
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Orthogonal Projection Matrices

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Derive the projection matrices used for

standard orthogonal projections

• Introduce oblique projections

• Introduce projection normalization

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Normalization

•Rather than derive a different projection

matrix for each type of projection, we can

convert all projections to orthogonal

projections with the default view volume

•This strategy allows us to use standard

transformations in the pipeline and makes

for efficient clipping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Pipeline View

modelview

transformation

projection

transformation

perspective

division

clipping projection

nonsingular

4D → 3D

against default cube
3D → 2D

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Notes

•We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

- Both these transformations are nonsingular

- Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple
cube regardless of type of projection

•Delay final projection until end
- Important for hidden-surface removal to retain

depth information as long as possible

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Orthogonal Normalization

ortho(left,right,bottom,top,near,far)

normalization  find transformation to convert

specified clipping volume to default

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Orthogonal Matrix

• Two steps

- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))



2

right − left
0 0 −

right − left

right − left

0
2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

near − far

far + near

far − near
0 0 0 1

























P = ST =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Final Projection

• Set z =0

• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is



















1000

0000

0010

0001

Morth =

P = MorthST

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Oblique Projections

•The OpenGL projection functions cannot
produce general parallel projections such as

•However if we look at the example of the
cube it appears that the cube has been
sheared

•Oblique Projection = Shear + Orthogonal
Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

General Shear

top view
side view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case:



















−

−

1000

0100

0φcot10

0θcot01

H(q,f) =

P = Morth H(q,f)

P = Morth STH(q,f)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Equivalency

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Effect on Clipping

•The projection matrix P = STH transforms

the original clipping volume to the default

clipping volume
top view

DOP
DOP

near plane

far plane

object

clipping

volume

z = -1

z = 1

x = -1
x = 1

distorted object

(projects correctly)
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Perspective Projection Matrices

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Objectives

•Derive the perspective projection

matrices used for standard WebGL

projections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Simple Perspective

Consider a simple perspective with the COP at the

origin, the near clipping plane at z = -1, and a 90

degree field of view determined by the planes

x = z, y = z

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Perspective Matrices

Simple projection matrix in homogeneous

coordinates

Note that this matrix is independent of the

far clipping plane



















− 0100

0100

0010

0001

M =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Generalization



















− 0100

βα00

0010

0001

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z

y’’ = y/z

Z’’ = -(a+b/z)

which projects orthogonally to the desired point

regardless of a and b

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Picking a and b

If we pick

a =

b =

nearfar

farnear

−

+

farnear

farnear2

−



the near plane is mapped to z = -1

the far plane is mapped to z =1

and the sides are mapped to x =  1, y =  1

Hence the new clipping volume is the default clipping volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Normalization

Transformation

original clipping
volume original object new clipping

volume

distorted object

projects correctly

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Normalization and

Hidden-Surface Removal
• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first
apply the normalization transformation

• However, the formula z’’ = -(a+b/z) implies that the
distances are distorted by the normalization
which can cause numerical problems especially if
the near distance is small

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

WebGL Perspective

•gl.frustum allows for an unsymmetric

viewing frustum (although gl.perspective

does not)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

OpenGL Perspective Matrix

•The normalization in Frustum requires an

initial shear to form a right viewing

pyramid, followed by a scaling to get the

normalized perspective volume. Finally,

the perspective matrix results in needing

only a final orthogonal transformation

P = NSH

our previously defined

perspective matrix
shear and scale

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Why do we do it this way?

•Normalization allows for a single pipeline

for both perspective and orthogonal

viewing

•We stay in four dimensional

homogeneous coordinates as long as

possible to retain three-dimensional

information needed for hidden-surface

removal and shading

•We simplify clipping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Perspective Matrices

27



P =

2 * near

right − left
0

right − left

right − left
0

0
2 * near

top − bottom

top + bottom

top − bottom
0

0 0 −
far + near

far − near
−

2 * far * near

far − near
0 0 −1 0



























P =

near

right
0 0 0

0
near

top
0 0

0 0 −
far + near

far − near
−

2 * far * near

far − near
0 0 −1 0

























frustum

perspective

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Meshes

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Objective

Introduce techniques for displaying

polygonal meshes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Meshes

•Polygonal meshes are the standard

method for defining and displaying

surfaces

- Approximations to curved surfaces

- Directly from CAD packages

- Subdivision

•Most common are quadrilateral and

triangular meshes

- Triangle strips and fans

31Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Height Fields

•For each (x, z) there

is a unique y

•Sampling leads to an

array of y values

•Display as

quadrilateral or

triangular mesh

using strips

32Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Honolulu Plot Using Line Strips

33Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Plot 3D

•Old 2D method uses fact that data are

ordered and we can render front to back

•Regard each plane of constant z as a flat

surface that can block (parts of) planes

behind it

•Can proceed iteratively maintaining a

visible top and visible bottom

- Lots of little line intersections

•Lots of code but avoids all 3D

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Lines on Back and Hidden

Faces

35

sombrero or Mexican hat function (sin πr)/(πr)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Polygons

•We can use four adjacent data points to

form a quadrilateral and thus two triangles

which can be shaded

•But what if we want to see the grid?

•We can display each quadrilateral twice

- First as two filled white triangles

- Second as a black line loop

36Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hat Using Triangles and Lines

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygon Offset

•Even though we draw the polygon first

followed by the lines, small numerical

errors cause some of fragments on the

line to be display behind the

corresponding fragment on the triangle

•Polygon offset (gl.polygonOffset) moves

fragments slight away from camera

•Apply to triangle rendering

38Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hat with Polygon Offset

39Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Other Mesh Issues

•How do we construct a mesh from

disparate data (unstructured points)

•Technologies such as laser scans can

produced tens of millions of such points

•Chapter 12: Delaunay triangulation

•Can we use one triangle strip for an entire

2D mesh?

•Mesh simplification

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadows

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

42Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Objectives

• Introduce Shadow Algorithms

•Projective Shadows

•Shadow Maps

•Shadow Volumes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Flashlight in the Eye Graphics

•When do we not see shadows in a real

scene?

•When the only light source is a point

source at the eye or center of projection

- Shadows are behind objects and not visible

•Shadows are a global rendering issue

- Is a surface visible from a source

- May be obscured by other objects

44Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadows in Pipeline

Renders

•Note that shadows are generated

automatically by a ray tracers

- feeler rays will detect if no light reaches a point

- need all objects to be available

•Pipeline renderers work an object at a

time so shadows are not automatic

- can use some tricks: projective shadows

- multi-rendering: shadow maps and shadow

volumes

45Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Projective Shadows

•Oldest methods

- Used in flight simulators to provide visual clues

•Projection of a polygon is a polygon called

a shadow polygon

•Given a point light source and a polygon,

the vertices of the shadow polygon are

the projections of the original polygon’s

vertices from a point source onto a

surface

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Polygon

47Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing Shadow Vertex

1. Source at (xl, yl, zl)

2. Vertex at (x, y, z)

3. Consider simple case of shadow projected onto

ground at (xp, 0, zp)

4. Translate source to origin with T(-xl, -yl, -zl)

5. Perspective projection

6. Translate back

48



M =

1 0 0 0

0 1 0 0

0 0 1 0

0
1

−
l

y
0 0





















Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Process

1. Put two identical triangles and their colors on

GPU (black for shadow triangle)

2. Compute two model view matrices as

uniforms

3. Send model view matrix for original triangle

4. Render original triangle

5. Send second model view matrix

6. Render shadow triangle

- Note shadow triangle undergoes two

transformations

- Note hidden surface removal takes care of depth

issues 49Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Generalized Shadows

• Approach was OK for shadows on a single flat

surface

• Note with geometry shader we can have the

shader create the second triangle

• Cannot handle shadows on general objects

• Exist a variety of other methods based on same

basic idea

• We’ll pursue methods based on projective textures

50Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Image Based Lighting

•We can project a texture onto the surface

in which case the are treating the texture

as a “slide projector”

•This technique the basis of projective

textures and image based lighting

•Supported in desktop OpenGL and GLSL

through four dimensional texture

coordinates

•Not yet in WebGL

51Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Maps

• If we render a scene from a light source, the

depth buffer will contain the distances from the

source to nearest lit fragment.

• We can store these depths in a texture called

a depth map or shadow map

• Note that although we don’t care about the

image in the shadow map, if we render with

some light, anything lit is not in shadow.

