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Objectives

•Texture Mapping Applications

•Reflection (Environment) Maps

- Cube Maps

- Spherical Maps

•Bump Maps
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Mapping Variations

smooth shading environment

mapping

bump mapping
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Environment Mapping

•Environmental (reflection) mapping is 

way to create the appearance of 

highly reflective surfaces without ray 

tracing which requires global 

calculations

• Introduced in movies such as The 

Abyss and Terminator 2

•Prevalent in video games

• It is a form of texture mapping
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



6

Reflecting the Environment

V

N

R
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Mapping to a Sphere

V

N

R
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Hemisphere Map as a Texture

• If we map all objects to hemisphere, we 

cannot tell if they are on the sphere or 

anywhere else along the reflector

•Use the map on the sphere as a texture 

that can be mapped onto the object

•Can use other surfaces as the 

intermediate

- Cube maps

- Cylinder maps
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Cube Map
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Indexing into Cube Map

V
R

•Compute  R = 2(N·V)N-V

•Object at origin

•Use largest magnitude component 

of R to determine face of cube

•Other two components give texture   

coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



11

OpenGL Implementation

•WebGL supports only cube maps

- desktop OpenGL also supports sphere maps

•First must form map 

- Use images from a real camera

- Form images with WebGL

•Texture map it to object
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Cube Maps

•We can form a cube map texture by 

defining six 2D texture maps that 

correspond to the sides of a box

•Supported by WebGL through cubemap 

sampler

vec4 texColor = textureCube(mycube, texcoord);

•Texture coordinates must be 3D

- usually are given by the vertex location so we 

don’t need compute separate tex coords
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Environment Maps with 

Shaders

•Environment maps are usually computed 

in world coordinates which can differ from 

object coordinates because of the 

modeling matrix

- May have to keep track of modeling matrix and 

pass it to the shaders as a uniform variable

•Can also use reflection map or refraction 

map for effects such as simulating water
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Issues

•Must assume environment is very far from 

object (equivalent to the difference 

between near and distant lights)

•Object cannot be concave (no self 

reflections possible)

•No reflections between objects

•Need a reflection map for each object

•Need a new map if viewer moves
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Forming Cube Map

•Use six cameras, each with a 90 degree 

angle of view
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vs Cube Image
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Doing it in WebGL

gl.textureMap2D(

gl.TEXTURE_CUBE_MAP_POSITIVE_X, 

level, rows, columns, border, gl.RGBA,

gl.UNSIGNED_BYTE, image1)

•Same for other five images

•Make one texture object out of the six 

images
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Example

•Consider rotating cube inside a cube that 

reflects the color of the walls

•Each wall is a solid color (red, green, 

blue, cyan, magenta, yellow)

- Each face of room can be a texture of one texel

18

var red = new Uint8Array([255, 0, 0, 255]);

var green = new Uint8Array([0, 255, 0, 255]);

var blue = new Uint8Array([0, 0, 255, 255]);

var cyan = new Uint8Array([0, 255, 255, 255]);

var magenta = new Uint8Array([255, 0, 255, 255]);

var yellow = new Uint8Array([255, 255, 0, 255]);
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Texture Object
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cubeMap = gl.createTexture();

gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeMap);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, red);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, green);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, blue);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, cyan);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, yellow);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, magenta);

gl.activeTexture( gl.TEXTURE0 );

gl.uniform1i(gl.getUniformLocation(program, "texMap"),0);
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Vertex Shader
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varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec3 theta;

void main(){

vec3 angles = radians( theta );

// compute rotation matrices rx, ry, rz here

mat4 ModelViewMatrix = modelViewMatrix*rz*ry*rx;

gl_Position = projectionMatrix*ModelViewMatrix*vPosition;

vec4 eyePos = ModelViewMatrix*vPosition;

vec4 N = ModelViewMatrix*vNormal;

R = reflect(eyePos.xyz, N.xyz);   } 
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Fragment Shader
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precision mediump float;

varying vec3 R;

uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);

gl_FragColor = texColor;

