
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 3: Shaders

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Simple Shaders

- Vertex shader

- Fragment shaders

•Programming shaders with GLSL

•Finish first program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Vertex Shader Applications

•Moving vertices

- Morphing

- Wave motion

- Fractals

•Lighting

- More realistic models

- Cartoon shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Fragment Shader Applications

Texture mapping

smooth shading environment

mapping

bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Writing Shaders

•First programmable shaders were

programmed in an assembly-like manner

•OpenGL extensions added functions for

vertex and fragment shaders

•Cg (C for graphics) C-like language for

programming shaders

- Works with both OpenGL and DirectX

- Interface to OpenGL complex

•OpenGL Shading Language (GLSL)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

GLSL

•OpenGL Shading Language

•Part of OpenGL 2.0 and up

•High level C-like language

•New data types
- Matrices

- Vectors

- Samplers

•As of OpenGL 3.1, application must
provide shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Simple Vertex Shader

attribute vec4 vPosition;

void main(void)

{

gl_Position = vPosition;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Execution Model

Vertex

Shader

GPU

Primitive

Assembly
Application

Program

gl.drawArrays Vertex

Vertex data

Shader Program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Simple Fragment Program

precision mediump float;

void main(void)

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Execution Model

Fragment

Shader

Application

Frame

BufferRasterizer

Fragment Fragment

Color

Shader Program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 3: Shaders

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

14Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Data Types

•C types: int, float, bool

•Vectors:
- float vec2, vec3, vec4

- Also int (ivec) and boolean (bvec)

•Matrices: mat2, mat3, mat4
- Stored by columns

- Standard referencing m[row][column]

•C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)

- vec2 b = vec2(a)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

No Pointers

•There are no pointers in GLSL

•We can use C structs which

can be copied back from functions

•Because matrices and vectors are basic

types they can be passed into and output

from GLSL functions, e.g.

mat3 func(mat3 a)

• variables passed by copying

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Qualifiers

• GLSL has many of the same qualifiers such as
const as C/C++

• Need others due to the nature of the execution
model

• Variables can change
- Once per primitive

- Once per vertex

- Once per fragment

- At any time in the application

• Vertex attributes are interpolated by the
rasterizer into fragment attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Attribute Qualifier

•Attribute-qualified variables can change at

most once per vertex

•There are a few built in variables such as

gl_Position but most have been deprecated

•User defined (in application program)
-attribute float temperature

-attribute vec3 velocity

- recent versions of GLSL use in and out

qualifiers to get to and from shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Uniform Qualified

•Variables that are constant for an entire

primitive

•Can be changed in application and sent to
shaders

•Cannot be changed in shader

•Used to pass information to shader such

as the time or a bounding box of a

primitive or transformation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Varying Qualified

•Variables that are passed from vertex shader

to fragment shader

•Automatically interpolated by the rasterizer

•With WebGL, GLSL uses the varying qualifier

in both shaders
varying vec4 color;

•More recent versions of WebGL use out in

vertex shader and in in the fragment shader
out vec4 color; //vertex shader

in vec4 color; // fragment shader
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Our Naming Convention

•attributes passed to vertex shader have names

beginning with v (vPosition, vColor) in both the

application and the shader

- Note that these are different entities with the same

name

•Varying variables begin with f (fColor) in both

shaders

- must have same name

•Uniform variables are unadorned and can have

the same name in application and shaders
21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Example: Vertex Shader

attribute vec4 vColor;

varying vec4 fColor; //out vec4 fColor;

void main()

{

gl_Position = vPosition;

fColor = vColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Corresponding Fragment

Shader

precision mediump float;

varying vec4 fColor; //in vec4 fColor;

void main()

{

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending Colors from

Application

24

var cBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, cBuffer);

gl.bufferData(gl.ARRAY_BUFFER, flatten(colors),

gl.STATIC_DRAW);

var vColor = gl.getAttribLocation(program, "vColor");

gl.vertexAttribPointer(vColor, 3, gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(vColor);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending a Uniform Variable

25

// in application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

colorLoc = gl.getUniformLocation(program, ”color");

gl.uniform4f(colorLoc, color);

