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Objectives

•Derive the projection matrices used for 

standard orthogonal projections

• Introduce oblique projections

• Introduce projection normalization

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



4

Normalization

•Rather than derive a different projection 

matrix for each type of projection, we can 

convert all projections to orthogonal 

projections with the default view volume

•This strategy allows us to use standard 

transformations in the pipeline and makes 

for efficient clipping
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Pipeline View

modelview

transformation

projection

transformation

perspective

division

clipping projection

nonsingular

4D → 3D

against default cube
3D → 2D
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Notes

•We stay in four-dimensional homogeneous 
coordinates through both the modelview and 
projection transformations

- Both these transformations are nonsingular

- Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple 
cube regardless of type of projection

•Delay final projection until end
- Important for hidden-surface removal to retain 

depth information as long as possible 
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Orthogonal Normalization

ortho(left,right,bottom,top,near,far)

normalization  find transformation to convert

specified clipping volume to default
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Orthogonal Matrix

• Two steps

- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))
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Final Projection

• Set z =0 

• Equivalent to the homogeneous coordinate 

transformation

• Hence, general orthogonal projection in 4D is
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Oblique Projections

•The OpenGL projection functions cannot 
produce general parallel projections such as

•However if we look at the example of the 
cube it appears that the cube has been 
sheared

•Oblique Projection = Shear + Orthogonal 
Projection
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General Shear

top view
side view
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Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case: 
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Equivalency
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Effect on Clipping

•The projection matrix P = STH transforms 

the original clipping volume to the default 

clipping volume
top view

DOP
DOP

near plane

far plane

object

clipping

volume

z = -1

z =  1

x = -1
x = 1

distorted object

(projects correctly)
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Objectives

•Derive the perspective projection 

matrices used for standard WebGL 

projections
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Simple Perspective

Consider a simple perspective with the COP at the 

origin, the near clipping plane at z = -1, and a 90 

degree field of view determined by the planes 

x = z, y = z
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Perspective Matrices

Simple projection matrix in homogeneous 

coordinates

Note that this matrix is independent of the 

far clipping plane
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Generalization
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after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z

y’’ = y/z

Z’’ = -(a+b/z)

which projects orthogonally to the desired point 

regardless of a and b
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Picking a and b

If we pick

a = 

b = 

nearfar

farnear

−

+

farnear

farnear2

−



the near plane is mapped to z = -1

the far plane is mapped to z =1

and the sides are mapped to x =  1, y =  1

Hence the new clipping volume is the default clipping volume
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Normalization 

Transformation

original clipping
volume original object new clipping

volume

distorted object

projects correctly
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Normalization and 

Hidden-Surface Removal
• Although our selection of the form of the 
perspective matrices may appear somewhat 
arbitrary, it was chosen so that if z1 > z2 in the 
original clipping volume then the for the 
transformed points z1’ > z2’

• Thus hidden surface removal works if we first 
apply the normalization transformation

• However, the formula z’’ = -(a+b/z) implies that the 
distances are distorted by the normalization 
which can cause numerical problems especially if 
the near distance is small
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WebGL Perspective

•gl.frustum allows for an unsymmetric 

viewing frustum (although gl.perspective

does not)
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OpenGL Perspective Matrix

•The normalization in Frustum requires an 

initial shear to form a right viewing 

pyramid, followed by a scaling to get the 

normalized perspective volume. Finally, 

the perspective matrix results in needing 

only a final orthogonal transformation

P = NSH

our previously defined

perspective matrix
shear and scale
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Why do we do it this way?

