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Objectives

•Examine the limitations of linear modeling

- Symbols and instances

• Introduce hierarchical models

- Articulated models

- Robots

• Introduce Tree and DAG models

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



4

Instance Transformation

•Start with a prototype object (a symbol)

•Each appearance of the object in the 

model is an instance

- Must scale, orient, position

- Defines instance transformation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



5

Symbol-Instance Table

Can store a model by assigning a number to 

each symbol and storing the parameters 

for the instance transformation
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Relationships in Car Model

•Symbol-instance table does not show 
relationships between parts of model

•Consider model of car
- Chassis + 4  identical wheels

- Two symbols

•Rate of forward motion determined by 
rotational speed of wheels
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Structure Through 

Function Calls

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

• Fails to show relationships well

• Look at problem using a graph
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Graphs

•Set of nodes and edges (links)

•Edge connects a pair of nodes

- Directed or undirected

•Cycle: directed path that is a loop

loop
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Tree

•Graph in which each node (except the 

root) has exactly one parent node

- May have multiple children

- Leaf or terminal node: no children

root node

leaf node

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



10

Tree Model of Car
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DAG Model

• If we use the fact that all the wheels are 

identical, we get a directed acyclic graph

- Not much different than dealing with a tree
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Modeling with Trees

•Must decide what information to place in 

nodes and what to put in edges

•Nodes

- What to draw

- Pointers to children

•Edges

- May have information on incremental changes 

to transformation matrices (can also store in 

nodes)
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Robot Arm

robot arm
parts in their own 

coodinate systems
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Articulated Models

•Robot arm is an example of an articulated 

model

- Parts connected at joints

- Can specify state of model by 

giving all joint angles
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Relationships in Robot Arm

•Base rotates independently
- Single angle determines position

•Lower arm attached to base
- Its position depends on rotation of base

- Must also translate relative to base and rotate 
about connecting joint

•Upper arm attached to lower arm
- Its position depends on both base and lower arm

- Must translate relative to lower arm and rotate 
about joint connecting to lower arm
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Required Matrices

• Rotation of base: Rb

- Apply M = Rb to base

• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

- Apply M = Rb Tlu Rlu to lower arm

• Translate upper arm relative to upper arm: Tuu

• Rotate upper arm around joint: Ruu

- Apply M = Rb Tlu Rlu Tuu Ruu to upper arm
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WebGL Code for Robot

var render = function() {

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

modelViewMatrix = rotate(theta[Base], 0, 1, 0 );

base();

modelViewMatrix = mult(modelViewMatrix, 

translate(0.0, BASE_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,

rotate(theta[LowerArm], 0, 0, 1 ));

lowerArm();

modelViewMatrix  = mult(modelViewMatrix, 

translate(0.0, LOWER_ARM_HEIGHT, 0.0));

modelViewMatrix  = mult(modelViewMatrix,

rotate(theta[UpperArm], 0, 0, 1) );

upperArm();

requestAnimFrame(render);
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Tree Model of Robot

•Note code shows relationships between 

parts of model

- Can change “look” of parts easily without 

altering relationships

•Simple example of tree model

•Want a general node structure

for nodes
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Possible Node Structure

Code for drawing part or

pointer to drawing function

linked list of pointers to children

matrix relating node to parent
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Generalizations

•Need to deal with multiple children

- How do we represent a more general tree?

- How do we traverse such a data structure?

•Animation

- How to use dynamically?

