
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Clipping

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Clipping lines

•First of implementation algorithms

•Clipping polygons (next lecture)

•Focus on pipeline plus a few classic

algorithms

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Clipping

• 2D against clipping window

• 3D against clipping volume

• Easy for line segments polygons

• Hard for curves and text

- Convert to lines and polygons first

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Clipping 2D Line Segments

•Brute force approach: compute

intersections with all sides of clipping

window

- Inefficient: one division per intersection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible

without computing intersections

•Start with four lines that determine the

sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

The Cases

• Case 1: both endpoints of line segment inside all

four lines

- Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on

same side of a line

- Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

The Cases

•Case 3: One endpoint inside, one outside

- Must do at least one intersection

•Case 4: Both outside

- May have part inside

- Must do at least one intersection

x = xmaxx = xmin

y = ymax

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions

•Computation of outcode requires at most
4 subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise

b1 = 1 if y < ymin, 0 otherwise

b2 = 1 if x > xmax, 0 otherwise

b3 = 1 if x < xmin, 0 otherwise

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Using Outcodes

•Consider the 5 cases below

•AB: outcode(A) = outcode(B) = 0

- Accept line segment

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Using Outcodes

•CD: outcode (C) = 0, outcode(D)  0

- Compute intersection

- Location of 1 in outcode(D) determines which

edge to intersect with

- Note if there were a segment from A to a point

in a region with 2 ones in outcode, we might

have to do two interesections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Using Outcodes

•EF: outcode(E) logically ANDed with

outcode(F) (bitwise)  0

- Both outcodes have a 1 bit in the same place

- Line segment is outside of corresponding side

of clipping window

- reject

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Using Outcodes

•GH and IJ: same outcodes, neither zero

but logical AND yields zero

•Shorten line segment by intersecting with

one of sides of window

•Compute outcode of intersection (new

endpoint of shortened line segment)

•Reexecute algorithm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Efficiency

• In many applications, the clipping window

is small relative to the size of the entire

data base

- Most line segments are outside one or more

side of the window and can be eliminated

based on their outcodes

• Inefficiency when code has to be

reexecuted for line segments that must be

shortened in more than one step

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Cohen Sutherland in 3D

• Use 6-bit outcodes

• When needed, clip line segment against planes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Clipping and Normalization

•General clipping in 3D requires

intersection of line segments against

arbitrary plane

•Example: oblique view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Plane-Line Intersections

)(

)(

12

1

ppn

ppn
a o

−•

−•
=

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Normalized Form

before normalization after normalization

Normalization is part of viewing (pre clipping)

but after normalization, we clip against sides of

right parallelepiped

Typical intersection calculation now requires only

a floating point subtraction, e.g. is x > xmax ?

top view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygon Rendering

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

20Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

• Introduce clipping algorithms for polygons

•Survey hidden-surface algorithms

21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygon Clipping

•Not as simple as line segment clipping

- Clipping a line segment yields at most one line

segment

- Clipping a polygon can yield multiple polygons

•However, clipping a convex polygon can

yield at most one other polygon

22Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Tessellation and Convexity

• One strategy is to replace nonconvex (concave)

polygons with a set of triangular polygons (a

tessellation)

• Also makes fill easier

• Tessellation through tesselllation shaders

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Clipping as a Black Box

•Can consider line segment clipping as a

process that takes in two vertices and

produces either no vertices or the vertices

of a clipped line segment

24Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Pipeline Clipping of Line

Segments

•Clipping against each side of window is

independent of other sides

- Can use four independent clippers in a pipeline

25Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Pipeline Clipping of Polygons

