
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reflection and Environment Maps

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Texture Mapping Applications

•Reflection (Environment) Maps

- Cube Maps

- Spherical Maps

•Bump Maps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Mapping Variations

smooth shading environment

mapping

bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Environment Mapping

•Environmental (reflection) mapping is

way to create the appearance of

highly reflective surfaces without ray

tracing which requires global

calculations

• Introduced in movies such as The

Abyss and Terminator 2

•Prevalent in video games

• It is a form of texture mapping
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Reflecting the Environment

V

N

R

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Mapping to a Sphere

V

N

R

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Hemisphere Map as a Texture

• If we map all objects to hemisphere, we

cannot tell if they are on the sphere or

anywhere else along the reflector

•Use the map on the sphere as a texture

that can be mapped onto the object

•Can use other surfaces as the

intermediate

- Cube maps

- Cylinder maps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Cube Map

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Indexing into Cube Map

V
R

•Compute R = 2(N·V)N-V

•Object at origin

•Use largest magnitude component

of R to determine face of cube

•Other two components give texture

coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

OpenGL Implementation

•WebGL supports only cube maps

- desktop OpenGL also supports sphere maps

•First must form map

- Use images from a real camera

- Form images with WebGL

•Texture map it to object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Cube Maps

•We can form a cube map texture by

defining six 2D texture maps that

correspond to the sides of a box

•Supported by WebGL through cubemap

sampler

vec4 texColor = textureCube(mycube, texcoord);

•Texture coordinates must be 3D

- usually are given by the vertex location so we

don’t need compute separate tex coords

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Environment Maps with

Shaders

•Environment maps are usually computed

in world coordinates which can differ from

object coordinates because of the

modeling matrix

- May have to keep track of modeling matrix and

pass it to the shaders as a uniform variable

•Can also use reflection map or refraction

map for effects such as simulating water

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Issues

•Must assume environment is very far from

object (equivalent to the difference

between near and distant lights)

•Object cannot be concave (no self

reflections possible)

•No reflections between objects

•Need a reflection map for each object

•Need a new map if viewer moves

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Forming Cube Map

•Use six cameras, each with a 90 degree

angle of view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

vs Cube Image

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Doing it in WebGL

gl.textureMap2D(

gl.TEXTURE_CUBE_MAP_POSITIVE_X,

level, rows, columns, border, gl.RGBA,

gl.UNSIGNED_BYTE, image1)

•Same for other five images

•Make one texture object out of the six

images

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

•Consider rotating cube inside a cube that

reflects the color of the walls

•Each wall is a solid color (red, green,

blue, cyan, magenta, yellow)

- Each face of room can be a texture of one texel

18

var red = new Uint8Array([255, 0, 0, 255]);

var green = new Uint8Array([0, 255, 0, 255]);

var blue = new Uint8Array([0, 0, 255, 255]);

var cyan = new Uint8Array([0, 255, 255, 255]);

var magenta = new Uint8Array([255, 0, 255, 255]);

var yellow = new Uint8Array([255, 255, 0, 255]);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Texture Object

19

cubeMap = gl.createTexture();

gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeMap);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, red);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, green);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, blue);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, cyan);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, yellow);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, magenta);

gl.activeTexture(gl.TEXTURE0);

gl.uniform1i(gl.getUniformLocation(program, "texMap"),0);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader

20

varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec3 theta;

void main(){

vec3 angles = radians(theta);

// compute rotation matrices rx, ry, rz here

mat4 ModelViewMatrix = modelViewMatrix*rz*ry*rx;

gl_Position = projectionMatrix*ModelViewMatrix*vPosition;

vec4 eyePos = ModelViewMatrix*vPosition;

vec4 N = ModelViewMatrix*vNormal;

R = reflect(eyePos.xyz, N.xyz); }
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

21

precision mediump float;

varying vec3 R;

uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);

gl_FragColor = texColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Sphere Mapping

