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Objectives

•Continue discussion of shading

• Introduce modified Phong model

•Consider computation of required vectors
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Ambient Light

•Ambient light is the result of multiple 

interactions between (large) light sources 

and the objects in the environment

•Amount and color depend on both the 

color of the light(s) and the material 

properties of the object

•Add ka Ia to diffuse and specular terms

reflection coef intensity of ambient light
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Distance Terms

•The light from a point source that reaches 
a surface is inversely proportional to the 
square of the distance between them

•We can add a factor of the

form 1/(a + bd +cd2) to

the diffuse and specular 

terms

•The constant and linear terms soften the 
effect of the point source
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Light Sources

• In the Phong Model, we add the results 

from each light source

•Each light source has separate diffuse, 

specular, and ambient terms to allow for 

maximum flexibility even though this form 

does not have a physical justification

•Separate red, green and blue components

•Hence, 9 coefficients for each point source

- Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab
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Material Properties

•Material properties match light source 

properties

- Nine absorbtion coefficients

• kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab

- Shininess coefficient a
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Adding up the Components

For each light source and each color 
component, the Phong model can be 
written (without the distance terms) as

I =kd Id l · n  + ks Is (v · r )a + ka Ia

For each color component

we add contributions from

all sources
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Modified Phong Model

•The specular term in the Phong model is 

problematic because it requires the 

calculation of a new reflection vector and 

view vector for each vertex

•Blinn suggested an approximation using 

the halfway vector that is more efficient
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The Halfway Vector

• h is normalized vector halfway between l

and v

h = ( l + v )/ | l + v |
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Using the halfway vector

•Replace (v · r )a  by (n · h )b

• b is chosen to match shininess

•Note that halfway angle is half of angle 

between r and v if vectors are coplanar

•Resulting model is known as the modified 

Phong or Phong-Blinn lighting model

- Specified in OpenGL standard
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Example

Only differences in 

these teapots are 

the parameters

in the modified

Phong model

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



13

Computation of Vectors

• l and v are specified by the application

• Can computer r from l and n

• Problem is determining n

• For simple surfaces   is can be determined but 

how we determine n differs depending on 

underlying representation of surface

• OpenGL leaves determination of normal to 

application

- Exception for GLU quadrics and Bezier surfaces was 

deprecated
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Computing Reflection Direction

•Angle of incidence = angle of reflection

•Normal, light direction and reflection 

direction are coplaner

•Want all three to be unit length

14

 

r = 2(l • n)n − l
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Plane Normals

•Equation of plane: ax+by+cz+d = 0

•From Chapter 4 we know that plane is 

determined by three points p0, p2, p3 or 

normal n and p0

•Normal can be obtained by

n = (p2-p0) × (p1-p0)
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Normal to Sphere

• Implicit function f(x,y.z)=0

•Normal given by gradient

•Sphere f(p)=p·p-1

• n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T=p
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Parametric Form

•For sphere

• Tangent plane determined by vectors

•Normal given by cross product

x=x(u,v)=cos u sin v

y=y(u,v)=cos u cos v

z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T

∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v 

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



18

General Case

•We can compute parametric normals for 

other simple cases

- Quadrics

- Parametric polynomial surfaces

• Bezier surface patches (Chapter 11)
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Objectives

• Introduce the WebGL shading methods

- Light and material functions on MV.js

- per vertex vs per fragment shading

- Where to carry out
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WebGL lighting

• Need 

- Normals

- Material properties

- Lights

- State-based shading functions have 

been deprecated (glNormal, glMaterial, 

glLight)

- Compute in application or in shaders
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Normalization

• Cosine terms in lighting calculations can be 

computed using dot product

• Unit length vectors simplify calculation

• Usually we want to set the magnitudes to have 

unit length but

- Length can be affected by transformations

- Note that scaling does not preserved length

• GLSL has a normalization function
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Normal for Triangle

p0

p1

p2

n

plane n ·(p - p0 ) = 0

n = (p2 - p0 ) ×(p1 - p0 ) 

normalize n    n/ |n|

p

Note that right-hand rule determines outward face
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Specifying a Point Light Source

• For each light source, we can set an RGBA for the 

diffuse, specular, and ambient components, and 

for the position

var diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);

var ambient0 = vec4(1.0, 0.0, 0.0, 1.0);

var specular0 = vec4(1.0, 0.0, 0.0, 1.0);

var light0_pos = vec4(1.0, 2.0, 3,0, 1.0);
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Distance and Direction

