gl_Position = vPosition;

}
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Execution Model

Vertex

Shader

GPU

Primitive

Assembly
Application

Program

gl.drawArrays Vertex

Vertex data

Shader Program
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Simple Fragment Program

precision mediump float;

void main(void)

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}
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Execution Model

Fragment

Shader

Application

Frame 
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Data Types

•C types: int, float, bool

•Vectors: 
- float vec2, vec3, vec4

- Also int (ivec) and boolean (bvec)

•Matrices: mat2, mat3, mat4
- Stored by columns

- Standard referencing m[row][column]

•C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)

- vec2 b = vec2(a)
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No Pointers

•There are no pointers in GLSL

•We can use C structs which

can be copied back from functions

•Because matrices and vectors are basic 

types they can be passed into and output 

from GLSL functions, e.g.

mat3 func(mat3 a)

• variables passed by copying
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Qualifiers

• GLSL has many of the same qualifiers such as 
const as C/C++

• Need others due to the nature of the execution 
model

• Variables can change
- Once per primitive

- Once per vertex

- Once per fragment

- At any time in the application

• Vertex attributes are interpolated by the 
rasterizer into fragment attributes
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Attribute Qualifier

•Attribute-qualified variables can change at 

most once per vertex

•There are a few built in variables such as 

gl_Position but most have been deprecated

•User defined (in application program) 
-attribute float temperature

-attribute vec3 velocity

- recent versions of GLSL use in and out 

qualifiers to get to and from shaders
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Uniform Qualified

•Variables that are constant for an entire 

primitive

•Can be changed in application and sent to 
shaders

•Cannot be changed in shader

•Used to pass information to shader such 

as the time or a bounding box of a 

primitive or transformation matrices
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Varying Qualified

•Variables that are passed from vertex shader 

to fragment shader

•Automatically interpolated by the rasterizer

•With WebGL, GLSL uses the varying qualifier 

in both shaders
varying vec4 color;

•More recent versions of WebGL use out in 

vertex shader and in in the fragment shader
out vec4 color; //vertex shader

in vec4 color;  // fragment shader
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Our Naming Convention

•attributes passed to vertex shader have names 

beginning with v (vPosition, vColor) in both the 

application and the shader

- Note that these are different entities with the same 

name

•Varying variables begin with f (fColor) in both 

shaders

- must have same name

•Uniform variables are unadorned and can have 

the same name in application and shaders
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Example: Vertex Shader

attribute vec4 vColor;

varying vec4 fColor;  //out vec4 fColor;

void main()

{

gl_Position = vPosition;

fColor = vColor;

}
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Corresponding Fragment 

Shader

precision mediump float;

varying vec4 fColor;   //in vec4 fColor;

void main()

{

gl_FragColor = fColor;

}
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Sending Colors from 

Application

24

var cBuffer = gl.createBuffer();

gl.bindBuffer( gl.ARRAY_BUFFER, cBuffer );

gl.bufferData( gl.ARRAY_BUFFER, flatten(colors),

gl.STATIC_DRAW );

var vColor = gl.getAttribLocation( program, "vColor" );

gl.vertexAttribPointer( vColor, 3, gl.FLOAT, false, 0, 0 );

gl.enableVertexAttribArray( vColor );
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Sending a Uniform Variable
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// in application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

colorLoc = gl.getUniformLocation( program, ”color" );   

gl.uniform4f( colorLoc, color); 

// in fragment shader (similar in vertex shader)

uniform vec4 color;

void main()

{

gl_FragColor = color;

}  
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Operators and Functions

•Standard C functions

- Trigonometric

- Arithmetic

- Normalize, reflect, length

•Overloading of vector and matrix types

mat4 a;

vec4 b, c, d;

c = b*a; // a column vector stored as a 1d array

d = a*b; // a row vector stored as a 1d array
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Swizzling and Selection

•Can refer to array elements by element 
using [] or selection (.) operator with 

- x, y, z, w

- r, g, b, a

- s, t, p, q

-a[2], a.b, a.z, a.p are the same

•Swizzling operator lets us manipulate 
components
vec4 a, b;

a.yz = vec2(1.0, 2.0, 3.0, 4.0);

b = a.yxzw;
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Objectives

•Expanding primitive set

•Adding color

•Vertex attributes 
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WebGLPrimitives

