g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hierarchical Modeling |

Ed Angel
Professor Emeritus of Computer Science,
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 2

he Universily ol New Mexico

- Objectives

* Examine the limitations of linear modeling
- Symbols and instances

e Introduce hierarchical models
- Articulated models
- Robots

 Introduce Tree and DAG models

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

<H#" |nstance Transformation

« Start with a prototype object (a symbol)

« Each appearance of the object in the
model is an instance

- Must scale, orient, position
- Defines Iinstance transformation

4
T
j
X X

4

4

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

TI'he Universily ol New Mexico

~&" Symbol-Instance Table

Can store a model by assigning a number to
each symbol and storing the parameters

for the Instance transformation

Symbol

Scale

Rotate

Translate

dy, d,, d,

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~#" Relationships in Car Model

* Symbol-instance table does not show
relationships between parts of model
* Consider model of car

- Chassis + 4 identical wheels
- Two symbols

S o~ .
« Rate of forward motion determined by
rotational speed of wheels

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Structure Through
-"_ .
Function Calls

car (speed)

{
chassis ()
wheel (right front) ;
wheel (left front);
wheel (right rear);
wheel (left rear);

}

* Falls to show relationships well
* Look at problem using a graph

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

TI'he Universily ol New Mexico

- Graphs

 Set of nodes and edges (links)

* Edge connects a pair of nodes
- Directed or undirected

 Cycle: directed path that is a loop

e

loop

/

P
<«

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

~ Tree

* Graph in which each node (except the
root) has exactly one parent node
- May have multiple children
- Leaf or terminal node: no children
0 —_

root node

‘/k \ o leaf node

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~ Tree Model of Car

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 10

~I. DAG Model

niversily ol New Mexico

* If we use the fact that all the wheels are
identical, we get a directed acyclic graph

- Not much different than dealing with a tree

Chassis
'E =
ol 8| €| 5
—— s O
= = - o
o | = e
A A B B |
Wheel

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

he Universily ol New Mexico

- Modeling with Trees

* Must decide what information to place in
nodes and what to put in edges

* Nodes
- What to draw
- Pointers to children

*Edges

- May have information on incremental changes
to transformation matrices (can also store in
nodes)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

~ Robot Arm

The University ol New Mexico

Ll

N
1

—

- X

robot arm

.w
/- - X

parts in their own
coodinate systems

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

he Universily ol New Mexico

*l. Articulated Models

* Robot arm Is an example of an articulated
model

- Parts connected at joints
- Can specify state of model by
giving all joint angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

<" Relationships in Robot Arm

* Base rotates independently
- Single angle determines position

* Lower arm attached to base
- Its position depends on rotation of base

- Must also translate relative to base and rotate
about connecting joint

* Upper arm attached to lower arm
- Its position depends on both base and lower arm

- Must translate relative to lower arm and rotate
about joint connecting to lower arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 15

- Required Matrices

he Universily ol New Mexico

* Rotation of base: R,
- Apply M = R, to base
* Translate lower arm relative to base: T,
* Rotate lower arm around joint: R,
- Apply M =R, T,, R, to lower arm
* Translate upper arm relative to upper arm: T,
* Rotate upper arm around joint: R,
-Apply M =R, T,,R,, T,, Ry, t0 upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

~I. - WebGL Code for Robot

var render = function() {

gl.clear(gl. COLOR_BUFFER_BIT | gl. DEPTH_BUFFER_BIT);

modelViewMatrix = rotate(theta[Base], O, 1, 0);

base();

modelViewMatrix = mult(modelViewMatrix,
translate(0.0, BASE_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,
rotate(theta[LowerArm], 0, 0, 1));

lowerArm();

modelViewMatrix = mult(modelViewMatrix,
translate(0.0, LOWER_ARM_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,
rotate(theta[UpperArm], O, O, 1));

upperArm();

requestAnimFrame(render);

} Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

he Universily ol New Mexico

*l. Tree Model of Robot

* Note code shows relationships between
parts of model

- Can change “look” of parts easily without
altering relationships

Base
* Simple example of tree model +
* Want a general node structure
Lower arm
for nodes ‘
Upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 18

~I. Possible Node Structure

he Universily ol New Mexico

Code for drawing part or

Draw pointer to drawing function

M

Child —m Child —

linked list of pointers to children

matrix relating node to parent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 19

~ Generalizations

he Universily ol New Mexico

* Need to deal with multiple children
- How do we represent a more general tree?
- How do we traverse such a data structure?
* Animation

- How to use dynamically?