}
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Sphere Mapping

•Original environmental mapping technique 

proposed by Blinn and Newell based in 

using lines of longitude and latitude to 

map parametric variables to texture 

coordinates

•OpenGL supports sphere mapping which 

requires a circular texture map equivalent 

to an image taken with a fisheye lens
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Sphere Map
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Objectives

• Introduce bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



27

Modeling an Orange

•Consider modeling an orange

•Texture map a photo of an orange onto a 
surface

- Captures dimples

- Will not be correct if we move viewer or light

- We have shades of dimples rather than their 
correct orientation

• Ideally we need to perturb normal across 
surface of object and compute a new 
color at each interior point
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Bump Mapping (Blinn)

•Consider a smooth surface
n

p
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Rougher Version

n’

p

p’
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Tangent Plane

pu

pv

n
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Equations

pu=[ ∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

pv=[ ∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T

n = (pu  pv ) / | pu  pv |
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Displacement Function

p’ = p + d(u,v) n

d(u,v) is the bump or displacement function

|d(u,v)| << 1
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Perturbed Normal

n’ = p’u  p’v

p’u = pu + (∂d/∂u)n + d(u,v)nu

p’v = pv + (∂d/∂v)n + d(u,v)nv

If d is small, we can neglect last term
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Approximating the Normal

n’ = p’u  p’v

≈ n + (∂d/∂u)n  pv + (∂d/∂v)n  pu

The vectors n  pv and n  pu lie 

in the tangent plane 

Hence the normal is displaced in the tangent plane

Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v

Finally,we perturb the normal during shading
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Image Processing

•Suppose that we start with a function 

d(u,v)

•We can sample it to form an array D=[dij]

•Then ∂d/ ∂u ≈ dij – di-1,j

and ∂d/ ∂v ≈ dij – di,j-1

•Embossing: multipass approach using 

floating point buffer
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Example
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Single Polygon and a Rotating Light Source
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How to do this?

•The problem is that we want to apply the 

perturbation at all points on the surface

•Cannot solve by vertex lighting (unless 

polygons are very small)

•Really want to apply to every fragment

•Can’t do that in fixed function pipeline

•But can do with a fragment program!!

•See bumpmap.html and bumpmap.js
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Objectives

•Learn to use the A component in RGBA 

color for

- Blending for translucent surfaces

- Compositing images

- Antialiasing
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Opacity and Transparency

• Opaque surfaces permit no light to pass through

• Transparent surfaces permit all light to pass

• Translucent surfaces pass some light

translucency = 1 – opacity (a)

opaque surface a =1
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Physical Models

• Dealing with translucency in a physically correct 

manner is difficult due to

- the complexity of the internal interactions of 

light and matter

- Using a pipeline renderer
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Writing Model

• Use A component of RGBA (or RGBa) color to 

store opacity

• During rendering we can expand our writing 

model to use RGBA values 

Color Buffer

destination

component

blend

destination blending

factor

source blending factor
source

component
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Blending Equation

• We can define source and destination blending 

factors for each RGBA component

s = [sr, sg, sb, sa]

d = [dr, dg, db, da]

Suppose that the source and destination colors are

b = [br, bg, bb, ba]

c = [cr, cg, cb, ca]

Blend as

c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da ]
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OpenGL Blending and 

Compositing

• Must enable blending and pick source and 

destination factors

gl.enable(gl.BLEND)

gl.blendFunc(source_factor, 

destination_factor)

• Only certain factors supported
-gl.ZERO, gl.ONE

-gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA

-gl.DST_ALPHA, gl.ONE_MINUS_DST_ALPHA

- See Redbook for complete list
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Example

• Suppose that we start with the opaque background 

color (R0,G0,B0,1) 

- This color becomes the initial destination color

• We now want to blend in a translucent polygon with 

color (R1,G1,B1,a1)

• Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA

as the source and destination blending factors

R’
1 = a1 R1 +(1- a1) R0, …… 

• Note this formula is correct if polygon is either 

opaque or transparent
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Clamping and Accuracy

•All the components (RGBA) are clamped 

and stay in the range (0,1)

•However, in a typical system, RGBA 

values are only stored to 8 bits

- Can easily loose accuracy if we add many 

components together

- Example: add together n images
• Divide all color components by n to avoid clamping

• Blend with source factor = 1, destination factor = 1

• But division by n loses bits
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Order Dependency

• Is this image correct?