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES
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Polygon Issues

• WebGL will only display triangles

- Simple: edges cannot cross

- Convex: All points on line segment between two points in a 

polygon are also in the polygon

- Flat: all vertices are in the same plane

• Application program must tessellate a polygon into 

triangles (triangulation)

• OpenGL 4.1 contains a tessellator but not WebGL

nonsimple polygon
nonconvex polygon
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Polygon Testing

•Conceptually simple to test for simplicity 

and convexity

•Time consuming 

•Earlier versions assumed both and left 

testing to the application

•Present version only renders triangles

•Need algorithm to triangulate an arbitrary 

polygon
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Good and Bad Triangles

•Long thin triangles render badly

•Equilateral triangles render well

•Maximize minimum angle

•Delaunay triangulation for unstructured points
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Triangularization

•Convex polygon

•Start with abc, remove b, then acd, …. 

35

a

c

b

d
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Non-convex (concave)
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Recursive Division

•Find leftmost vertex and split
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Attributes

•Attributes determine the appearance of objects

- Color (points, lines, polygons)

- Size and width (points, lines)

- Stipple pattern (lines, polygons)

- Polygon mode

• Display as filled: solid color or stipple pattern

• Display edges

• Display vertices

•Only a few (gl_PointSize) are supported by 

WebGL functions
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RGB color

• Each color component is stored separately in 

the frame buffer

• Usually 8 bits per component in buffer

• Color values can range from 0.0 (none) to 1.0 

(all) using floats or over the range from 0 to 255 

using unsigned bytes
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Indexed Color

•Colors are indices into tables of RGB values

•Requires less memory

- indices usually 8 bits

- not as important now
• Memory inexpensive

• Need more colors for shading
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Smooth Color

• Default is smooth shading

- Rasterizer interpolates vertex colors across 

visible polygons

• Alternative is flat shading

- Color of first vertex 

determines fill color

- Handle in shader
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Setting Colors

•Colors are ultimately set in the fragment 

shader but can be determined in either 

shader or in the application

•Application color: pass to vertex shader 

as a uniform variable or as a vertex 

attribute

•Vertex shader color: pass to fragment 

shader as varying variable

•Fragment color: can alter via shader code 
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Objectives

•Coupling shaders to applications

- Reading

- Compiling

- Linking

•Vertex Attributes

•Setting up uniform variables

•Example applications
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Linking Shaders with Application

•Read shaders

•Compile shaders

•Create a program object

•Link everything together

•Link variables in application with variables 

in shaders

- Vertex attributes

- Uniform variables
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Program Object

•Container for shaders 

- Can contain multiple shaders

- Other GLSL functions

var program = gl.createProgram();  

gl.attachShader( program, vertShdr );    

gl.attachShader( program, fragShdr );    

gl.linkProgram( program );
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Reading a Shader

•Shaders are added to the program object 

and compiled

•Usual method of passing a shader is as a 

null-terminated string using the function

• gl.shaderSource( fragShdr, fragElem.text );

• If shader is in HTML file, we can get it into 
application by getElementById method

• If the shader is in a file, we can write a 

reader to convert the file to a string
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Adding a Vertex Shader

var vertShdr;

var vertElem = 

document.getElementById( vertexShaderId );

vertShdr = gl.createShader( gl.VERTEX_SHADER );

gl.shaderSource( vertShdr, vertElem.text );

gl.compileShader( vertShdr );

// after program object created

gl.attachShader( program, vertShdr );
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Shader Reader

•Following code may be a security issue 

with some browsers if you try to run it 

locally

- Cross Origin Request 

50

function getShader(gl, shaderName, type) {

var shader = gl.createShader(type);

shaderScript = loadFileAJAX(shaderName);

if (!shaderScript) {

alert("Could not find shader source:

"+shaderName);