• Three dimensions: add front and back clippers

• Strategy used in SGI Geometry Engine

• Small increase in latency

26Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bounding Boxes

• Rather than doing clipping on a complex

polygon, we can use an axis-aligned bounding

box or extent

- Smallest rectangle aligned with axes that

encloses the polygon

- Simple to compute: max and min of x and y

27Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bounding boxes

Can usually determine accept/reject based

only on bounding box

reject

accept

requires detailed

clipping

28Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Clipping and Visibility

•Clipping has much in common with

hidden-surface removal

• In both cases, we are trying to remove

objects that are not visible to the camera

•Often we can use visibility or occlusion

testing early in the process to eliminate as

many polygons as possible before going

through the entire pipeline

29Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n2) for n polygons

partially obscuring can draw independently

30Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Painter’s Algorithm

•Render polygons a back to front order so

that polygons behind others are simply

painted over

B behind A as seen by viewer Fill B then A

31Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Depth Sort

•Requires ordering of polygons first

- O(n log n) calculation for ordering

- Not every polygon is either in front or behind all

other polygons

• Order polygons and deal with

easy cases first, harder later

Polygons sorted by

distance from COP

32Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Easy Cases

•A lies behind all other polygons

- Can render

•Polygons overlap in z but not in either x or y

- Can render independently

33Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hard Cases

Overlap in all directions

but can one is fully on

one side of the other

cyclic overlap

penetration

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Back-Face Removal (Culling)


•face is visible iff 90    -90

equivalently cos   0

or v • n  0

•plane of face has form ax + by +cz +d =0

but after normalization n = (0 0 1 0)T

•need only test the sign of c

•In OpenGL we can simply enable culling

but may not work correctly if we have nonconvex objects
35Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Image Space Approach

•Look at each projector (nm for an n x m

frame buffer) and find closest of k

polygons

•Complexity O(nmk)

•Ray tracing

• z-buffer

36Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store

the depth of the closest object at each pixel

found so far

• As we render each polygon, compare the depth

of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and

update z buffer

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Efficiency

• If we work scan line by scan line as we

move across a scan line, the depth

changes satisfy ax+by+cz=0

Along scan line

y = 0

z = - x
c

a

In screen space x = 1

38Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Scan-Line Algorithm

•Can combine shading and hsr through

scan line algorithm

scan line i: no need for depth

information, can only be in no

or one polygon

scan line j: need depth

information only when in

more than one polygon

39Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Implementation

•Need a data structure to store

- Flag for each polygon (inside/outside)

- Incremental structure for scan lines that stores

which edges are encountered

- Parameters for planes

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Visibility Testing

• In many realtime applications, such as

games, we want to eliminate as many

objects as possible within the application

- Reduce burden on pipeline

- Reduce traffic on bus

•Partition space with Binary Spatial

Partition (BSP) Tree

41Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F

42Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

BSP Tree

•Can continue recursively

- Plane of C separates B from A

- Plane of D separates E and F

•Can put this information in a BSP tree

- Use for visibility and occlusion testing

43Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Rasterization

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Objectives

•Survey Line Drawing Algorithms

- DDA

- Bresenham’s Algorithm

•Aliasing and Antialiasing

Rasterization

•Rasterization (scan conversion)

- Determine which pixels that are inside primitive

specified by a set of vertices

- Produces a set of fragments

- Fragments have a location (pixel location) and

other attributes such color and texture

coordinates that are determined by interpolating

values at vertices

•Pixel colors determined later using color,

texture, and other vertex properties

Scan Conversion of Line

Segments

•Start with line segment in window

coordinates with integer values for

endpoints

•Assume implementation has a
write_pixel function

y = mx + h

x

y
m




=

DDA Algorithm

• Digital Differential Analyzer

- DDA was a mechanical device for numerical

solution of differential equations

- Line y=mx+ h satisfies differential equation

dy/dx = m = y/x = y2-y1/x2-x1

• Along scan line x = 1

For(x=x1; x<=x2,ix++) {

y+=m;

write_pixel(x, round(y), line_color)

