
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Input and Interaction

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce the basic input devices

- Physical Devices

- Logical Devices

- Input Modes

•Event-driven input

• Introduce double buffering for smooth

animations

•Programming event input with WebGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Project Sketchpad

• Ivan Sutherland (MIT 1963) established

the basic interactive paradigm that

characterizes interactive computer

graphics:

- User sees an object on the display

- User points to (picks) the object with an input

device (light pen, mouse, trackball)

- Object changes (moves, rotates, morphs)

- Repeat

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Graphical Input

•Devices can be described either by
- Physical properties

• Mouse

• Keyboard

• Trackball

- Logical Properties
• What is returned to program via API

– A position

– An object identifier

•Modes
- How and when input is obtained

• Request or event

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Physical Devices

mouse trackball
light pen

data tablet joy stick space ball

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Incremental (Relative) Devices

•Devices such as the data tablet return a
position directly to the operating system

•Devices such as the mouse, trackball, and
joy stick return incremental inputs (or
velocities) to the operating system

- Must integrate these inputs to obtain an
absolute position

• Rotation of cylinders in mouse

• Roll of trackball

• Difficult to obtain absolute position

• Can get variable sensitivity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Logical Devices

•Consider the C and C++ code
- C++: cin >> x;

- C: scanf (“%d”, &x);

•What is the input device?
- Can’t tell from the code

- Could be keyboard, file, output from another
program

•The code provides logical input
- A number (an int) is returned to the program

regardless of the physical device

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Graphical Logical Devices

• Graphical input is more varied than input to

standard programs which is usually numbers,

characters, or bits

• Two older APIs (GKS, PHIGS) defined six types

of logical input

- Locator: return a position

- Pick: return ID of an object

- Keyboard: return strings of characters

- Stroke: return array of positions

- Valuator: return floating point number

- Choice: return one of n items

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

X Window Input

• The X Window System introduced a client-server

model for a network of workstations

- Client: OpenGL program

- Graphics Server: bitmap display with a pointing

device and a keyboard

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Input Modes

• Input devices contain a trigger which can

be used to send a signal to the operating

system

- Button on mouse

- Pressing or releasing a key

•When triggered, input devices return

information (their measure) to the system

- Mouse returns position information

- Keyboard returns ASCII code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Request Mode

• Input provided to program only when user

triggers the device

•Typical of keyboard input

- Can erase (backspace), edit, correct until enter

(return) key (the trigger) is depressed

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Event Mode

•Most systems have more than one input

device, each of which can be triggered at

an arbitrary time by a user

•Each trigger generates an event whose

measure is put in an event queue which

can be examined by the user program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Event Types

•Window: resize, expose, iconify

•Mouse: click one or more buttons

•Motion: move mouse

•Keyboard: press or release a key

• Idle: nonevent

- Define what should be done if no other event is

in queue

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Animation

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Callbacks

•Programming interface for event-driven

input uses callback functions or event

listeners

- Define a callback for each event the graphics

system recognizes

- Browsers enters an event loop and responds to

those events for which it has callbacks

registered

- The callback function is executed when the

event occurs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Execution in a Browser

18Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Execution in a Browser

•Start with HTML file

- Describes the page

- May contain the shaders

- Loads files

•Files are loaded asynchronously and JS

code is executed

•Then what?

•Browser is in an event loop and waits for

an event

19Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onload Event

•What happens with our JS file containing

the graphics part of our application?

- All the “action” is within functions such as init()

and render()

- Consequently these functions are never

executed and we see nothing

•Solution: use the onload window event to

initiate execution of the init function

- onload event occurs when all files read

- window.onload = init;

20Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotating Square

•Consider the four points

Animate display by rerendering with

different values of q
21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Simple but Slow Method

22

for(var theta = 0.0; theta <thetaMax; theta += dtheta; {

vertices[0] = vec2(Math.sin(theta), Math.cos.(theta));

vertices[1] = vec2(Math.sin(theta), -Math.cos.(theta));

vertices[2] = vec2(-Math.sin(theta), -Math.cos.(theta));

vertices[3] = vec2(-Math.sin(theta), Math.cos.(theta));

gl.bufferSubData(…………………….

render();