•Original environmental mapping technique

proposed by Blinn and Newell based in

using lines of longitude and latitude to

map parametric variables to texture

coordinates

•OpenGL supports sphere mapping which

requires a circular texture map equivalent

to an image taken with a fisheye lens

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Sphere Map

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bump Maps

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

25Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Objectives

• Introduce bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Modeling an Orange

•Consider modeling an orange

•Texture map a photo of an orange onto a
surface

- Captures dimples

- Will not be correct if we move viewer or light

- We have shades of dimples rather than their
correct orientation

• Ideally we need to perturb normal across
surface of object and compute a new
color at each interior point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Bump Mapping (Blinn)

•Consider a smooth surface
n

p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Rougher Version

n’

p

p’

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Tangent Plane

pu

pv

n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Equations

pu=[∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

pv=[∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T

n = (pu  pv) / | pu  pv |

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Displacement Function

p’ = p + d(u,v) n

d(u,v) is the bump or displacement function

|d(u,v)| << 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Perturbed Normal

n’ = p’u  p’v

p’u = pu + (∂d/∂u)n + d(u,v)nu

p’v = pv + (∂d/∂v)n + d(u,v)nv

If d is small, we can neglect last term

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Approximating the Normal

n’ = p’u  p’v

≈ n + (∂d/∂u)n  pv + (∂d/∂v)n  pu

The vectors n  pv and n  pu lie

in the tangent plane

Hence the normal is displaced in the tangent plane

Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v

Finally,we perturb the normal during shading

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Image Processing

•Suppose that we start with a function

d(u,v)

•We can sample it to form an array D=[dij]

•Then ∂d/ ∂u ≈ dij – di-1,j

and ∂d/ ∂v ≈ dij – di,j-1

•Embossing: multipass approach using

floating point buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

36

Single Polygon and a Rotating Light Source

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

How to do this?

•The problem is that we want to apply the

perturbation at all points on the surface

•Cannot solve by vertex lighting (unless

polygons are very small)

•Really want to apply to every fragment

•Can’t do that in fixed function pipeline

•But can do with a fragment program!!

•See bumpmap.html and bumpmap.js

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Compositing and Blending

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

39Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Objectives

•Learn to use the A component in RGBA

color for

- Blending for translucent surfaces

- Compositing images

- Antialiasing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Opacity and Transparency

• Opaque surfaces permit no light to pass through

• Transparent surfaces permit all light to pass

• Translucent surfaces pass some light

translucency = 1 – opacity (a)

opaque surface a =1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Physical Models

• Dealing with translucency in a physically correct

manner is difficult due to

- the complexity of the internal interactions of

light and matter

- Using a pipeline renderer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Writing Model

• Use A component of RGBA (or RGBa) color to

store opacity

• During rendering we can expand our writing

model to use RGBA values

Color Buffer

destination

component

blend

destination blending

factor

source blending factor
source

component

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Blending Equation

• We can define source and destination blending

factors for each RGBA component

s = [sr, sg, sb, sa]

d = [dr, dg, db, da]

Suppose that the source and destination colors are

b = [br, bg, bb, ba]

c = [cr, cg, cb, ca]

Blend as

c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da]

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

OpenGL Blending and

Compositing

• Must enable blending and pick source and

destination factors

gl.enable(gl.BLEND)

gl.blendFunc(source_factor,

destination_factor)

• Only certain factors supported
-gl.ZERO, gl.ONE

-gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA

-gl.DST_ALPHA, gl.ONE_MINUS_DST_ALPHA

- See Redbook for complete list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

Example

• Suppose that we start with the opaque background

color (R0,G0,B0,1)

- This color becomes the initial destination color

• We now want to blend in a translucent polygon with

color (R1,G1,B1,a1)

• Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA

as the source and destination blending factors

R’
1 = a1 R1 +(1- a1) R0, ……

• Note this formula is correct if polygon is either

opaque or transparent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

Clamping and Accuracy

•All the components (RGBA) are clamped

and stay in the range (0,1)

•However, in a typical system, RGBA

values are only stored to 8 bits

- Can easily loose accuracy if we add many

components together

- Example: add together n images
• Divide all color components by n to avoid clamping

• Blend with source factor = 1, destination factor = 1

• But division by n loses bits

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

48

Order Dependency

• Is this image correct?