// in fragment shader (similar in vertex shader)

uniform vec4 color;

void main()

{

gl_FragColor = color;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Operators and Functions

•Standard C functions

- Trigonometric

- Arithmetic

- Normalize, reflect, length

•Overloading of vector and matrix types

mat4 a;

vec4 b, c, d;

c = b*a; // a column vector stored as a 1d array

d = a*b; // a row vector stored as a 1d array

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Swizzling and Selection

•Can refer to array elements by element
using [] or selection (.) operator with

- x, y, z, w

- r, g, b, a

- s, t, p, q

-a[2], a.b, a.z, a.p are the same

•Swizzling operator lets us manipulate
components
vec4 a, b;

a.yz = vec2(1.0, 2.0, 3.0, 4.0);

b = a.yxzw;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Programming with WebGL

Part 4: Color and Attributes

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Objectives

•Expanding primitive set

•Adding color

•Vertex attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

WebGLPrimitives

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Polygon Issues

• WebGL will only display triangles

- Simple: edges cannot cross

- Convex: All points on line segment between two points in a

polygon are also in the polygon

- Flat: all vertices are in the same plane

• Application program must tessellate a polygon into

triangles (triangulation)

• OpenGL 4.1 contains a tessellator but not WebGL

nonsimple polygon
nonconvex polygon

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygon Testing

•Conceptually simple to test for simplicity

and convexity

•Time consuming

•Earlier versions assumed both and left

testing to the application

•Present version only renders triangles

•Need algorithm to triangulate an arbitrary

polygon

33Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Good and Bad Triangles

•Long thin triangles render badly

•Equilateral triangles render well

•Maximize minimum angle

•Delaunay triangulation for unstructured points

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Triangularization

•Convex polygon

•Start with abc, remove b, then acd, ….

35

a

c

b

d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Non-convex (concave)

36Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Recursive Division

•Find leftmost vertex and split

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Attributes

•Attributes determine the appearance of objects

- Color (points, lines, polygons)

- Size and width (points, lines)

- Stipple pattern (lines, polygons)

- Polygon mode

• Display as filled: solid color or stipple pattern

• Display edges

• Display vertices

•Only a few (gl_PointSize) are supported by

WebGL functions
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

RGB color

• Each color component is stored separately in

the frame buffer

• Usually 8 bits per component in buffer

• Color values can range from 0.0 (none) to 1.0

(all) using floats or over the range from 0 to 255

using unsigned bytes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Indexed Color

•Colors are indices into tables of RGB values

•Requires less memory

- indices usually 8 bits

- not as important now
• Memory inexpensive

• Need more colors for shading

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Smooth Color

• Default is smooth shading

- Rasterizer interpolates vertex colors across

visible polygons

• Alternative is flat shading

- Color of first vertex

determines fill color

- Handle in shader

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Setting Colors

•Colors are ultimately set in the fragment

shader but can be determined in either

shader or in the application

•Application color: pass to vertex shader

as a uniform variable or as a vertex

attribute

•Vertex shader color: pass to fragment

shader as varying variable

•Fragment color: can alter via shader code

42Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 5: More GLSL

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

44Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

•Coupling shaders to applications

- Reading

- Compiling

- Linking

•Vertex Attributes

•Setting up uniform variables

•Example applications

45Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Linking Shaders with Application

•Read shaders

•Compile shaders

•Create a program object

•Link everything together

•Link variables in application with variables

in shaders

- Vertex attributes

- Uniform variables

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Program Object

•Container for shaders

- Can contain multiple shaders

- Other GLSL functions

var program = gl.createProgram();

gl.attachShader(program, vertShdr);

gl.attachShader(program, fragShdr);

gl.linkProgram(program);

47Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reading a Shader

•Shaders are added to the program object

and compiled

•Usual method of passing a shader is as a

null-terminated string using the function

• gl.shaderSource(fragShdr, fragElem.text);

• If shader is in HTML file, we can get it into
application by getElementById method

• If the shader is in a file, we can write a

reader to convert the file to a string
48Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding a Vertex Shader

var vertShdr;

var vertElem =

document.getElementById(vertexShaderId);

vertShdr = gl.createShader(gl.VERTEX_SHADER);

gl.shaderSource(vertShdr, vertElem.text);

gl.compileShader(vertShdr);