•Normalization allows for a single pipeline 

for both perspective and orthogonal 

viewing

•We stay in four dimensional 

homogeneous coordinates as long as 

possible to retain three-dimensional 

information needed for hidden-surface 

removal and shading

•We simplify clipping
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Perspective Matrices
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Objective

Introduce techniques for displaying 

polygonal meshes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Meshes

•Polygonal meshes are the standard 

method for defining and displaying 

surfaces

- Approximations to curved surfaces

- Directly from CAD packages

- Subdivision

•Most common are quadrilateral and 

triangular meshes

- Triangle strips and fans
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Height Fields

•For each (x, z) there 

is a unique y

•Sampling leads to an 

array of y values

•Display as 

quadrilateral or 

triangular mesh 

using strips
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Honolulu Plot Using Line Strips
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Plot 3D

•Old 2D method uses fact that data are 

ordered and we can render front to back

•Regard each plane of constant z as a flat 

surface that can block (parts of) planes 

behind it

•Can proceed iteratively maintaining a 

visible top and visible bottom 

- Lots of little line intersections

•Lots of code but avoids all 3D
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Lines on Back and Hidden 

Faces

35

sombrero or Mexican hat function (sin πr)/(πr)
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Using Polygons

•We can use four adjacent data points to 

form a quadrilateral and thus two triangles 

which can be shaded

•But what if we want to see the grid?

•We can display each quadrilateral twice

- First as two filled white triangles

- Second as a black line loop
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Hat Using Triangles and Lines
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Polygon Offset

•Even though we draw the polygon first 

followed by the lines, small numerical 

errors cause some of fragments on the 

line to be display behind the 

corresponding fragment on the triangle

•Polygon offset (gl.polygonOffset) moves 

fragments slight away from camera

•Apply to triangle rendering
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Hat with Polygon Offset
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Other Mesh Issues

•How do we construct a mesh from 

disparate data (unstructured points)

•Technologies such as laser scans can 

produced tens of millions of such points

•Chapter 12: Delaunay triangulation

•Can we use one triangle strip for an entire 

2D mesh?

•Mesh simplification
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Objectives

• Introduce Shadow Algorithms

•Projective Shadows

•Shadow Maps

•Shadow Volumes
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Flashlight in the Eye Graphics

•When do we not see shadows in a real 

scene?

•When the only light source is a point 

source at the eye or center of projection

- Shadows are behind objects and not visible

•Shadows are a global rendering issue

- Is a surface visible from a source

- May be obscured by other objects
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Shadows in Pipeline 

Renders

•Note that shadows are generated 

automatically by a ray tracers

- feeler rays will detect if no light reaches a point

- need all objects to be available 

•Pipeline renderers work an object at a 

time so shadows are not automatic

- can use some tricks: projective shadows

- multi-rendering: shadow maps and shadow 

volumes 
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Projective Shadows

•Oldest methods

- Used in flight simulators to provide visual clues

•Projection of a polygon is a polygon called 

a shadow polygon

•Given a point light source and a polygon, 

the vertices of the shadow polygon are 

the projections of the original polygon’s 

vertices from a point source onto a 

surface
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Shadow Polygon
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Computing Shadow Vertex

1. Source at (xl, yl, zl)

2. Vertex at (x, y, z)

3. Consider simple case of shadow projected onto 

ground at (xp, 0, zp)

4. Translate source to origin with T(-xl, -yl, -zl)

5. Perspective projection

6. Translate back 
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Shadow Process

1. Put two identical triangles and their colors on 

GPU (black for shadow triangle)

2. Compute two model view matrices as 

uniforms

3. Send model view matrix for original triangle

4. Render original triangle

5. Send second model view matrix

6. Render shadow triangle

- Note shadow triangle undergoes two 

transformations

- Note hidden surface removal takes care of depth 

issues 49Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Generalized Shadows

• Approach was OK for shadows on a single flat 

surface

• Note with geometry shader we can have the 

shader create the second triangle

• Cannot handle shadows on general objects

• Exist a variety of other methods based on same 

basic idea

• We’ll pursue methods based on projective textures
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Image Based Lighting

•We can project a texture onto the surface 

in which case the are treating the texture 

as a “slide projector”

•This technique the basis of projective 

textures and image based lighting 

•Supported in desktop OpenGL and GLSL 

through four dimensional texture 

coordinates

•Not yet in WebGL 
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Shadow Maps

• If we render a scene from a light source, the 

depth buffer will contain the distances from the 

source to nearest lit fragment. 

• We can store these depths in a texture called 

a depth map or shadow map

• Note that although we don’t care about the 

image in the shadow map, if we render with 

some light, anything lit is not in shadow.