- Can we create and delete nodes during 

execution?
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Objectives

•Build a tree-structured model of a 

humanoid figure

•Examine various traversal strategies

•Build a generalized tree-model structure 

that is independent of the particular model
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Humanoid Figure
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Building the Model

•Can build a simple implementation using 

quadrics: ellipsoids and cylinders

•Access parts through functions
-torso()

-leftUpperArm()

•Matrices describe position of node with 

respect to its parent

- Mlla positions left lower leg with respect to left 

upper arm
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Tree with Matrices
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Display and Traversal

•The position of the figure is determined by 

11 joint angles (two for the head and one 

for each other part)

•Display of the tree requires a graph 

traversal

- Visit each node once

- Display function at each node that describes 

the part associated with the node, applying the 

correct transformation matrix for position and 

orientation
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Transformation Matrices

•There are 10 relevant matrices

- M positions and orients entire figure through 

the torso which is the root node

- Mh positions head with respect to torso

- Mlua, Mrua, Mlul, Mrul position arms and legs with 

respect to torso

- Mlla, Mrla, Mlll, Mrll position lower parts of limbs 

with respect to corresponding upper limbs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



29

Stack-based Traversal

•Set model-view matrix to M and draw torso

•Set model-view matrix to MMh and draw 

head

•For left-upper arm need MMlua and so on

•Rather than recomputing MMlua from 

scratch or using an inverse matrix, we can 

use the matrix stack to store M and other 

matrices as we traverse the tree
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Traversal Code

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

PopMatrix();

PushMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix 

for left upper arm

recover and save original 

model-view matrix again

rest of code
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Analysis

•The code describes a particular tree and a 

particular traversal strategy

- Can we develop a more general approach?

•Note that the sample code does not 

include state changes, such as changes 

to colors

- May also want to push and pop other attributes 

to protect against unexpected state changes 

affecting later parts of the code
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General Tree Data Structure

•Need a data structure to represent tree 

and an algorithm to traverse the tree

•We will use a left-child right sibling

structure

- Uses linked lists

- Each node in data structure is two pointers

- Left: next node

- Right: linked list of children
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Left-Child Right-Sibling Tree
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Tree node Structure

•At each node we need to store 

- Pointer to sibling

- Pointer to child

- Pointer to a function that draws the object 

represented by the node

- Homogeneous coordinate matrix to multiply on 

the right of the current model-view matrix

• Represents changes going from parent to node

• In WebGL this matrix is a 1D array storing matrix 

by columns 
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Creating a treenode

function createNode(transform, 

render, sibling, child) {

var node = {

transform: transform,

render: render,

sibling: sibling,

child: child,

}

return node;
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Initializing Nodes

function initNodes(Id) {

var m = mat4();

switch(Id) {

case torsoId:

m = rotate(theta[torsoId], 0, 1, 0 );

figure[torsoId] = createNode( m, torso, null, headId );

break;

case head1Id:

case head2Id:

m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);

m = mult(m, rotate(theta[head1Id], 1, 0, 0));

m = mult(m, rotate(theta[head2Id], 0, 1, 0));

m = mult(m, translate(0.0, -0.5*headHeight, 0.0));

figure[headId] = createNode( m, head, leftUpperArmId, null);

break;
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Notes

• The position of figure is determined by 11 joint 

angles stored in theta[11]

• Animate by changing the angles and 

redisplaying

• We form the required matrices using rotate

and translate

•Because the matrix is formed using the 

model-view matrix, we may want to first 

push original model-view matrix on matrix 

stack
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Preorder Traversal

function traverse(Id) {

if(Id == null) return;

stack.push(modelViewMatrix);

modelViewMatrix = mult(modelViewMatrix, figure[Id].transform);

figure[Id].render();

if(figure[Id].child != null) traverse(figure[Id].child);     
modelViewMatrix = stack.pop();

if(figure[Id].sibling != null) traverse(figure[Id].sibling);

}

var render = function() {

gl.clear( gl.COLOR_BUFFER_BIT );

traverse(torsoId);

requestAnimFrame(render);

}
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Notes

•We must save model-view matrix before 
multiplying it by node matrix 

- Updated matrix applies to children of node but 
not to siblings which contain their own matrices

•The traversal program applies to any left-
child right-sibling tree

- The particular tree is encoded in the definition 
of the individual nodes

•The order of traversal matters because of 
possible state changes in the functions
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Dynamic Trees