}

}
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Precision Declaration

• In GLSL for WebGL we must specify 

desired precision in fragment shaders

- artifact inherited from OpenGL ES

- ES must run on very simple embedded devices 

that may not support 32-bit floating point

- All implementations must support mediump

- No default for float in fragment shader

•Can use preprocessor directives (#ifdef) 

to check if highp supported and, if not, 

default to mediump
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Pass Through Fragment Shader

#ifdef GL_FRAGMENT_SHADER_PRECISION_HIGH

precision highp float;

#else

precision mediump float;

#endif

varying vec4 fcolor;

void main(void)

{

gl_FragColor = fcolor;

} 52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 
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Objectives

•Develop a more sophisticated three-

dimensional example

- Sierpinski gasket: a fractal

• Introduce hidden-surface removal
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Three-dimensional Applications

• In WebGL, two-dimensional applications 
are a special case of three-dimensional 
graphics

•Going to 3D
- Not much changes

- Use vec3, gl.uniform3f

- Have to worry about the order in which 
primitives are rendered or use hidden-surface 
removal
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Sierpinski Gasket (2D)

• Start with a triangle

• Connect bisectors of sides and remove central 
triangle

• Repeat
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Example 

•Five subdivisions
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The gasket as a fractal

•Consider the filled area (black) and the 

perimeter (the length of all the lines around 

the filled triangles)

•As we continue subdividing

- the area goes to zero

- but the perimeter goes to infinity

•This is not an ordinary geometric object

- It is neither two- nor three-dimensional

• It is a fractal (fractional dimension) object
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Gasket Program

•HTML file

- Same as in other examples

- Pass through vertex shader

- Fragment shader sets color

- Read in JS file
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Gasket Program

var points = [];

var NumTimesToSubdivide = 5;

/* initial triangle */

var vertices = [

vec2( -1, -1 ),

vec2(  0,  1 ),

vec2(  1, -1 )

];

divideTriangle( vertices[0],vertices[1],

vertices[2], NumTimesToSubdivide);
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Draw one triangle

/* display one triangle  */

function triangle( a, b, c ){

points.push( a, b, c );

}
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Triangle Subdivision

function divideTriangle( a, b, c, count ){

// check for end of recursion

if ( count === 0 ) {

triangle( a, b, c );

}

else {

//bisect the sides

var ab = mix( a, b, 0.5 );

var ac = mix( a, c, 0.5 );

var bc = mix( b, c, 0.5 );

--count;        

// three new triangles

divideTriangle( a, ab, ac, count-1 );

divideTriangle( c, ac, bc, count-1 );

divideTriangle( b, bc, ab, count-1 );

}

}
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init()

var program = initShaders( gl, "vertex-

shader", "fragment-shader" );

gl.useProgram( program );

var bufferId = gl.createBuffer();    

gl.bindBuffer( gl.ARRAY_BUFFER, bufferId )    

gl.bufferData( gl.ARRAY_BUFFER, 

flatten(points), gl.STATIC_DRAW );

var vPosition = gl.getAttribLocation( 

program, "vPosition" );

gl.vertexAttribPointer( vPosition, 2, 

gl.FLOAT, false, 0, 0 );

gl.enableVertexAttribArray( vPosition );

render();
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Render Function

function render(){
gl.clear( gl.COLOR_BUFFER_BIT );
gl.drawArrays( gl.TRIANGLES, 0, points.length

);
}
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Moving to 3D

•We can easily make the program three-

dimensional by using three dimensional 

points and starting with a tetrahedron

var vertices = [

vec3(  0.0000,  0.0000, -1.0000 ),

vec3(  0.0000,  0.9428,  0.3333 ),

vec3( -0.8165, -0.4714,  0.3333 ),

vec3(  0.8165, -0.4714,  0.3333 )    ];

subdivide each face
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3D Gasket

•We can subdivide each of the four faces

•Appears as if we remove a solid 

tetrahedron from the center leaving four 

smaller tetrahedra

•Code almost identical to 2D example
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Almost Correct

• Because the triangles are drawn in the order 

they are specified in the program, the front 

triangles are not always rendered in front of 

triangles behind them

get this

want this
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Hidden-Surface Removal