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Better Way

•Send original vertices to vertex shader

•Send q to shader as a uniform variable

•Compute vertices in vertex shader

•Render recursively

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Render Function

24

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

render();

}

var thetaLoc = gl.getUniformLocation(program, "theta");

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader

25

attribute vec4 vPosition;

uniform float theta;

void main()

{

gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;

gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;

gl_Position.z = 0.0;

gl_Position.w = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Double Buffering

•Although we are rendering the square, it

always into a buffer that is not displayed

•Browser uses double buffering

- Always display front buffer

- Rendering into back buffer

- Need a buffer swap

•Prevents display of a partial rendering

26Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Triggering a Buffer Swap

•Browsers refresh the display at ~60 Hz

- redisplay of front buffer

- not a buffer swap

•Trigger a buffer swap though an event

•Two options for rotating square

- Interval timer

- requestAnimFrame

27Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Interval Timer

•Executes a function after a specified

number of milliseconds

- Also generates a buffer swap

•Note an interval of 0 generates buffer

swaps as fast as possible

28

setInterval(render, interval);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

requestAnimFrame

29

function render {

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Add an Interval

30

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, 100);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Working with Callbacks

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Objectives

•Learn to build interactive programs using

event listeners

- Buttons

- Menus

- Mouse

- Keyboard

- Reshape

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding a Button

•Let’s add a button to control the rotation

direction for our rotating cube

• In the render function we can use a var

direction which is true or false to add or

subtract a constant to the angle

34

var direction = true; // global initialization

// in render()

if(direction) theta += 0.1;

else theta -= 0.1;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Button

• In the HTML file

- Uses HTML button tag

- id gives an identifier we can use in JS file

- Text “Change Rotation Direction” displayed in

button

•Clicking on button generates a click event

•Note we are using default style and could

use CSS or jQuery to get a prettier button

35

<button id="DirectionButton">Change Rotation Direction

</button>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Button Event Listener

•We still need to define the listener

- no listener and the event occurs but is ignored

•Two forms for event listener in JS file

36

var myButton = document.getElementById("DirectionButton");

myButton.addEventListener("click", function() {

direction = !direction;

});

document.getElementById("DirectionButton").onclick =

function() { direction = !direction; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onclick Variants

37

myButton.addEventListener("click", function() {

if (event.button == 0) { direction = !direction; }

});

myButton.addEventListener("click", function() {

if (event.shiftKey == 0) { direction = !direction; }

});

<button onclick="direction = !direction"></button>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Controling Rotation Speed

38

var delay = 100;

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += (direction ? 0.1 : -0.1);

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, delay);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Menus

•Use the HTML select element

•Each entry in the menu is an option

element with an integer value returned by

click event

39

<select id="mymenu" size="3">

<option value="0">Toggle Rotation Direction</option>

<option value="1">Spin Faster</option>

<option value="2">Spin Slower</option>

</select>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Menu Listener

40

var m = document.getElementById("mymenu");

m.addEventListener("click", function() {

switch (m.selectedIndex) {

case 0:

direction = !direction;

break;

case 1:

delay /= 2.0;

break;

case 2:

delay *= 2.0;

break;

}

}); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using keydown Event

41

window.addEventListener("keydown", function() {

switch (event.keyCode) {

case 49: // ’1’ key

direction = !direction;

break;

case 50: // ’2’ key

delay /= 2.0;

break;

case 51: // ’3’ key

delay *= 2.0;

break;

}

});

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Don’t Know Unicode

42

window.onkeydown = function(event) {

var key = String.fromCharCode(event.keyCode);

switch (key) {

case ’1’:

direction = !direction;

break;

case ’2’:

delay /= 2.0;

break;

case ’3’:

delay *= 2.0;

break;

}

}; Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Slider Element

•Puts slider on page

- Give it an identifier

- Give it minimum and maximum values

- Give it a step size needed to generate an event

- Give it an initial value

•Use div tag to put below canvas

43

<div>

speed 0 <input id="slide" type="range"

min="0" max="100" step="10" value="50" />

100 </div>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onchange Event Listener

44

document.getElementById("slide").onchange =

function() { delay = event.srcElement.value; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

Position Input

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

Objectives

•Learn to use the mouse to give locations

- Must convert from position on canvas to

position in application

•Respond to window events such as

reshapes triggered by the mouse

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window Coordinates

48

w

h

(0, 0)