• The source colors are specified in RGBA

• The position is given in homogeneous 

coordinates

- If w =1.0, we are specifying a finite location

- If w =0.0, we are specifying a parallel source 

with the given direction vector

• The coefficients in distance terms are usually 

quadratic (1/(a+b*d+c*d*d))  where d is the 

distance from the point being rendered to the 

light source
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Spotlights

•Derive from point source

- Direction

- Cutoff

- Attenuation Proportional to cosaf

q−q f
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Global Ambient Light

•Ambient light depends on color of light 

sources

- A red light in a white room will cause a red 

ambient term that disappears when the light is 

turned off

•A global ambient term that is often helpful 

for testing
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Moving Light Sources

•Light sources are geometric objects whose 

positions or directions are affected by the 

model-view matrix

•Depending on where we place the position 

(direction) setting function, we can

- Move the light source(s) with the object(s)

- Fix the object(s) and move the light source(s)

- Fix the light source(s) and move the object(s)

- Move the light source(s) and object(s) independently
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var lightPosition = vec4(1.0, 1.0, 1.0, 0.0 );

var lightAmbient = vec4(0.2, 0.2, 0.2, 1.0 );

var lightDiffuse = vec4( 1.0, 1.0, 1.0, 1.0 );

var lightSpecular = vec4( 1.0, 1.0, 1.0, 1.0 );
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Material Properties

• Material properties should match the terms in 

the light model

• Reflectivities

• w component gives opacity

var materialAmbient = vec4( 1.0, 0.0, 1.0, 1.0 );

var materialDiffuse = vec4( 1.0, 0.8, 0.0, 1.0);

var materialSpecular = vec4( 1.0, 0.8, 0.0, 1.0 );
var materialShininess = 100.0;
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Using MV.js for Products
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var ambientProduct = mult(lightAmbient, materialAmbient);

var diffuseProduct = mult(lightDiffuse, materialDiffuse);

var specularProduct = mult(lightSpecular, materialSpecular);

gl.uniform4fv(gl.getUniformLocation(program,

"ambientProduct"),       flatten(ambientProduct));

gl.uniform4fv(gl.getUniformLocation(program,

"diffuseProduct"),       flatten(diffuseProduct) );

gl.uniform4fv(gl.getUniformLocation(program,

"specularProduct"),        flatten(specularProduct) );

gl.uniform4fv(gl.getUniformLocation(program,

"lightPosition"),        flatten(lightPosition) );

gl.uniform1f(gl.getUniformLocation(program,

"shininess"),materialShininess);
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function quad(a, b, c, d) {

var t1 = subtract(vertices[b], vertices[a]);

var t2 = subtract(vertices[c], vertices[b]);

var normal = cross(t1, t2);

var normal = vec3(normal);

normal = normalize(normal);

pointsArray.push(vertices[a]);

normalsArray.push(normal);

.

.

. 
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Front and Back Faces

• Every face has a front and back

• For many objects, we never see the back face 

so we don’t care how or if it’s rendered

• If it matters, we can handle in shader 

back faces not visible back faces visible
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Emissive Term

•We can simulate a light source in WebGL 

by giving a material an emissive 

component

•This component is unaffected by any 

sources or transformations
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Transparency

•Material properties are specified as RGBA 

values

•The A value can be used to make the 

surface translucent

•The default is that all surfaces are opaque

•Later we will enable blending and use this 

feature

•However with the HTML5 canvas, A<1 will 

mute colors
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Polygonal Shading

• In per vertex shading, shading calculations are 

done for each vertex

- Vertex colors become vertex shades and can be 

sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the 

vertex shader and have it compute the shade

• By default, vertex shades are interpolated 

across an object if passed to the fragment 

shader as a varying variable (smooth shading)

• We can also use uniform variables to shade 

with a single shade (flat shading)
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Polygon Normals

• Triangles have a single normal

- Shades at the vertices as computed by the 

modified Phong model can be almost same 

- Identical for a distant viewer (default) or if there 

is no specular component 

• Consider model of sphere

• Want different normals at

each vertex even though

this concept is not quite

correct mathematically
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Smooth Shading

•We can set a new 

normal at each vertex

•Easy for sphere model 

- If centered at origin n = p

•Now smooth shading 

works

•Note silhouette edge
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Mesh Shading

•The previous example is not general 

because we knew the normal at each 

vertex analytically

•For polygonal models, Gouraud proposed 

we use the average of the normals around 

a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|
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Gouraud and Phong Shading

• Gouraud Shading

- Find average normal at each vertex (vertex normals)

- Apply modified Phong model at each vertex

- Interpolate vertex shades across each polygon

• Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment
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Comparison

