
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Lighting and Shading II

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Continue discussion of shading

• Introduce modified Phong model

•Consider computation of required vectors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Ambient Light

•Ambient light is the result of multiple

interactions between (large) light sources

and the objects in the environment

•Amount and color depend on both the

color of the light(s) and the material

properties of the object

•Add ka Ia to diffuse and specular terms

reflection coef intensity of ambient light

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Distance Terms

•The light from a point source that reaches
a surface is inversely proportional to the
square of the distance between them

•We can add a factor of the

form 1/(a + bd +cd2) to

the diffuse and specular

terms

•The constant and linear terms soften the
effect of the point source

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Light Sources

• In the Phong Model, we add the results

from each light source

•Each light source has separate diffuse,

specular, and ambient terms to allow for

maximum flexibility even though this form

does not have a physical justification

•Separate red, green and blue components

•Hence, 9 coefficients for each point source

- Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Material Properties

•Material properties match light source

properties

- Nine absorbtion coefficients

• kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab

- Shininess coefficient a

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Adding up the Components

For each light source and each color
component, the Phong model can be
written (without the distance terms) as

I =kd Id l · n + ks Is (v · r)a + ka Ia

For each color component

we add contributions from

all sources

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Modified Phong Model

•The specular term in the Phong model is

problematic because it requires the

calculation of a new reflection vector and

view vector for each vertex

•Blinn suggested an approximation using

the halfway vector that is more efficient

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

The Halfway Vector

• h is normalized vector halfway between l

and v

h = (l + v)/ | l + v |

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Using the halfway vector

•Replace (v · r)a by (n · h)b

• b is chosen to match shininess

•Note that halfway angle is half of angle

between r and v if vectors are coplanar

•Resulting model is known as the modified

Phong or Phong-Blinn lighting model

- Specified in OpenGL standard

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Example

Only differences in

these teapots are

the parameters

in the modified

Phong model

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Computation of Vectors

• l and v are specified by the application

• Can computer r from l and n

• Problem is determining n

• For simple surfaces is can be determined but

how we determine n differs depending on

underlying representation of surface

• OpenGL leaves determination of normal to

application

- Exception for GLU quadrics and Bezier surfaces was

deprecated

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing Reflection Direction

•Angle of incidence = angle of reflection

•Normal, light direction and reflection

direction are coplaner

•Want all three to be unit length

14

r = 2(l • n)n − l

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Plane Normals

•Equation of plane: ax+by+cz+d = 0

•From Chapter 4 we know that plane is

determined by three points p0, p2, p3 or

normal n and p0

•Normal can be obtained by

n = (p2-p0) × (p1-p0)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Normal to Sphere

• Implicit function f(x,y.z)=0

•Normal given by gradient

•Sphere f(p)=p·p-1

• n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T=p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Parametric Form

•For sphere

• Tangent plane determined by vectors

•Normal given by cross product

x=x(u,v)=cos u sin v

y=y(u,v)=cos u cos v

z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T

∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

General Case

•We can compute parametric normals for

other simple cases

- Quadrics

- Parametric polynomial surfaces

• Bezier surface patches (Chapter 11)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Lighting and Shading in WebGL

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

20Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Objectives

• Introduce the WebGL shading methods

- Light and material functions on MV.js

- per vertex vs per fragment shading

- Where to carry out

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

WebGL lighting

• Need

- Normals

- Material properties

- Lights

- State-based shading functions have

been deprecated (glNormal, glMaterial,

glLight)

- Compute in application or in shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Normalization

• Cosine terms in lighting calculations can be

computed using dot product

• Unit length vectors simplify calculation

• Usually we want to set the magnitudes to have

unit length but

- Length can be affected by transformations

- Note that scaling does not preserved length

• GLSL has a normalization function

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Normal for Triangle

p0

p1

p2

n

plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n n/ |n|

p

Note that right-hand rule determines outward face

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Specifying a Point Light Source

• For each light source, we can set an RGBA for the

diffuse, specular, and ambient components, and

for the position

var diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);

var ambient0 = vec4(1.0, 0.0, 0.0, 1.0);

var specular0 = vec4(1.0, 0.0, 0.0, 1.0);

var light0_pos = vec4(1.0, 2.0, 3,0, 1.0);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Distance and Direction