• Because we are using JS, the nodes and the 

node structure can be changed during execution

• Definition of nodes and traversal are 

essentially the same as before but we can add 

and delete nodes during execution

• In desktop OpenGL, if we use pointers, the 

structure can be dynamic
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Objectives

• Introduce graphical objects

•Generalize the notion of objects to include 

lights, cameras, attributes

• Introduce scene graphs 
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Limitations of Immediate 

Mode Graphics

•When we define a geometric object in an 

application, upon execution of the code 

the object is passed through the pipeline 

• It then disappeared from the graphical 

system

•To redraw the object, either changed or 

the same, we had to reexecute the code

•Display lists provided only a partial 

solution to this problem
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Retained Mode Graphics

•Display lists were server side

•GPUs allowed data to be stored on GPU

•Essentially all immediate mode functions 

have been deprecated

•Nevertheless, OpenGL is a low level API
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OpenGL and Objects

•OpenGL lacks an object orientation

•Consider, for example, a green sphere

- We can model the sphere with polygons

- Its color is determined by the OpenGL state and 

is not a property of the object

- Loose linkage with vertex attributes

•Defies our notion of a physical object

•We can try to build better objects in code 

using object-oriented languages/techniques
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Imperative Programming 

Model

•Example: rotate a cube

•The rotation function must know how the 
cube is represented

- Vertex list

- Edge list

Application Rotate

cube data

results
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Object-Oriented 

Programming Model

Application Cube Object

• In this model, the representation is stored with 

the object 

• The application sends a message to the object

• The object contains functions (methods) which 

allow it to transform itself

message
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C/C++/Java/JS

•Can try to use C structs to build objects 

•C++/Java/JS provide better support

- Use class construct

- With C++ we can hide implementation using 

public, private, and protected members i

- JS provides multiple methods for object 

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



50

Cube Object

•Suppose that we want to create a simple 

cube object that we can scale, orient, 

position and set its color directly through 

code such as

var mycube = new Cube();

mycube.color[0]=1.0;

mycube.color[1]= mycube.color[2]=0.0;

mycube.matrix[0][0]=……… 
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Cube Object Functions

•We would also like to have functions that 

act on the cube such as 
-mycube.translate(1.0, 0.0,0.0);

-mycube.rotate(theta, 1.0, 0.0, 0.0);

-setcolor(mycube, 1.0, 0.0, 0.0);

•We also need a way of displaying the cube
-mycube.render();
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Building the Cube Object

var cube {

var color[3];

var matrix[4][4];

}
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The Implementation

•Can use any implementation in the private 

part such as a vertex list

•The private part has access to public 

members and the implementation of class 

methods can use any implementation 

without making it visible

•Render method is tricky but it will invoke 
the standard OpenGL drawing functions
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Other Objects

•Other objects have geometric aspects

- Cameras

- Light sources

•But we should be able to have 

nongeometric objects too

- Materials

- Colors

- Transformations  (matrices)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



55

JS Objects

cube mycube;

material plastic;

mycube.setMaterial(plastic);

camera frontView;

frontView.position(x ,y, z);
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JS Objects

•Can create much like Java or C++ objects

- constructors

- prototypes

- methods

- private methods and variables

56

var myCube = new Cube();

myCube.color = [1.0, 0.0, 0.0]’

myCube.instance = …….
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Light Object

var myLight = new Light();

// match Phong model

myLight.type = 0; //directional

myLight.position = ……;

myLight.orientation = ……;

myLight.specular = ……;

myLight.diffuse = ……;

myLight.ambient = ……;

}
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Scene Descriptions

• If we recall figure model, we saw that 

- We could describe model either by tree or by 

equivalent code

- We could write a generic traversal to display

• If we can represent all the elements of a 

scene (cameras, lights,materials, 

geometry) as JS objects, we should be 

able to show them in a tree

- Render scene by traversing this tree
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Scene Graph

Scene

CameraObject 1 Object 2Light

Color Material Material Position

Instance Instance RotatePosition

Clip
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Traversal

myScene = new Scene();

myLight = new Light();

myLight.Color = ……;