- Probably not

- Polygons are rendered

in the order they pass

down the pipeline

- Blending functions

are order dependent
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Opaque and Translucent 

Polygons

• Suppose that we have a group of polygons 

some of which are opaque and some translucent

• How do we use hidden-surface removal?

• Opaque polygons block all polygons behind 

them and affect the depth buffer

• Translucent polygons should not affect depth 

buffer
- Render with gl.depthMask(false) which makes 

depth buffer read-only

• Sort polygons first to remove order dependency
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Fog

• We can composite with a fixed color and have 

the blending factors depend on depth

- Simulates a fog effect

• Blend source color Cs and fog color Cf by

Cs’=f Cs + (1-f) Cf

• f is the fog factor

- Exponential

- Gaussian

- Linear (depth cueing)

• Deprecated but can recreate
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Fog Functions
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Compositing and HTML

• In desktop OpenGL, the A component has 

no effect unless blending is enabled

• In WebGL, an A other than 1.0 has an 

effect because WebGL works with the 

HTML5 Canvas element

•A = 0.5 will cut the RGB values by ½ 

when the pixel is displayed

•Allows other applications to be blended 

into the canvas along with the graphics
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Line Aliasing

• Ideal raster line is one pixel wide

•All line segments, other than vertical and 

horizontal segments, partially cover pixels

•Simple algorithms color

only whole pixels

•Lead to the “jaggies”

or aliasing

•Similar issue for polygons
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Antialiasing 

• Can try to color a pixel by adding a fraction of its 

color to the frame buffer

- Fraction depends on percentage of pixel 

covered by fragment 

- Fraction depends on whether there is overlap

no overlap overlap
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Area Averaging 

• Use average area a1+a2-a1a2 as blending factor
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OpenGL Antialiasing

•Not (yet) supported in WebGL

•Can enable separately for points, lines, or 

polygons

•Note most hardware will automatically 

antialias

glEnable(GL_POINT_SMOOTH);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
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Objectives

•Use the fragment shader to do image 

processing

- Image filtering

- Pseudo Color

•Use multiple textures

- matrix operations

• Introduce GPGPU
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Accumulation Techniques

• Compositing and blending are limited by resolution 

of the frame buffer

- Typically 8 bits per color component

• The accumulation buffer was a high resolution buffer 

(16 or more bits per component) that avoided this 

problem

• Could write into it or read from it with a scale factor

• Slower than direct compositing into the frame buffer

• Now deprecated but can do techniques with floating 

point frame buffers
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Multirendering

•Composite multiple images 

• Image Filtering (convolution)

- add shifted and scaled versions of an image

•Whole scene antialiasing

- move primitives a little for each render

•Depth of Field

- move viewer a little for each render keeping 

one plane unchanged

•Motion effects
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Fragment Shaders and 

Images

•Suppose that we send a rectangle (two 

triangles) to the vertex shader and render 

it with an n x m texture map

•Suppose that in addition we use an n x m 

canvas

•There is now a one-to-one 

correspondence between each texel and 

each fragment

•Hence we can regard fragment operations 

as imaging operations on the texture map
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GPGPU

•Looking back at these examples, we can 

note that the only purpose of the 

geometry is to trigger the execution of the 

imaging operations in the fragment shader

•Consequently, we can look at what we 

have done as large matrix operations 

rather than graphics operations

•Leads to the field of General Purpose 

Computing with a GPU (GPGPU)
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Examples

•Add two matrices

•Multiply two matrices

•Fast Fourier Transform

•Uses speed and parallelism of GPU

•But how do we get out results?