// after program object created

gl.attachShader(program, vertShdr);
49Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shader Reader

•Following code may be a security issue

with some browsers if you try to run it

locally

- Cross Origin Request

50

function getShader(gl, shaderName, type) {

var shader = gl.createShader(type);

shaderScript = loadFileAJAX(shaderName);

if (!shaderScript) {

alert("Could not find shader source:

"+shaderName);

}

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Precision Declaration

• In GLSL for WebGL we must specify

desired precision in fragment shaders

- artifact inherited from OpenGL ES

- ES must run on very simple embedded devices

that may not support 32-bit floating point

- All implementations must support mediump

- No default for float in fragment shader

•Can use preprocessor directives (#ifdef)

to check if highp supported and, if not,

default to mediump
51Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Pass Through Fragment Shader

#ifdef GL_FRAGMENT_SHADER_PRECISION_HIGH

precision highp float;

#else

precision mediump float;

#endif

varying vec4 fcolor;

void main(void)

{

gl_FragColor = fcolor;

} 52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

53

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

Programming with WebGL

Part 6: Three Dimensions

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

Objectives

•Develop a more sophisticated three-

dimensional example

- Sierpinski gasket: a fractal

• Introduce hidden-surface removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

Three-dimensional Applications

• In WebGL, two-dimensional applications
are a special case of three-dimensional
graphics

•Going to 3D
- Not much changes

- Use vec3, gl.uniform3f

- Have to worry about the order in which
primitives are rendered or use hidden-surface
removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Sierpinski Gasket (2D)

• Start with a triangle

• Connect bisectors of sides and remove central
triangle

• Repeat

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

Example

•Five subdivisions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

The gasket as a fractal

•Consider the filled area (black) and the

perimeter (the length of all the lines around

the filled triangles)

•As we continue subdividing

- the area goes to zero

- but the perimeter goes to infinity

•This is not an ordinary geometric object

- It is neither two- nor three-dimensional

• It is a fractal (fractional dimension) object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Gasket Program

•HTML file

- Same as in other examples

- Pass through vertex shader

- Fragment shader sets color

- Read in JS file

60Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

Gasket Program

var points = [];

var NumTimesToSubdivide = 5;

/* initial triangle */

var vertices = [

vec2(-1, -1),

vec2(0, 1),

vec2(1, -1)

];

divideTriangle(vertices[0],vertices[1],

vertices[2], NumTimesToSubdivide);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

Draw one triangle

/* display one triangle */

function triangle(a, b, c){

points.push(a, b, c);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

Triangle Subdivision

function divideTriangle(a, b, c, count){

// check for end of recursion

if (count === 0) {

triangle(a, b, c);

}

else {

//bisect the sides

var ab = mix(a, b, 0.5);

var ac = mix(a, c, 0.5);

var bc = mix(b, c, 0.5);

--count;

// three new triangles

divideTriangle(a, ab, ac, count-1);

divideTriangle(c, ac, bc, count-1);

divideTriangle(b, bc, ab, count-1);

}

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

init()

var program = initShaders(gl, "vertex-

shader", "fragment-shader");

gl.useProgram(program);

var bufferId = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, bufferId)

gl.bufferData(gl.ARRAY_BUFFER,

flatten(points), gl.STATIC_DRAW);

var vPosition = gl.getAttribLocation(

program, "vPosition");

gl.vertexAttribPointer(vPosition, 2,

gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(vPosition);

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Render Function

function render(){
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, points.length

);
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

Programming with WebGL

Part 6: Three Dimensions

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Moving to 3D

•We can easily make the program three-

dimensional by using three dimensional

points and starting with a tetrahedron

var vertices = [

vec3(0.0000, 0.0000, -1.0000),

vec3(0.0000, 0.9428, 0.3333),

vec3(-0.8165, -0.4714, 0.3333),

vec3(0.8165, -0.4714, 0.3333)];

subdivide each face

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

3D Gasket

•We can subdivide each of the four faces

•Appears as if we remove a solid

tetrahedron from the center leaving four

smaller tetrahedra

•Code almost identical to 2D example
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Almost Correct