…

myscene.Add(myLight);

object1 = new Object();

object1.color = …

myscene.add(object1);

…

…

myscene.render();
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Objectives

•Look at some real scene graphs

• three.js (threejs.org)

•Scene graph rendering
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Scene Graph History

•OpenGL development based largely on 

people who wanted to exploit hardware

- real time graphics

- animation and simulation

- stand-alone applications

•CAD community needed to be able to 

share databases

- real time not and photorealism not issues

- need cross-platform capability

- first attempt: PHIGS
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Scene Graph Organization

65

OpenGL

Database

WebGL Direct X

WWW

Scene Graph

Scene Graph API

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



66

Inventor and Java3D

• Inventor and Java3D provide a scene graph API 

• Scene graphs can also be described by a file 

(text or binary)

- Implementation independent way of 

transporting scenes

- Supported by scene graph APIs

• However, primitives supported should match 

capabilities of graphics systems

- Hence most scene graph APIs are built on top 

of OpenGL, WebGL or DirectX (for PCs)
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VRML

•Want to have a scene graph that can be 

used over the World Wide Web

•Need links to other sites to support 

distributed data bases

•Virtual Reality Markup Language

- Based on Inventor data base

- Implemented with OpenGL
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Open Scene Graph

•Supports very complex geometries by 

adding occulusion culling in first pass

•Supports translucently through a second 

pass that sorts the geometry

•First two passes yield a geometry list that 

is rendered by the pipeline in a third pass
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three.js

•Popular scene graph built on top of 

WebGL

- also supports other renderers

•See threejs.org

- easy to download

- many examples

•Also Eric Haines’ Udacity course

•Major differences in approaches to 

computer graphics
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three.js scene

70

var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera(75, 

window.innerWidth/            window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();

renderer.setSize(window.innerWidth, window.innerHeight);

document.body.appendChild(renderer.domElement);

var geometry = new THREE.CubeGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({color: 0x00ff00});

var cube = new THREE.Mesh(geometry, material);

scene.add(cube);

camera.position.z = 5;
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three.js render loop

71

var render = function () {

requestAnimationFrame(render);

cube.rotation.x += 0.1;

cube.rotation.y += 0.1;

renderer.render(scene, camera);

};

render(); 

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



72

Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



73

Rendering Overview 

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



74

Objectives

•Examine what happens between the 

vertex shader and the fragment shader

• Introduce basic implementation strategies

•Clipping 

•Rendering

- lines

- polygons

•Give a sample algorithm for each

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



75

Overview

•At end of the geometric pipeline, vertices 
have been assembled into primitives

•Must clip out primitives that are outside 
the view frustum

- Algorithms based on representing primitives by 
lists of vertices

•Must find which pixels can be affected by 
each primitive

- Fragment generation

- Rasterization or scan conversion
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Required Tasks

•Clipping

•Rasterization or scan conversion

•Transformations

•Some tasks deferred until fragment 

processing 

- Hidden surface removal 

- Antialiasing
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Rasterization Meta Algorithms

•Any rendering method process every object 
and must assign a color to every pixel

•Think of rendering algorithms as two loops
- over objects

- over pixels

•The order of these loops defines two 
strategies

- image oriented

- object oriented
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Object Space Approach

•For every object, determine which pixels it 
covers and shade these pixels

- Pipeline approach

- Must keep track of depths for HSR

- Cannot handle most global lighting calculations

- Need entire framebuffer available at all times
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Image Space Approach

•For every pixel, determine which object 
that projects on the pixel is closest to the 
viewer and compute the shade of this pixel

- Ray tracing paradigm

- Need all objects available

•Patch Renderers
- Divide framebuffer into small patches

- Determine which objects affect each patch

- Used in limited power devices such as cell phones
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Algorithm Experimentation

•Create a framebuffer object and use 

render-to-texture to create a virtual 

framebuffer into which you can write 

individual pixels
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