- Floating point frame buffers

- OpenCL (WebCL)

- Compute shaders
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Using Multiple Texels

•Suppose we have a 1024 x 1024 texture 

in the texture object “image”

sampler2D(image, vec2(x,y)) returns the 

the value of the texture at (x,y)

sampler2D(image, vec2(x+1.0/1024.0), y); 

returns the value of the texel to the right of 

(x,y)

We can use any combination of texels 

surrounding (x, y) in the fragment shader
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Image Enhancer
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precision mediump float;

varying vec2 fTexCoord;

uniform sampler2D texture;

void main()

{

float d = 1.0/256.0;  //spacing between texels

float x = fTexCoord.x;

float y = fTexCoord.y;

gl_FragColor = 10.0*abs( texture2D( texture, vec2(x+d, y)) 

- texture2D( texture, vec2(x-d, y)))

+10.0*abs( texture2D( texture, vec2(x, y+d)) 

- texture2D( texture, vec2(x, y-d)));

gl_FragColor.w = 1.0;

}
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Honolulu Image
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original enhanced
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Sobel Edge Detector

•Nonlinear

•Find approximate gradient at each point

•Compute smoothed finite difference 

approximations to x and y components 

separately

•Display magnitude of approximate gradient

•Simple with fragment shader
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Sobel Edge Detector
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vec4 gx = 3.0*texture2D( texture, vec2(x+d, y))

+ texture2D( texture, vec2(x+d, y+d))

+ texture2D( texture, vec2(x+d, y-d))

- 3.0*texture2D( texture, vec2(x-d, y))

- texture2D( texture, vec2(x-d, y+d))

- texture2D( texture, vec2(x-d, y-d));

vec4 gy = 3.0*texture2D( texture, vec2(x, y+d))

+ texture2D( texture, vec2(x+d, y+d))

+ texture2D( texture, vec2(x-d, y+d))

- 3.0*texture2D( texture, vec2(x, y-d))

- texture2D( texture, vec2(x+d, y-d))

- texture2D( texture, vec2(x-d, y-d));

gl_FragColor = vec4(sqrt(gx*gx + gy*gy), 1.0);

gl_FragColor.w = 1.0;
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Sobel Edge Detector
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Using Multiple Textures

•Example: matrix addition

•Create two samplers, texture1 and 

texture2, that contain the data

• In fragment shader

gl_FragColor = 

sampler2D(texture1, vec2(x, y)) 

+sampler2D(texture2, vec2(x,y));
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Using 4 Way Parallelism

•Recent GPUs and graphics cards support 

textures up to 8K x 8K 

•For scalar imaging, we can do twice as 

well using all four color components

72
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Indexed and Pseudo Color

•Display luminance (2D) image as texture map 

•Treat pixel value as independent variable for 

separate functions for each color component

73

void main(){

vec4 color = texture2D(texture, fTexCoord);

if(color.g<0.5) color.g = 2.0*color.g;

else color.g = 2.0 - 2.0*color.g;

color.b = 1.0-color.b;

gl_FragColor = color;

}
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Top View of 2D Sinc 
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The Next Step

•Need more storage for most GPGPU 

calculations

•Example: filtering

•Example: iteration

•Need shared memory

•Solution: Use texture memory and off-

screen rendering
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Objectives

• Introduce the most famous fractal object

- more about fractal curves and surfaces later

• Imaging calculation

- Must compute value for each pixel on display

- Shows power of fragment processing
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Sierpinski Gasket

Rule based:

Repeat n times. As n →∞

Area→0

Perimeter →∞

Not a normal geometric object

More about fractal curves and surfaces later
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Complex Arithmetic

•Complex number defined by two scalars

z = x + jy 

j2 = -1

•Addition and Subtraction

z1+z2 = x1 + x2 +j(y1+y2)

z1*z2 = x1*x2-y1*y2 + j(x1*y2+x2*y1)

•Magnitude

|z|2 = x2 + y2
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Iteration in the Complex Plane
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Mandelbrot Set

iterate on zk+1=zk
2+c

with z0 = 0 + j0

Two cases as k →∞

|zk |→∞

|zk | remains finite

If for a given c, |zk | remains finite, then c 
belongs to the Mandelbrot set
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Computing the Mandelbrot Set

•Pick a rectangular region 

•Map each pixel to a value in this region

•Do an iterative calculation for each pixel

- If magnitude is greater than 2, we know 

sequence will diverge and point does not 

belong to the set

- Stop after a fixed number of iterations

- Points with small magnitudes should be in set

- Color each point based on its magnitude
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Mandelbrot Set
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Exploring the Mandelbrot Set