- Probably not

- Polygons are rendered

in the order they pass

down the pipeline

- Blending functions

are order dependent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

49

Opaque and Translucent

Polygons

• Suppose that we have a group of polygons

some of which are opaque and some translucent

• How do we use hidden-surface removal?

• Opaque polygons block all polygons behind

them and affect the depth buffer

• Translucent polygons should not affect depth

buffer
- Render with gl.depthMask(false) which makes

depth buffer read-only

• Sort polygons first to remove order dependency

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

50

Fog

• We can composite with a fixed color and have

the blending factors depend on depth

- Simulates a fog effect

• Blend source color Cs and fog color Cf by

Cs’=f Cs + (1-f) Cf

• f is the fog factor

- Exponential

- Gaussian

- Linear (depth cueing)

• Deprecated but can recreate
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

51

Fog Functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Compositing and HTML

• In desktop OpenGL, the A component has

no effect unless blending is enabled

• In WebGL, an A other than 1.0 has an

effect because WebGL works with the

HTML5 Canvas element

•A = 0.5 will cut the RGB values by ½

when the pixel is displayed

•Allows other applications to be blended

into the canvas along with the graphics

52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

53

Line Aliasing

• Ideal raster line is one pixel wide

•All line segments, other than vertical and

horizontal segments, partially cover pixels

•Simple algorithms color

only whole pixels

•Lead to the “jaggies”

or aliasing

•Similar issue for polygons

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

Antialiasing

• Can try to color a pixel by adding a fraction of its

color to the frame buffer

- Fraction depends on percentage of pixel

covered by fragment

- Fraction depends on whether there is overlap

no overlap overlap

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

Area Averaging

• Use average area a1+a2-a1a2 as blending factor

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

OpenGL Antialiasing

•Not (yet) supported in WebGL

•Can enable separately for points, lines, or

polygons

•Note most hardware will automatically

antialias

glEnable(GL_POINT_SMOOTH);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Imaging Applications

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

58Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

Objectives

•Use the fragment shader to do image

processing

- Image filtering

- Pseudo Color

•Use multiple textures

- matrix operations

• Introduce GPGPU

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

60

Accumulation Techniques

• Compositing and blending are limited by resolution

of the frame buffer

- Typically 8 bits per color component

• The accumulation buffer was a high resolution buffer

(16 or more bits per component) that avoided this

problem

• Could write into it or read from it with a scale factor

• Slower than direct compositing into the frame buffer

• Now deprecated but can do techniques with floating

point frame buffers

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

Multirendering

•Composite multiple images

• Image Filtering (convolution)

- add shifted and scaled versions of an image

•Whole scene antialiasing

- move primitives a little for each render

•Depth of Field

- move viewer a little for each render keeping

one plane unchanged

•Motion effects

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shaders and

Images

•Suppose that we send a rectangle (two

triangles) to the vertex shader and render

it with an n x m texture map

•Suppose that in addition we use an n x m

canvas

•There is now a one-to-one

correspondence between each texel and

each fragment

•Hence we can regard fragment operations

as imaging operations on the texture map
62Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

GPGPU

•Looking back at these examples, we can

note that the only purpose of the

geometry is to trigger the execution of the

imaging operations in the fragment shader

•Consequently, we can look at what we

have done as large matrix operations

rather than graphics operations

•Leads to the field of General Purpose

Computing with a GPU (GPGPU)

63Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Examples

•Add two matrices

•Multiply two matrices

•Fast Fourier Transform

•Uses speed and parallelism of GPU

•But how do we get out results?