- Can we create and delete nodes during
execution?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

Hierarchical Modeling Il

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 22

he Universily ol New Mexico

- Objectives

* Build a tree-structured model of a
humanoid figure

« Examine various traversal strategies

* Build a generalized tree-model structure
that is independent of the particular model

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 23

- Humanoid Figure

The University ol New Mexico

Torso
H H Head Leftupper Right-upper Leftupper Right-upper
arm arm |eg |eg
Leftlower Rightlower Leftlower Rightlower
arm arm leg leg

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 24

he Universily ol New Mexico

- Building the Model

« Can build a simple implementation using
guadrics: ellipsoids and cylinders

* Access parts through functions
—torso ()
-leftUpperArm()

* Matrices describe position of node with
respect to its parent

- M,,, positions left lower leg with respect to left
upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 25

~ Tree with Matrices

Torso
Mh Mfua Mrua Mlul Mrul
Leftupper Rightupper Leftupper Right-upper
Head
arm arm leg leg
+ MHG + Mrla + MIH +Mrﬂ

Leftlower Rightlower Left-lower Rightlower

arm arm leg leg

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 26

~H Display and Traversal

* The position of the figure is determined by
11 joint angles (two for the head and one
for each other part)

* Display of the tree requires a graph
traversal
- Visit each node once

- Display function at each node that describes
the part associated with the node, applying the
correct transformation matrix for position and
orientation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

he Universily ol New Mexic

<#" Transformation Matrices

 There are 10 relevant matrices

- M positions and orients entire figure through
the torso which is the root node

- M, positions head with respect to torso

- My Miyar Miys M, POSItiOoNn arms and legs with
respect to torso

- My, M., My, M., position lower parts of limbs
with respect to corresponding upper limbs

rul

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

he Universily ol New Mexico

*l. Stack-based Traversal

* Set model-view matrix to M and draw torso

« Set model-view matrix to MM, and draw
nead

* For left-upper arm need MM, ,and so on

* Rather than recomputing MM, , from
scratch or using an inverse matrix, we can
use the matrix stack to store M and other
matrices as we traverse the tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 29

~ Traversal Code

figure() { save present model-view matrix
PushMatrix () —
torso () ; update model-view matrix for head
Rotate (..);
head() ; recover original model-view matrix

PopMatrix () ; — | |
PushMatrix(); <+ >avelitagain

Translate(..) ; update model-view matrix

Rotate(..) ; T for left upper arm
left upper arm();

PopMatrix () ;
PushMatrix() ;

recover and save original
model-view matrix again

“ rest of code
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 30

he Universily ol New Mexico

- Analysis

* The code describes a particular tree and a
particular traversal strategy

- Can we develop a more general approach?

* Note that the sample code does not
Include state changes, such as changes
to colors

- May also want to push and pop other attributes
to protect against unexpected state changes
affecting later parts of the code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 31

<#" General Tree Data Structure

*Need a data structure to represent tree
and an algorithm to traverse the tree

*We will use a left-child right sibling
structure
- Uses linked lists
- Each node In data structure is two pointers
- Left: next node
- Right: linked list of children

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 32

~&" |eft-Child Right-Sibling Tree

The University ol Mew Me

Siblings

PR
o]

Children

o [« @1 |

e FRS

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 33

he Universily ol New Mexico

*l. Tree node Structure

* At each node we need to store
- Pointer to sibling
- Pointer to child

- Pointer to a function that draws the object
represented by the node

- Homogeneous coordinate matrix to multiply on
the right of the current model-view matrix
Represents changes going from parent to node

In WebGL this matrix is a 1D array storing matrix
by columns

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 34

- Creating a treenode

he Universily ol New Mexico

function createNode(transform,
render, sibling, child) {
var node = {
transform: transform,
render: render,
sibling: sibling,
child: child,
}

return node;

} ;Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

- Initializing Nodes

The

Universily ol New Mexico

function initNodes(Id) {
var m = mat4();
switch(ld) {
case torsold:
m = rotate(theta[torsold], O, 1, 0);
figure[torsold] = createNode(m, torso, null, headld);
break;
case headlld:

case head2ld:
m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);

m = mult(m, rotate(theta[headlld], 1, O, 0));

m = mult(m, rotate(theta[head2ld], O, 1, 0));

m = mult(m, translate(0.0, -0.5*headHeight, 0.0));
figure[headld] = createNode(m, head, leftUpperArmid, null);

break;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

he Universily ol New Mexico

*l. Notes

* The position of figure is determined by 11 joint
angles stored in theta[11]

* Animate by changing the angles and
redisplaying

« We form the required matrices using rotate
and translate

* Because the matrix is formed using the
model-view matrix, we may want to first
push original model-view matrix on matrix
stack