•Most interesting parts are centered near (-

0.5, 0.0)

•Really interesting parts are where we are 

uncertain if points are in or out of the set

•Repeated magnification these regions 

reveals complex and beautiful patterns

•We use color maps to enhance the detail
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Mandelbrot Set
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Computing in the JS File I

•Form a texture map of the set and map to 

a rectangle

87

var height = 0.5;

// size of window in complex plane 

var width = 0.5;var cx = -0.5;

// center of window in complex plane

var cy = 0.5;var max = 100;

// number of interations per point 

var n = 512;

var m =512;

var texImage = new Uint8Array(4*n*m);
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Computing in JS File II
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for ( var i = 0; i < n; i++ )

for ( var j = 0; j < m; j++ ) {

var x = i * ( width / (n - 1) ) + cx - width / 2;

var y = j * ( height / ( m - 1 ) ) + cy - height / 2;

var c = [ 0.0, 0.0 ];

var p =  [ x, y ];

for ( var k = 0; k < max; k++ ) {

// compute c = c^2 + p

c = [c[0]*c[0]-c[1]*c[1], 2*c[0]*c[1]];

c = [c[0]+p[0],  c[1]+p[1]];

v = c[0]*c[0]+c[1]*c[1];

if ( v > 4.0 ) break;      /* assume not in set if mag > 2 */
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Computing in JS File III

•Set up two triangles to define a rectangle

•Set up texture object with the set as data

•Render the triangles
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// assign gray level to point based on its magnitude */

if ( v > 1.0 ) v = 1.0;        /* clamp if > 1 */

texImage[4*i*m+4*j] = 255*v;

texImage[4*i*m+4*j+1] =

255*( 0.5* (Math.sin( v*Math.PI/180 ) + 1.0));

texImage[4*i*m+4*j+2] = 255*(1.0 - v);

texImage[4*i*m+4*j+3] = 255;

}
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Example
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Fragment Shader

•Our first implementation is incredibly 

inefficient and makes no use of the power of 

the fragment shader

•Note the calculation is “embarrassingly 

parallel”

- computation for the color of each fragment is 

completely independent 

- Why not have each fragment compute membership 

for itself?

- Each fragment would then determine its own color
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Interactive Program

•JS file sends window parameters obtained 

from sliders to the fragment shader as 

uniforms

•Only geometry is a rectangle

•No need for a texture map since shader 

will work on individual pixels
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Fragment Shader I
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precision mediump float;

uniform float cx;

uniform float cy;

uniform float scale;

float height;

float width;

void main() { 

const int max = 100;           /* number of iterations per point */

const float PI = 3.14159;

float n = 1000.0;

float m = 1000.0;
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Fragment Shader II
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float v;

float x = gl_FragCoord.x  /(n*scale) + cx - 1.0 / (2.0*scale);

float y = gl_FragCoord.y/(m*scale) + cy - 1.0 / (2.0*scale);

float ax=0.0, ay=0.0;

float bx, by;

for ( int k = 0; k < max; k++ ) {            

// compute c = c^2 + p

bx  = ax*ax-ay*ay;

by = 2.0*ax*ay;

ax = bx+x;

ay = by+y; 

v = ax*ax+ay*ay;

if ( v > 4.0 ) break;      // assume not in set if mag > 2
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Fragment Shader
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// assign gray level to point based on its magnitude //

// clamp if  > 1  

v = min(v, 1.0);

gl_FragColor.r = v;

gl_FragColor.g = 0.5* sin( 3.0*PI*v) + 1.0;

gl_FragColor.b = 1.0-v;

gl_FragColor.b = 0.5* cos( 19.0*PI*v) + 1.0;

gl_FragColor.a = 1.0;

} 
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Analysis

•This implementation will use as many 

fragment processors as are available 

concurrently

•Note that if an iteration ends early, the GPU 

will use that processor to work on another 

fragment

•Note also the absence of loops over x and y

•Still not using the full parallelism since we 

are really computing a luminance image
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