• If the polygon mesh approximates surfaces with 

a high curvatures, Phong shading may look 

smooth while Gouraud shading may show edges

• Phong shading requires much more work than 

Gouraud shading

- Until recently not available in real time systems

- Now can be done using fragment shaders

• Both need data structures to represent meshes 

so we can obtain vertex normals
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// vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{
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Vertex Lighting Shaders II
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vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

vec3 L = normalize( light - pos );

vec3 E = normalize( -pos );

vec3 H = normalize( L + E );

// Transform vertex normal into eye coordinates

vec3 N = normalize( (modelViewMatrix*vNormal).xyz);

// Compute terms in the illumination equation
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Vertex Lighting Shaders III
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// Compute terms in the illumination equation

vec4 ambient = AmbientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*DiffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), Shininess );

vec4  specular = Ks * SpecularProduct;

if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0); 

gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;

fColor.a = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Lighting Shaders IV
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// fragment shader

precision mediump float;

varying vec4 fColor;

voidmain()

{

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Fragment Lighting Shaders I

51

// vertex shader 

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;
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void main()

{

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

L = normalize( light - pos );

E =  -pos;

N = normalize( (modelViewMatrix*vNormal).xyz);

gl_Position = projectionMatrix * modelViewMatrix * vPosition;

};
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// fragment shader

precision mediump float;

uniform vec4 ambientProduct;

uniform vec4 diffuseProduct;

uniform vec4 specularProduct;

uniform float shininess;

varying vec3 N, L, E;

void main()

{
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vec4 fColor;

vec3 H = normalize( L + E );

vec4 ambient = ambientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*diffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), shininess );

vec4  specular = Ks * specularProduct;

if( dot(L, N) < 0.0 ) specular = vec4(0.0, 0.0, 0.0, 1.0);

fColor = ambient + diffuse +specular;

fColor.a = 1.0;

gl_FragColor = fColor;

}
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Objectives

•Nontrivial two-dimensional application

• Important method for 
- Contour plots

- Implicit function visualization

•Extends to important method for volume 
visualization

•This lecture is optional but should be 
interesting to most of you
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Displaying Implicit Functions

•Consider the implicit function

g(x,y)=0

•Given an x, we cannot in general find a 

corresponding y

•Given an x and a y, we can test if they are 

on the curve
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Height Fields and Contours

• In many applications, we have the heights 

given by a function of the form z=f(x,y)

•To find all the points that have a given 

height t, we have to solve the implicit 

equation g(x,y)=f(x,y)-t=0

•Such a function determines the isocurves 

or contours of f for the isovalue t
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Marching Squares

• Displays isocurves or contours for functions f(x,y) = 
t

• Sample f(x,y) on a regular grid yielding samples 
{fij(x,y)}

• These samples can be greater than, less than, or 
equal to t

• Consider four samples fij(x,y), fi+1,j(x,y), fi+1,j+1(x,y), 
fi,j+1(x,y) 

• These samples correspond to the corners of a cell

• Color the corners by whether they exceed or are 
less than the contour value t
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Cells and Coloring
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Occam’s Razor

•Contour must intersect edge between a 

black and white vertex an odd number of 

times

•Pick simplest interpretation: one crossing
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16 Cases
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Unique Cases

•Taking out rotational and color swapping 

symmetries leaves four unique cases

•First three have a simple interpretation
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Ambiguity Problem

•Diagonally opposite cases have two 

equally simple possible interpretations
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Ambiguity Example

•Two different possibilities below

•More possibilities on next slide
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Ambiguity Problem
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Is Problem Resolvable?

• Problem is a sampling problem

- Not enough samples to know the local detail

- No solution in a mathematical sense without extra 

information

• More of a problem with volume extension 

(marching cubes) where selecting “wrong” 

interpretation can leave a hole in a surface

• Multiple methods in literature to give better 

appearance

- Supersampling

- Look at larger area before deciding
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Interpolating Edges

•We can compute where contour intersects 

edge in multiple ways

- Halfway between vertics

- Interpolated based on difference between 

contour value and value at vertices
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Example: Oval of Cassini

f(x,y)=(x2+y2+a2)2-4a2x2-b4

midpoint intersections

interpolating intersections

Depending on a and b we can have 0, 1, or 2 curves 
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Contour Map

• Diamond Head, 

Oahu Hawaii

• Shows contours 

for many 

contour values
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Marching Cubes

• Isosurface: solution of g(x,y,z)=c

•Use same argument to derive method but 

with a cubic cell (8 vertices, 256 colorings)

•Standard method of volume visualization 

•Suggested by Lorensen and Kline before 

marching squares

•Note inherent parallelism of both 

marching cubes and marching squares
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