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 37

~ Preorder Traversal

function traverse(ld) {
If(ld == null) return;
stack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, figure[ld].transform);
figure[ld].render();
if(figure[ld].child != null) traverse(figure[ld].child);
modelViewMatrix = stack.pop();
if(figure[ld].sibling != null) traverse(figure[ld].sibling);
}
var render = function() {
gl.clear(g. COLOR_BUFFER_BIT);
traverse(torsold);
requestAnimFrame(render);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

he Universily ol New Mexico

*l. Notes

*We must save model-view matrix before
multiplying it by node matrix
- Updated matrix applies to children of node but
not to siblings which contain their own matrices

* The traversal program applies to any left-
child right-sibling tree

- The particular tree is encoded in the definition
of the individual nodes

* The order of traversal matters because of
possible state changes in the functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 39

- Dynamic Trees

he Universily ol New Mexico

« Because we are using JS, the nodes and the
node structure can be changed during execution

* Definition of nodes and traversal are
essentially the same as before but we can add
and delete nodes during execution

* In desktop OpenGL, If we use pointers, the
structure can be dynamic

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 40

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 41

{“l
The University ol New Mexico

Graphical Objects and Scene
Graphs 1

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

he Universily ol New Mexico

- Objectives

* Introduce graphical objects

* Generalize the notion of objects to include
lights, cameras, attributes

* Introduce scene graphs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 43

] Limitations of Immediate
Mode Graphics

*When we define a geometric object in an
application, upon execution of the code
the object is passed through the pipeline

* |t then disappeared from the graphical
system

* To redraw the object, either changed or
the same, we had to reexecute the code

* Display lists provided only a partial
solution to this problem

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 44

~#" Retained Mode Graphics

* Display lists were server side
« GPUs allowed data to be stored on GPU

« Essentially all iImmediate mode functions
have been deprecated

* Nevertheless, OpenGL is a low level API

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

- OpenGL and Objects

* OpenGL lacks an object orientation

* Consider, for example, a green sphere
- We can model the sphere with polygons

- Its color is determined by the OpenGL state and
IS not a property of the object

- Loose linkage with vertex attributes
* Defies our notion of a physical object

*We can try to build better objects in code
using object-oriented languages/technigues

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 46

. Imperative Programming
&
Model

* Example: rotate a cube

cube data

results

* The rotation function must know how the
cube Is represented
- Vertex list
- Edge list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

a7

~ Object-Oriented
o Programming Model

* In this model, the representation is stored with

the object

Application

* The application sends a message to the object
* The object contains functions (methods) which

message

allow It to transform itself

'Cube Object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

~I. C/C++/JavallS

« Can try to use C structs to build objects

« C++/JavalJS provide better support
- Use class construct

- With C++ we can hide implementation using
public, private, and protected members |

- JS provides multiple methods for object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 49

- Cube Object

he Universily ol New Mexico

* Suppose that we want to create a simple
cube object that we can scale, orient,
position and set its color directly through
code such as

var mycube = new Cube() ;

mycube.color[0]=1.0;

mycube.color[l]= mycube.color[2]=0.0;

mycube.matrix[0] [0]=......

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 50

he Universily ol New Mexico

~&" Cube Object Functions

* \We would also like to have functions that
act on the cube such as
-mycube. translate (1.0, 0.0,0.0);
-mycube.rotate(theta, 1.0, 0.0, 0.0);
-setcolor (mycube, 1.0, 0.0, 0.0);

*We also need a way of displaying the cube
-mycube . render () ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 51

~#&" Building the Cube Object

The Universily ol New Mexic

var cube {
var color[3];

var matrix[4] [4];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

52

~E The Implementation

« Can use any implementation in the private
part such as a vertex list

* The private part has access to public
members and the implementation of class
methods can use any implementation
without making it visible

* Render method is tricky but it will invoke
the standard OpenGL drawing functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 53

he Universily ol New Mexico

- Other Objects

* Other objects have geometric aspects
- Cameras
- Light sources

* But we should be able to have
nongeometric objects too
- Materials

- Colors
- Transformations (matrices)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

L JS Objects

cube mycube;

material plastic;

mycube.setMaterial (plastic)

N

camera frontView;

frontView.position(x ,y, Z)

N

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

- JS Objects

he Universily ol New Mexico

« Can create much like Java or C++ objects
- constructors
- prototypes
- methods
- private methods and variables

var myCube = new Cube();

myCube.color =[1.0, 0.0, 0.0]’
myCube.instance =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 56

{m

he Universily ol New Mexico

var myLight

Light Object

= new Light();

// match Phong model

myLight.
myLight.
myLight.
myLight.
myLight.
myLight.