• Form a shadow map for each source

52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Mapping

53Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Final Rendering

•During the final rendering we compare the

distance from the fragment to the light

source with the distance in the shadow

map

• If the depth in the shadow map is less

than the distance from the fragment to the

source the fragment is in shadow (from

this source)

•Otherwise we use the rendered color

54Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Implementation

•Requires multiple renderings

•We will look at render-to-texture later

- gives us a method to save the results of a

rendering as a texture

- almost all work done in the shaders

55Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Volumes

56

light source

COP

near clipping plane

far clipping plane

shadow volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

58

Lighting and Shading I

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

59

Objectives

•Learn to shade objects so their images

appear three-dimensional

• Introduce the types of light-material

interactions

•Build a simple reflection model---the

Phong model--- that can be used with

real time graphics hardware

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

60

Why we need shading

•Suppose we build a model of a sphere

using many polygons and color it with
glColor. We get something like

•But we want

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

61

Shading

• Why does the image of a real sphere look like

• Light-material interactions cause each point to
have a different color or shade

• Need to consider
- Light sources

- Material properties

- Location of viewer

- Surface orientation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

62

Scattering

•Light strikes A
- Some scattered

- Some absorbed

•Some of scattered light strikes B
- Some scattered

- Some absorbed

•Some of this scattered

light strikes A

and so on

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

63

Rendering Equation

•The infinite scattering and absorption of

light can be described by the rendering

equation

- Cannot be solved in general

- Ray tracing is a special case for perfectly

reflecting surfaces

•Rendering equation is global and includes

- Shadows

- Multiple scattering from object to object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

64

Global Effects

translucent surface

shadow

multiple reflection

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

65

Local vs Global Rendering

•Correct shading requires a global
calculation involving all objects and light
sources

- Incompatible with pipeline model which shades
each polygon independently (local rendering)

•However, in computer graphics, especially
real time graphics, we are happy if things
“look right”

- Exist many techniques for approximating global
effects

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

66

Light-Material Interaction

•Light that strikes an object is partially
absorbed and partially scattered (reflected)

•The amount reflected determines the color
and brightness of the object

- A surface appears red under white light because
the red component of the light is reflected and the
rest is absorbed

•The reflected light is scattered in a manner
that depends on the smoothness and
orientation of the surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

67

Light Sources

General light sources are difficult to work

with because we must integrate light

coming from all points on the source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

68

Simple Light Sources

•Point source

- Model with position and color

- Distant source = infinite distance away (parallel)

•Spotlight

- Restrict light from ideal point source

•Ambient light

- Same amount of light everywhere in scene

- Can model contribution of many sources and

reflecting surfaces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

69

Surface Types

• The smoother a surface, the more reflected light

is concentrated in the direction a perfect mirror

would reflected the light

• A very rough surface scatters light in all

directions

smooth surface rough surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

70

Phong Model

• A simple model that can be computed rapidly

• Has three components

- Diffuse

- Specular

- Ambient

• Uses four vectors

- To source

- To viewer

- Normal

- Perfect reflector

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

71

Ideal Reflector

•Normal is determined by local orientation

•Angle of incidence = angle of relection

•The three vectors must be coplanar

r = 2 (l · n) n - l

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

72

Lambertian Surface

•Perfectly diffuse reflector

•Light scattered equally in all directions

•Amount of light reflected is proportional to

the vertical component of incoming light

- reflected light ~cos qi

- cos qi = l · n if vectors normalized

- There are also three coefficients, kr, kb, kg that

show how much of each color component is

reflected

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

73

Specular Surfaces

• Most surfaces are neither ideal diffusers nor

perfectly specular (ideal reflectors)

• Smooth surfaces show specular highlights due

to incoming light being reflected in directions

concentrated close to the direction of a perfect

reflection

specular

highlight

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

74

Modeling Specular Relections

•Phong proposed using a term that

dropped off as the angle between the

viewer and the ideal reflection increased

f

Ir ~ ks I cosaf

shininess coef

absorption coef

incoming intensity
reflected

intensity

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

75

The Shininess Coefficient

• Values of a between 100 and 200 correspond to

metals

• Values between 5 and 10 give surface that look

like plastic

cosa f

f 90-90
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