• Because the triangles are drawn in the order

they are specified in the program, the front

triangles are not always rendered in front of

triangles behind them

get this

want this

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

Hidden-Surface Removal

• We want to see only those surfaces in front of

other surfaces

• OpenGL uses a hidden-surface method called

the z-buffer algorithm that saves depth

information as objects are rendered so that only

the front objects appear in the image

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

Using the z-buffer algorithm

• The algorithm uses an extra buffer, the z-buffer, to store
depth information as geometry travels down the pipeline

• Depth buffer is required to be available in WebGL

• It must be

- Enabled
•gl.enable(gl.DEPTH_TEST)

- Cleared in for each render
•gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

Surface vs Volume Subdvision

• In our example, we divided the surface of
each face

•We could also divide the volume using the
same midpoints

•The midpoints define four smaller
tetrahedrons, one for each vertex

•Keeping only these tetrahedrons removes
a volume in the middle

•See text for code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

74

Volume Subdivision

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

75

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Incremental and

Quaternion Rotation

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

76Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

77

Objectives

•This is an optional lecture that

- Illustrates the difference between using

direction angles and Euler angles

- Considers issues with incremental rotation

- Introduces quaternions as an alternate to

rotation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Specifying a Rotation

•Pre 3.1 OpenGL had a function glRotate

(theta, dx, dy dz) which incrementally

changed the current rotation matrix by a

rotation with fixed point of the origin about

a vector in the direction (dx, dy, dz)

•We implemented rotate in MV.js

• Implementations of Rotate often

decompose the general rotation into a

sequence of rotations about the

coordinate axes as in Chapter 4.
78Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Euler from Direction Angles

79

























R = Rx − x()Ry − y()Rz  z()Ry  y()Rx x()

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Efficiency

80



R = Rx − x()Ry − y()Rz  z()Ry  y()Rx x()



R = Rx x()Ry y()Rz z()

should be able to write as

If we knew the angles, we could use RotateX, RotateY

and RotateZ from mat.h

But is this an efficient method?

No, we can do better with quaterions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Incremental Rotation

81



R(t + dt) = R t()Rz  z()Ry  y()Rx x()

where x, y and z are small angles

For small angles



sin  

cos 1



Rz  z()Ry  y()Rx  x()

1 − z  y 0

 z 1 − x 0

− y  x 1 0

0 0 0 1



















Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Great Circles

82Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotation and Great Circles

•Shortest path between two points on a

sphere is the great circle passing through

the two points

•Corresponding to each great circle is

vector normal to the circle

•Rotation about this vector carries us from

the first point to the second

83Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quaternion Rotation

84



a =
0

q ,
1

q ,
2

q ,
3

q()=
0

q ,q


 






a+b =
0a 0+b ,a+b()



ab =
0a 0b −a•b,

0a b+
0b a+ab()



2

a =
0

2

q ,q•q()



−1
a =

1
2

a
0

q ,-q


 






p = 0,p


 






r = cos


2
,sin



2
v













p'= rp −1r

Definition:

Quaternian Arithmetic:

Representing a 3D point:

Representing a Rotation:

Rotating a Point:

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Looking at the North Star

85





Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

At North Pole

86

 = 90o

 = ?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Gimbal Lock

•Suppose you rotate about the y axis by 90o

•This action removes a degree of freedom

87



Rz  z()Ry  y()Rx  x()

0 sin(x − z) cos( x − z) 0

0 cos(x − z) −sin( x − z) 0

−1 0 0 0

0 0 0 1



















Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quaternions and

Computer Graphics

• (Re)discovered by both aerospace and

animation communities

•Used for head mounted display in virtual

and augmented reality

•Used for smooth camera paths

•Caveat: quaternions do not preserve up

direction

88Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Working with Quaternians

•Quaternion arithmetic works well for

representing rotations around the origin

•There is no simple way to convert a

quaternion to a matrix representation

•Usually copy elements back and forth

between quaternions and matrices

•Can use directly without rotation matrices

in the virtual trackball

•Quaternion shaders are simple
89Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