type = 0; //directional
position = ... ;
orientation = ... ;
specular = ... ;

diffuse = ... ;

ambient = ... ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

he Universily ol New Mexico

- Scene Descriptions

* |f we recall figure model, we saw that

- We could describe model either by tree or by
equivalent code

- We could write a generic traversal to display

* |f we can represent all the elements of a
scene (cameras, lights,materials,
geometry) as JS objects, we should be
able to show them In a tree

- Render scene by traversing this tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

~H Scene Graph

The University ol New Mexico

=St s

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

o K Traversal

myScene = new Scene() ;

myLight new Light();

myLight.Color = ... ;

myscene .Add (myLight) ;
objectl = new Object() ;
objectl.color = ..
myscene.add (objectl) ;

myscene.render () ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 61

{“l
The University ol New Mexico

Graphical Objects and Scene
Graphs 2

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

he Universily ol New Mexico

- Objectives
ook at some real scene graphs

three.js (threejs.org)
» Scene graph rendering

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

he Universily ol New Mexico

- Scene Graph History

* OpenGL development based largely on
people who wanted to exploit hardware
- real time graphics
- animation and simulation
- stand-alone applications

« CAD community needed to be able to
share databases
- real time not and photorealism not issues
- need cross-platform capability
- first attempt: PHIGS

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

~#" Scene Graph Organization

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

~ Inventor and Java3D

* Inventor and Java3D provide a scene graph API

« Scene graphs can also be described by a file
(text or binary)

- Implementation independent way of
transporting scenes

- Supported by scene graph APIs

* However, primitives supported should match
capabilities of graphics systems

- Hence most scene graph APIs are built on top
of OpenGL, WebGL or DirectX (for PCs)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 66

~H VRML
The University ol New Mexico

* Want to have a scene graph that can be
used over the World Wide Web

*Need links to other sites to support
distributed data bases

*Virtual Reality Markup Language
- Based on Inventor data base
- Implemented with OpenGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

~H Open Scene Graph

* Supports very complex geometries by
adding occulusion culling In first pass

« Supports translucently through a second
pass that sorts the geometry

* First two passes yield a geometry list that
IS rendered by the pipeline in a third pass

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 68

he Universily ol New Mexico

- three.js

* Popular scene graph built on top of
WebGL

- also supports other renderers

* See threejs.org
- easy to download
- many examples

* Also Eric Haines’ Udacity course

* Major differences In approaches to
computer graphics

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

- three.js scene

he Universily ol New Mexico

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75,
window.innerWidth/ window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

var geometry = new THREE.CubeGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({color: 0x00ff00});
var cube = new THREE.Mesh(geometry, material);
scene.add(cube);

camera.position.z = 5;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 0

- three.js render loop

var render = function () {
requestAnimationFrame(render);
cube.rotation.x += 0.1,
cube.rotation.y += 0.1,
renderer.render(scene, camera);
¢

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 2

Rendering Overview

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

he Universily ol New Mexico

- Objectives

« Examine what happens between the
vertex shader and the fragment shader

* Introduce basic implementation strategies
* Clipping
* Rendering

- lines
- polygons

* Glve a sample algorithm for each

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 &

he Universily ol New Mexico

~ Overview

* At end of the geometric pipeline, vertices
have been assembled into primitives

* Must clip out primitives that are outside
the view frustum

- Algorithms based on representing primitives by
lists of vertices

* Must find which pixels can be affected by
each primitive
- Fragment generation
- Rasterization or scan conversion

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 &

- Required Tasks

he Universily ol New Mexico

* Clipping
* Rasterization or scan conversion
 Transformations

« Some tasks deferred until fragment
processing
- Hidden surface removal
- Antialiasing

Geometric Fragment Frame

Modeling —— ity —® Rasterization ——#» orocessing —

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

-#" Rasterization Meta Algorithms

* Any rendering method process every object
and must assign a color to every pixel

* Think of rendering algorithms as two loops
- over objects
- over pixels
* The order of these loops defines two
strategies
- Image oriented
- object oriented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 77

- Object Space Approach

he Universily ol New Mexico

*For every object, determine which pixels it
covers and shade these pixels
- Pipeline approach
- Must keep track of depths for HSR
- Cannot handle most global lighting calculations
- Need entire framebuffer available at all times

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 8

= K Image Space Approach

*For every pixel, determine which object
that projects on the pixel is closest to the
viewer and compute the shade of this pixel

- Ray tracing paradigm
- Need all objects available
* Patch Renderers
- Divide framebuffer into small patches
- Determine which objects affect each patch
- Used in limited power devices such as cell phones

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 9

~#" Algorithm Experimentation

 Create a framebuffer object and use
render-to-texture to create a virtual
framebuffer into which you can write
iIndividual pixels

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

80