• The source colors are specified in RGBA

• The position is given in homogeneous

coordinates

- If w =1.0, we are specifying a finite location

- If w =0.0, we are specifying a parallel source

with the given direction vector

• The coefficients in distance terms are usually

quadratic (1/(a+b*d+c*d*d)) where d is the

distance from the point being rendered to the

light source

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Spotlights

•Derive from point source

- Direction

- Cutoff

- Attenuation Proportional to cosaf

q−q f

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Global Ambient Light

•Ambient light depends on color of light

sources

- A red light in a white room will cause a red

ambient term that disappears when the light is

turned off

•A global ambient term that is often helpful

for testing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Moving Light Sources

•Light sources are geometric objects whose

positions or directions are affected by the

model-view matrix

•Depending on where we place the position

(direction) setting function, we can

- Move the light source(s) with the object(s)

- Fix the object(s) and move the light source(s)

- Fix the light source(s) and move the object(s)

- Move the light source(s) and object(s) independently

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Light Properties

30

var lightPosition = vec4(1.0, 1.0, 1.0, 0.0);

var lightAmbient = vec4(0.2, 0.2, 0.2, 1.0);

var lightDiffuse = vec4(1.0, 1.0, 1.0, 1.0);

var lightSpecular = vec4(1.0, 1.0, 1.0, 1.0);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Material Properties

• Material properties should match the terms in

the light model

• Reflectivities

• w component gives opacity

var materialAmbient = vec4(1.0, 0.0, 1.0, 1.0);

var materialDiffuse = vec4(1.0, 0.8, 0.0, 1.0);

var materialSpecular = vec4(1.0, 0.8, 0.0, 1.0);
var materialShininess = 100.0;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using MV.js for Products

32

var ambientProduct = mult(lightAmbient, materialAmbient);

var diffuseProduct = mult(lightDiffuse, materialDiffuse);

var specularProduct = mult(lightSpecular, materialSpecular);

gl.uniform4fv(gl.getUniformLocation(program,

"ambientProduct"), flatten(ambientProduct));

gl.uniform4fv(gl.getUniformLocation(program,

"diffuseProduct"), flatten(diffuseProduct));

gl.uniform4fv(gl.getUniformLocation(program,

"specularProduct"), flatten(specularProduct));

gl.uniform4fv(gl.getUniformLocation(program,

"lightPosition"), flatten(lightPosition));

gl.uniform1f(gl.getUniformLocation(program,

"shininess"),materialShininess);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding Normals for Quads

33

function quad(a, b, c, d) {

var t1 = subtract(vertices[b], vertices[a]);

var t2 = subtract(vertices[c], vertices[b]);

var normal = cross(t1, t2);

var normal = vec3(normal);

normal = normalize(normal);

pointsArray.push(vertices[a]);

normalsArray.push(normal);

.

.

.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Front and Back Faces

• Every face has a front and back

• For many objects, we never see the back face

so we don’t care how or if it’s rendered

• If it matters, we can handle in shader

back faces not visible back faces visible

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Emissive Term

•We can simulate a light source in WebGL

by giving a material an emissive

component

•This component is unaffected by any

sources or transformations

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Transparency

•Material properties are specified as RGBA

values

•The A value can be used to make the

surface translucent

•The default is that all surfaces are opaque

•Later we will enable blending and use this

feature

•However with the HTML5 canvas, A<1 will

mute colors
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygonal Shading

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

38Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Polygonal Shading

• In per vertex shading, shading calculations are

done for each vertex

- Vertex colors become vertex shades and can be

sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the

vertex shader and have it compute the shade

• By default, vertex shades are interpolated

across an object if passed to the fragment

shader as a varying variable (smooth shading)

• We can also use uniform variables to shade

with a single shade (flat shading)
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Polygon Normals

• Triangles have a single normal

- Shades at the vertices as computed by the

modified Phong model can be almost same

- Identical for a distant viewer (default) or if there

is no specular component

• Consider model of sphere

• Want different normals at

each vertex even though

this concept is not quite

correct mathematically

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Smooth Shading

•We can set a new

normal at each vertex

•Easy for sphere model

- If centered at origin n = p

•Now smooth shading

works

•Note silhouette edge

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Mesh Shading

•The previous example is not general

because we knew the normal at each

vertex analytically

•For polygonal models, Gouraud proposed

we use the average of the normals around

a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Gouraud and Phong Shading

• Gouraud Shading

- Find average normal at each vertex (vertex normals)