- Floating point frame buffers

- OpenCL (WebCL)

- Compute shaders

64Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Multiple Texels

•Suppose we have a 1024 x 1024 texture

in the texture object “image”

sampler2D(image, vec2(x,y)) returns the

the value of the texture at (x,y)

sampler2D(image, vec2(x+1.0/1024.0), y);

returns the value of the texel to the right of

(x,y)

We can use any combination of texels

surrounding (x, y) in the fragment shader

65Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Image Enhancer

66

precision mediump float;

varying vec2 fTexCoord;

uniform sampler2D texture;

void main()

{

float d = 1.0/256.0; //spacing between texels

float x = fTexCoord.x;

float y = fTexCoord.y;

gl_FragColor = 10.0*abs(texture2D(texture, vec2(x+d, y))

- texture2D(texture, vec2(x-d, y)))

+10.0*abs(texture2D(texture, vec2(x, y+d))

- texture2D(texture, vec2(x, y-d)));

gl_FragColor.w = 1.0;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Honolulu Image

67

original enhanced
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

•Nonlinear

•Find approximate gradient at each point

•Compute smoothed finite difference

approximations to x and y components

separately

•Display magnitude of approximate gradient

•Simple with fragment shader

68Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

69

vec4 gx = 3.0*texture2D(texture, vec2(x+d, y))

+ texture2D(texture, vec2(x+d, y+d))

+ texture2D(texture, vec2(x+d, y-d))

- 3.0*texture2D(texture, vec2(x-d, y))

- texture2D(texture, vec2(x-d, y+d))

- texture2D(texture, vec2(x-d, y-d));

vec4 gy = 3.0*texture2D(texture, vec2(x, y+d))

+ texture2D(texture, vec2(x+d, y+d))

+ texture2D(texture, vec2(x-d, y+d))

- 3.0*texture2D(texture, vec2(x, y-d))

- texture2D(texture, vec2(x+d, y-d))

- texture2D(texture, vec2(x-d, y-d));

gl_FragColor = vec4(sqrt(gx*gx + gy*gy), 1.0);

gl_FragColor.w = 1.0;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

70Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Multiple Textures

•Example: matrix addition

•Create two samplers, texture1 and

texture2, that contain the data

• In fragment shader

gl_FragColor =

sampler2D(texture1, vec2(x, y))

+sampler2D(texture2, vec2(x,y));

71Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using 4 Way Parallelism

•Recent GPUs and graphics cards support

textures up to 8K x 8K

•For scalar imaging, we can do twice as

well using all four color components

72



R G

B A











Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Indexed and Pseudo Color

•Display luminance (2D) image as texture map

•Treat pixel value as independent variable for

separate functions for each color component

73

void main(){

vec4 color = texture2D(texture, fTexCoord);

if(color.g<0.5) color.g = 2.0*color.g;

else color.g = 2.0 - 2.0*color.g;

color.b = 1.0-color.b;

gl_FragColor = color;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Top View of 2D Sinc

74Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Next Step

•Need more storage for most GPGPU

calculations

•Example: filtering

•Example: iteration

•Need shared memory

•Solution: Use texture memory and off-

screen rendering

75Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

76

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing the Mandelbrot Set

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

77Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

78

Objectives

• Introduce the most famous fractal object

- more about fractal curves and surfaces later

• Imaging calculation

- Must compute value for each pixel on display

- Shows power of fragment processing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

79

Sierpinski Gasket

Rule based:

Repeat n times. As n →∞

Area→0

Perimeter →∞

Not a normal geometric object

More about fractal curves and surfaces later
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Complex Arithmetic

•Complex number defined by two scalars

z = x + jy

j2 = -1

•Addition and Subtraction

z1+z2 = x1 + x2 +j(y1+y2)

z1*z2 = x1*x2-y1*y2 + j(x1*y2+x2*y1)

•Magnitude

|z|2 = x2 + y2

80Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

81

Iteration in the Complex Plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

82

Mandelbrot Set

iterate on zk+1=zk
2+c

with z0 = 0 + j0

Two cases as k →∞

|zk |→∞

|zk | remains finite

If for a given c, |zk | remains finite, then c
belongs to the Mandelbrot set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing the Mandelbrot Set