• We want to see only those surfaces in front of 

other surfaces

• OpenGL uses a hidden-surface method called 

the z-buffer algorithm that saves depth 

information as objects are rendered so that only 

the front objects appear in the image
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Using the z-buffer algorithm

• The algorithm uses an extra buffer, the z-buffer, to store 
depth information as geometry travels down the pipeline

• Depth buffer is required to be available in WebGL

• It must be

- Enabled
•gl.enable(gl.DEPTH_TEST)

- Cleared in for each render
•gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT)
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Surface vs Volume Subdvision

• In our example, we divided the surface of 
each face

•We could also divide the volume using the 
same midpoints

•The midpoints define four smaller 
tetrahedrons, one for each vertex

•Keeping only these tetrahedrons removes 
a volume in the middle

•See text for code
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Volume Subdivision
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Objectives

•This is an optional lecture that 

- Illustrates the difference between using 

direction angles and Euler angles

- Considers issues with incremental rotation

- Introduces quaternions as an alternate to 

rotation matrices
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Specifying a Rotation

•Pre 3.1 OpenGL had a function glRotate 

(theta, dx, dy dz) which incrementally 

changed the current rotation matrix by a 

rotation with fixed point of the origin about 

a vector in the direction (dx, dy, dz)

•We implemented rotate in MV.js

• Implementations of Rotate often 

decompose the general rotation into a 

sequence of rotations about the 

coordinate axes as in Chapter 4.
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Euler from Direction Angles

79

 



 



 

 



 



 



 

R = Rx − x( )Ry − y( )Rz  z( )Ry  y( )Rx x( )
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Efficiency
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 

R = Rx − x( )Ry − y( )Rz  z( )Ry  y( )Rx x( )

 

R = Rx x( )Ry y( )Rz z( )

should be able to write as

If we knew the angles, we could use RotateX, RotateY 

and RotateZ from mat.h

But is this an efficient method?

No, we can do better with quaterions
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Incremental Rotation
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 

R(t + dt) = R t( )Rz  z( )Ry  y( )Rx x( )

where x, y and z are small angles

For small angles 

 

sin  

cos 1

 

Rz  z( )Ry  y( )Rx  x( )

1 − z  y 0

 z 1 − x 0

− y  x 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 
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Great Circles
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Rotation and Great Circles

•Shortest path between two points on a 

sphere is the great circle passing through 

the two points

•Corresponding to each great circle is 

vector normal to the circle

•Rotation about this vector carries us from 

the first point to the second
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Quaternion Rotation

84

 

a =
0

q ,
1

q ,
2

q ,
3

q( )=
0

q ,q
 
 
  

 
 

 

a+b =
0a 0+b ,a+b( )

 

ab =
0a 0b −a•b, 

0a b+
0b a+ab( )

 

2

a =
0

2

q ,q•q( )

 

−1
a =

1
2

a
0

q ,-q
 
 
  

 
 

 

p = 0,p
 
 
  

 
 

 

r = cos


2
,sin



2
v

 

 
 

 

 
 

 

p'= rp −1r

Definition:

Quaternian Arithmetic:

Representing a 3D point:

Representing a Rotation:

Rotating a Point:
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Looking at the North Star

85




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At North Pole

86

 = 90o

 = ?
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Gimbal Lock

•Suppose you rotate about the y axis by 90o

•This action removes a degree of freedom

87

 

Rz  z( )Ry  y( )Rx  x( )

0 sin(x − z ) cos( x − z ) 0

0 cos(x − z ) −sin( x − z ) 0

−1 0 0 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 
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Quaternions and 

Computer Graphics

• (Re)discovered by both aerospace and 

animation communities

•Used for head mounted display in virtual 

and augmented reality

•Used for smooth camera paths

•Caveat: quaternions do not preserve up 

direction
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Working with Quaternians

•Quaternion arithmetic works well for 

representing rotations around the origin

•There is no simple way to convert a 

quaternion to a matrix representation 

•Usually copy elements back and forth 

between quaternions and matrices

•Can use directly without rotation matrices 

in the virtual trackball

•Quaternion shaders are simple
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