(w -1, h-1)

(xw, yw)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window to Clip Coordinates

49



x = −1+
2* wx

w



y = −1+
2 * w

(h − y)

h



(0,h) →(−1,−1)

(w,0) →(1,1)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Returning Position from

Click Event

Canvas specified in HTML file of size

canvas.width x canvas.height

Returned window coordinates are event.clientX

and event.clientY

50

// add a vertex to GPU for each click

canvas.addEventListener("click", function() {

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

var t = vec2(-1 + 2*event.clientX/canvas.width,

-1 + 2*(canvas.height-event.clientY)/canvas.height);

gl.bufferSubData(gl.ARRAY_BUFFER,

sizeof[’vec2’]*index, t);

index++;

}); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

CAD-like Examples

www.cs.unm.edu/~angel/WebGL/7E/03

square.html: puts a colored square at location of

each mouse click

triangle.html: first three mouse clicks define first

triangle of triangle strip. Each succeeding

mouse clicks adds a new triangle at end of strip

cad1.html: draw a rectangle for each two

successive mouse clicks

cad2.html: draws arbitrary polygons 51Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window Events

•Events can be generated by actions that

affect the canvas window

- moving or exposing a window

- resizing a window

- opening a window

- iconifying/deiconifying a window a window

•Note that events generated by other

application that use the canvas can affect the

WebGL canvas

- There are default callbacks for some of these events
52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reshape Events

•Suppose we use the mouse to change the

size of our canvas

•Must redraw the contents

•Options

- Display the same objects but change size

- Display more or fewer objects at the same size

•Almost always want to keep proportions

53Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onresize Event

•Returns size of new canvas is available

through window.innerHeight and window.

innerWidth

•Use innerHeight and innerWidth to

change canvas.height and canvas.width

•Example (next slide): maintaining a

square display

54Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Keeping Square Proportions

55

window.onresize = function() {

var min = innerWidth;

if (innerHeight < min) {

min = innerHeight;

}

if (min < canvas.width || min < canvas.height) {

gl.viewport(0, canvas.height-min, min, min);

}

};

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Picking

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

Objectives

•How do we identify objects on the display

•Overview three methods

- selection

- using an off-screen buffer and color

- bounding boxes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Why is Picking Difficult?

•Given a point in the canvas how do map

this point back to an object?

•Lack of uniqueness

•Forward nature of pipeline

•Take into account difficulty of getting an

exact position with a pointing device

59Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Selection

•Supported by fixed function OpenGL pipeline

•Each primitive is given an id by the

application indicating to which object it

belongs

•As the scene is rendered, the id’s of

primitives that render near the mouse are put

in a hit list

• Examine the hit list after the rendering

60Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Selection

• Implement by creating a window that

corresponds to small area around mouse

- We can track whether or not a primitive renders

to this window

- Do not want to display this rendering

- Render off-screen to an extra color buffer or

user back buffer and don’t do a swap

•Requires a rendering which puts depths

into hit record

•Possible to implement with WebGL
61Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Picking with Color

•We can use gl.readPixels to get the color at

any location in window

• Idea is to use color to identify object but

- Multiple objects can have the same color

- A shaded object will display many colors

•Solution: assign a unique color to each

object and render off-screen

- Use gl.readPixels to get color at mouse location

- Use a table to map this color to an object

62Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Picking with Bounding Boxes

•Both previous methods require an extra

rendering each time we do a pick

•Alternative is to use a table of (axis-aligned)

bounding boxes

•Map mouse location to object through table

63

inside bounding box

outside triangle

inside bounding box

inside triangle

outside bounding box

outside triangle

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Geometry

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Objectives

• Introduce the elements of geometry

- Scalars

- Vectors

- Points

•Develop mathematical operations among

them in a coordinate-free manner

•Define basic primitives

- Line segments

- Polygons

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

Basic Elements

• Geometry is the study of the relationships

among objects in an n-dimensional space

- In computer graphics, we are interested in

objects that exist in three dimensions

• Want a minimum set of primitives from which we

can build more sophisticated objects

• We will need three basic elements

- Scalars

- Vectors

- Points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Coordinate-Free Geometry

• When we learned simple geometry, most of us started
with a Cartesian approach

- Points were at locations in space p=(x,y,z)