•Pick a rectangular region

•Map each pixel to a value in this region

•Do an iterative calculation for each pixel

- If magnitude is greater than 2, we know

sequence will diverge and point does not

belong to the set

- Stop after a fixed number of iterations

- Points with small magnitudes should be in set

- Color each point based on its magnitude

83Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

84

Mandelbrot Set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Exploring the Mandelbrot Set

•Most interesting parts are centered near (-

0.5, 0.0)

•Really interesting parts are where we are

uncertain if points are in or out of the set

•Repeated magnification these regions

reveals complex and beautiful patterns

•We use color maps to enhance the detail

85Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

86

Mandelbrot Set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in the JS File I

•Form a texture map of the set and map to

a rectangle

87

var height = 0.5;

// size of window in complex plane

var width = 0.5;var cx = -0.5;

// center of window in complex plane

var cy = 0.5;var max = 100;

// number of interations per point

var n = 512;

var m =512;

var texImage = new Uint8Array(4*n*m);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in JS File II

88

for (var i = 0; i < n; i++)

for (var j = 0; j < m; j++) {

var x = i * (width / (n - 1)) + cx - width / 2;

var y = j * (height / (m - 1)) + cy - height / 2;

var c = [0.0, 0.0];

var p = [x, y];

for (var k = 0; k < max; k++) {

// compute c = c^2 + p

c = [c[0]*c[0]-c[1]*c[1], 2*c[0]*c[1]];

c = [c[0]+p[0], c[1]+p[1]];

v = c[0]*c[0]+c[1]*c[1];

if (v > 4.0) break; /* assume not in set if mag > 2 */

}Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in JS File III

•Set up two triangles to define a rectangle

•Set up texture object with the set as data

•Render the triangles

89

// assign gray level to point based on its magnitude */

if (v > 1.0) v = 1.0; /* clamp if > 1 */

texImage[4*i*m+4*j] = 255*v;

texImage[4*i*m+4*j+1] =

255*(0.5* (Math.sin(v*Math.PI/180) + 1.0));

texImage[4*i*m+4*j+2] = 255*(1.0 - v);

texImage[4*i*m+4*j+3] = 255;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

90Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

•Our first implementation is incredibly

inefficient and makes no use of the power of

the fragment shader

•Note the calculation is “embarrassingly

parallel”

- computation for the color of each fragment is

completely independent

- Why not have each fragment compute membership

for itself?

- Each fragment would then determine its own color

91Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Interactive Program

•JS file sends window parameters obtained

from sliders to the fragment shader as

uniforms

•Only geometry is a rectangle

•No need for a texture map since shader

will work on individual pixels

92Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader I

93

precision mediump float;

uniform float cx;

uniform float cy;

uniform float scale;

float height;

float width;

void main() {

const int max = 100; /* number of iterations per point */

const float PI = 3.14159;

float n = 1000.0;

float m = 1000.0;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader II

94

float v;

float x = gl_FragCoord.x /(n*scale) + cx - 1.0 / (2.0*scale);

float y = gl_FragCoord.y/(m*scale) + cy - 1.0 / (2.0*scale);

float ax=0.0, ay=0.0;

float bx, by;

for (int k = 0; k < max; k++) {

// compute c = c^2 + p

bx = ax*ax-ay*ay;

by = 2.0*ax*ay;

ax = bx+x;

ay = by+y;

v = ax*ax+ay*ay;

if (v > 4.0) break; // assume not in set if mag > 2

} Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

95

// assign gray level to point based on its magnitude //

// clamp if > 1

v = min(v, 1.0);

gl_FragColor.r = v;

gl_FragColor.g = 0.5* sin(3.0*PI*v) + 1.0;

gl_FragColor.b = 1.0-v;

gl_FragColor.b = 0.5* cos(19.0*PI*v) + 1.0;

gl_FragColor.a = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Analysis

•This implementation will use as many

fragment processors as are available

concurrently

•Note that if an iteration ends early, the GPU

will use that processor to work on another

fragment

•Note also the absence of loops over x and y

•Still not using the full parallelism since we

are really computing a luminance image

96Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