- Apply modified Phong model at each vertex

- Interpolate vertex shades across each polygon

• Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Comparison

• If the polygon mesh approximates surfaces with

a high curvatures, Phong shading may look

smooth while Gouraud shading may show edges

• Phong shading requires much more work than

Gouraud shading

- Until recently not available in real time systems

- Now can be done using fragment shaders

• Both need data structures to represent meshes

so we can obtain vertex normals

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Per Vertex and Per Fragment

Shaders

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Lighting Shaders I

47

// vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Lighting Shaders II

48

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

vec3 L = normalize(light - pos);

vec3 E = normalize(-pos);

vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates

vec3 N = normalize((modelViewMatrix*vNormal).xyz);

// Compute terms in the illumination equation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Lighting Shaders III

49

// Compute terms in the illumination equation

vec4 ambient = AmbientProduct;

float Kd = max(dot(L, N), 0.0);

vec4 diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess);

vec4 specular = Ks * SpecularProduct;

if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);

gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;

fColor.a = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Lighting Shaders IV

50

// fragment shader

precision mediump float;

varying vec4 fColor;

voidmain()

{

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Lighting Shaders I

51

// vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Lighting Shaders II

52

void main()

{

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

L = normalize(light - pos);

E = -pos;

N = normalize((modelViewMatrix*vNormal).xyz);

gl_Position = projectionMatrix * modelViewMatrix * vPosition;

};

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Lighting Shaders III

53

// fragment shader

precision mediump float;

uniform vec4 ambientProduct;

uniform vec4 diffuseProduct;

uniform vec4 specularProduct;

uniform float shininess;

varying vec3 N, L, E;

void main()

{

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Lighting Shaders IV

54

vec4 fColor;

vec3 H = normalize(L + E);

vec4 ambient = ambientProduct;

float Kd = max(dot(L, N), 0.0);

vec4 diffuse = Kd*diffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), shininess);

vec4 specular = Ks * specularProduct;

if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);

fColor = ambient + diffuse +specular;

fColor.a = 1.0;

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Teapot Examples

55Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Marching Squares

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

Objectives

•Nontrivial two-dimensional application

• Important method for
- Contour plots

- Implicit function visualization

•Extends to important method for volume
visualization

•This lecture is optional but should be
interesting to most of you

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

Displaying Implicit Functions

•Consider the implicit function

g(x,y)=0

•Given an x, we cannot in general find a

corresponding y

•Given an x and a y, we can test if they are

on the curve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

60

Height Fields and Contours

• In many applications, we have the heights

given by a function of the form z=f(x,y)

•To find all the points that have a given

height t, we have to solve the implicit

equation g(x,y)=f(x,y)-t=0

•Such a function determines the isocurves

or contours of f for the isovalue t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

Marching Squares

• Displays isocurves or contours for functions f(x,y) =
t

• Sample f(x,y) on a regular grid yielding samples
{fij(x,y)}

• These samples can be greater than, less than, or
equal to t

• Consider four samples fij(x,y), fi+1,j(x,y), fi+1,j+1(x,y),
fi,j+1(x,y)

• These samples correspond to the corners of a cell

• Color the corners by whether they exceed or are
less than the contour value t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

Cells and Coloring

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

Occam’s Razor

•Contour must intersect edge between a

black and white vertex an odd number of

times

•Pick simplest interpretation: one crossing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

16 Cases

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Unique Cases

•Taking out rotational and color swapping

symmetries leaves four unique cases

•First three have a simple interpretation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Ambiguity Problem

•Diagonally opposite cases have two

equally simple possible interpretations

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

Ambiguity Example

•Two different possibilities below

•More possibilities on next slide

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Ambiguity Problem

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

Is Problem Resolvable?

• Problem is a sampling problem

- Not enough samples to know the local detail

- No solution in a mathematical sense without extra

information

• More of a problem with volume extension

(marching cubes) where selecting “wrong”

interpretation can leave a hole in a surface

• Multiple methods in literature to give better

appearance

- Supersampling

- Look at larger area before deciding

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Interpolating Edges

•We can compute where contour intersects

edge in multiple ways

- Halfway between vertics

- Interpolated based on difference between

contour value and value at vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

Example: Oval of Cassini

f(x,y)=(x2+y2+a2)2-4a2x2-b4

midpoint intersections

interpolating intersections

Depending on a and b we can have 0, 1, or 2 curves

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

Contour Map

• Diamond Head,

Oahu Hawaii

• Shows contours

for many

contour values

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

Marching Cubes

• Isosurface: solution of g(x,y,z)=c

•Use same argument to derive method but

with a cubic cell (8 vertices, 256 colorings)

•Standard method of volume visualization

•Suggested by Lorensen and Kline before

marching squares

•Note inherent parallelism of both

marching cubes and marching squares

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