- We derived results by algebraic manipulations
involving these coordinates

• This approach was nonphysical

- Physically, points exist regardless of the location of
an arbitrary coordinate system

- Most geometric results are independent of the
coordinate system

- Example Euclidean geometry: two triangles are
identical if two corresponding sides and the angle
between them are identical

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

Scalars

• Need three basic elements in geometry

- Scalars, Vectors, Points

• Scalars can be defined as members of sets
which can be combined by two operations
(addition and multiplication) obeying some
fundamental axioms (associativity, commutivity,
inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we
are familiar

• Scalars alone have no geometric properties

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Vectors

•Physical definition: a vector is a quantity
with two attributes

- Direction

- Magnitude

•Examples include
- Force

- Velocity

- Directed line segments

• Most important example for graphics

• Can map to other types

v

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

Vector Operations

• Every vector has an inverse

- Same magnitude but points in opposite direction

• Every vector can be multiplied by a scalar

• There is a zero vector

- Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

- Use head-to-tail axiom

v -v v
v

u

w

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

Linear Vector Spaces

•Mathematical system for manipulating vectors

•Operations

- Scalar-vector multiplication u=v

- Vector-vector addition: w=u+v

•Expressions such as

v=u+2w-3r

Make sense in a vector space

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

Vectors Lack Position

• These vectors are identical

- Same length and magnitude

• Vectors spaces insufficient for geometry

- Need points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

74

Points

•Location in space

•Operations allowed between points and

vectors

- Point-point subtraction yields a vector

- Equivalent to point-vector addition

P=v+Q

v=P-Q

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

75

Affine Spaces

•Point + a vector space

•Operations

- Vector-vector addition

- Scalar-vector multiplication

- Point-vector addition

- Scalar-scalar operations

• For any point define

- 1 • P = P

- 0 • P = 0 (zero vector)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

76

Lines

•Consider all points of the form

- P()=P0 +  d

- Set of all points that pass through P0 in the

direction of the vector d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

77

Parametric Form

•This form is known as the parametric form
of the line

- More robust and general than other forms

- Extends to curves and surfaces

•Two-dimensional forms
- Explicit: y = mx +h

- Implicit: ax + by +c =0

- Parametric:

x() = x0 + (1-)x1

y() = y0 + (1-)y1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

78

Rays and Line Segments

• If  >= 0, then P() is the ray leaving P0 in

the direction d

If we use two points to define v, then

P() = Q +  (R-Q)=Q+v

=R + (1-)Q

For 0<=<=1 we get all the

points on the line segment

joining R and Q

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

79

Convexity

•An object is convex iff for any two points

in the object all points on the line segment

between these points are also in the

object

P

Q Q

P

convex
not convex

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

80

Affine Sums

•Consider the “sum”

P=1P1+2P2+…..+nPn

Can show by induction that this sum makes
sense iff

1+2+…..n=1

in which case we have the affine sum of
the points P1,P2,…..Pn

• If, in addition, i>=0, we have the convex
hull of P1,P2,…..Pn

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

81

Convex Hull

•Smallest convex object containing P1,P2,…..Pn

•Formed by “shrink wrapping” points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

82

Curves and Surfaces

•Curves are one parameter entities of the

form P() where the function is nonlinear

•Surfaces are formed from two-parameter

functions P(, b)

- Linear functions give planes and polygons

P() P(, b)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

83

Planes

•A plane can be defined by a point and two

vectors or by three points

P(,b)=R+u+bv P(,b)=R+(Q-R)+b(P-Q)

u

v

R

P

R

Q

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

84

Triangles

convex sum of P and Q

convex sum of S() and R

for 0<=,b<=1, we get all points in triangle

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Barycentric Coordinates

Triangle is convex so any point inside can

be represented as an affine sum

P(1, 2, 3)=1P+2Q+3R

where

1 +2 +3 = 1

i>=0

The representation is called the barycentric

coordinate representation of P

85Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

u

v

P

86

Normals

• In three dimensional spaces, every plane has a

vector n perpendicular or orthogonal to it called

the normal vector

• From the two-point vector form P(,b)=P+u+bv,

we know we can use the cross product to find

n = u  v and the equivalent form

(P(, b)-P)  n=0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