• Form a shadow map for each source
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Shadow Mapping
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Final Rendering

•During the final rendering we compare the 

distance from the fragment to the light 

source with the distance in the shadow 

map

• If the depth in the shadow map is less 

than the distance from the fragment to the 

source the fragment is in shadow (from 

this source)

•Otherwise we use the rendered color
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Implementation

•Requires multiple renderings 

•We will look at render-to-texture later 

- gives us a method to save the results of a 

rendering as a texture

- almost all work done in the shaders
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Shadow Volumes
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light source

COP

near clipping plane

far clipping plane

shadow volume
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Objectives

•Learn to shade objects so their images 

appear three-dimensional

• Introduce the types of light-material 

interactions

•Build a simple reflection model---the 

Phong model--- that can be used with 

real time graphics hardware

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012



60

Why we need shading

•Suppose we build a model of a sphere 

using many polygons and color it with 
glColor. We get something like

•But we want

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Shading

• Why does the image of a real sphere look like

• Light-material interactions cause each point to 
have a different color or shade

• Need to consider 
- Light sources

- Material properties

- Location of viewer

- Surface orientation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Scattering 

•Light strikes A 
- Some scattered

- Some absorbed

•Some of scattered light strikes B
- Some scattered

- Some absorbed

•Some of this scattered

light strikes A

and so on

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012



63

Rendering Equation

•The infinite scattering and absorption of 

light can be described by the rendering 

equation 

- Cannot be solved in general

- Ray tracing is a special case for perfectly 

reflecting surfaces

•Rendering equation is global and includes

- Shadows

- Multiple scattering from object to object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Global Effects

translucent surface

shadow

multiple reflection
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Local vs Global Rendering

•Correct shading requires a global 
calculation involving all objects and light 
sources

- Incompatible with pipeline model which shades 
each polygon independently (local rendering)

•However, in computer graphics, especially 
real time graphics, we are happy if things 
“look right”

- Exist many techniques for approximating global 
effects

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Light-Material Interaction

•Light that strikes an object is partially 
absorbed and partially scattered (reflected)

•The amount reflected determines the color 
and brightness of the object

- A surface appears red under white light because 
the red component of the light is reflected and the 
rest is absorbed

•The reflected light is scattered in a manner 
that depends on the smoothness and 
orientation of the surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Light Sources

General light sources are difficult to work 

with because we must integrate light 

coming from all points on the source 
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Simple Light Sources

•Point source

- Model with position and color

- Distant source = infinite distance away (parallel)

•Spotlight

- Restrict light from ideal point source

•Ambient light

- Same amount of light everywhere in scene

- Can model contribution of many sources and 

reflecting surfaces
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Surface Types

• The smoother a surface, the more reflected light 

is concentrated in the direction a perfect mirror 

would reflected the light

• A very rough surface scatters light in all 

directions

smooth surface rough surface
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Phong Model

• A simple model that can be computed rapidly

• Has three components

- Diffuse

- Specular

- Ambient

• Uses four vectors 

- To source

- To viewer

- Normal

- Perfect reflector

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Ideal Reflector

•Normal is determined by local orientation

•Angle of incidence = angle of relection

•The three vectors must be coplanar

r = 2 (l · n ) n - l
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Lambertian Surface

•Perfectly diffuse reflector

•Light scattered equally in all directions

•Amount of light reflected is proportional to 

the vertical component of incoming light

- reflected light ~cos qi

- cos qi = l · n if vectors normalized

- There are also three coefficients, kr, kb, kg that 

show how much of each color component is 

reflected
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Specular Surfaces

• Most surfaces are neither ideal diffusers nor 

perfectly specular (ideal reflectors)

• Smooth surfaces show specular highlights due 

to incoming light being reflected in directions 

concentrated close to the direction of a perfect 

reflection 

specular

highlight
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Modeling Specular Relections

•Phong proposed using a term that 

dropped off as the angle between the 

viewer and the ideal reflection increased

f

Ir ~ ks I cosaf

shininess coef

absorption coef

incoming intensity
reflected

intensity
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The Shininess Coefficient

• Values of a between 100 and 200 correspond to 

metals 

• Values between 5 and 10 give surface that look 

like plastic

cosa f

f 90-90
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012