}

Problem

•DDA = for each x plot pixel at closest y

- Problems for steep lines

Using Symmetry

•Use for 1  m  0

•For m > 1, swap role of x and y

- For each y, plot closest x

Bresenham’s Algorithm

• DDA requires one floating point addition per step

• We can eliminate all fp through Bresenham’s

algorithm

• Consider only 1  m  0

- Other cases by symmetry

• Assume pixel centers are at half integers

• If we start at a pixel that has been written, there

are only two candidates for the next pixel to be

written into the frame buffer

Candidate Pixels

1  m  0

last pixel

candidates

Note that line could have

passed through any

part of this pixel

Decision Variable

-

d = x(b-a)

d is an integer

d > 0 use upper pixel

d < 0 use lower pixel

Incremental Form

•More efficient if we look at dk, the value of
the decision variable at x = k

dk+1= dk –2y, if dk <0

dk+1= dk –2(y- x), otherwise

•For each x, we need do only an integer

addition and a test

•Single instruction on graphics chips

Polygon Scan Conversion

•Scan Conversion = Fill

•How to tell inside from outside

- Convex easy

- Nonsimple difficult

- Odd even test

• Count edge crossings

- Winding number
odd-even fill

Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if

winding number  0

winding number = 2

winding number = 1

Filling in the Frame Buffer

•Fill at end of pipeline

- Convex Polygons only

- Nonconvex polygons assumed to have been

tessellated

- Shades (colors) have been computed for

vertices (Gouraud shading)

- Combine with z-buffer algorithm

• March across scan lines interpolating shades

• Incremental work small

Using Interpolation

span

C1

C3

C2

C5

C4

scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2

C5 determined by interpolating between C2 and C3

interpolate between C4 and C5 along span

Flood Fill

• Fill can be done recursively if we know a seed

point located inside (WHITE)

• Scan convert edges into buffer in edge/inside

color (BLACK)
flood_fill(int x, int y) {

if(read_pixel(x,y)= = WHITE) {

write_pixel(x,y,BLACK);

flood_fill(x-1, y);

flood_fill(x+1, y);

flood_fill(x, y+1);

flood_fill(x, y-1);

} }

Scan Line Fill

• Can also fill by maintaining a data structure of all

intersections of polygons with scan lines

- Sort by scan line

- Fill each span

vertex order generated

by vertex list desired order

Data Structure

Aliasing

• Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa)

produces aliased raster lines

Antialiasing by Area

Averaging

• Color multiple pixels for each x depending on

coverage by ideal line

original antialiased

magnified

Polygon Aliasing

•Aliasing problems can be serious for

polygons

- Jaggedness of edges

- Small polygons neglected

- Need compositing so color

of one polygon does not

totally determine color of

pixel

All three polygons should contribute to color

66

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Display Issues

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

67Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Objectives

•Consider perceptual issues related to

displays

• Introduce chromaticity space

- Color systems

- Color transformations

•Standard Color Systems

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

No Display Can Be Perfect

•An analog display device such as a CRT

takes digital input (pixels) and outputs a

small spot of color

•A Digital display such as a LCD display

outputs discrete spots

•The eye merges (filters) these spots

•Sampling theory shows this process

cannot be done perfectly

69Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Perception Review

•Light is the part of the electromagnetic

spectrum between ~350-750 nm

•A color C(l) is a distribution of energies

within this range

•The human visual system has three types

of cones on the retina, each with its own

spectral sensitivity

•Consequently, only three values, the

tristimulus values, are “seen” by the brain

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

Tristimulus Values

•The human visual center has three cones

with sensitivity curves S1(l), S2(l), and S3(l)

•For a color C(l), the cones output the

tristimulus values

lll dCST)()(11 =

lll dCST)()(22 =

lll dCST)()(33 =

C(l)

T1, T2, T3cones

optic nerve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

Three Color Theory

•Any two colors with the same tristimulus

values are perceived to be identical

•Thus a display (CRT, LCD, film) must only

produce the correct tristimulus values to

match a color

• Is this possible? Not always

- Different primaries (different sensitivity curves)

in different systems

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

The Problem

•The sensitivity curves of the human are

not the same as those of physical devices

•Human: curves centered in blue, green,

and green-yellow

•CRT: RGB

•Print media: CMY or CMYK

•Which colors can we match and, if we

cannot match, how close can we come?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

74

Representing Colors

• Consider a color C(l)

• It generates tristimulus values T1, T2, T3

- Write C = (T1, T2, T3)

- Conventionally,we assume 1 T1, T2, T3  0

because there is a maximum brightness we can

produce and energy is nonnegative

- C is a point in color solid
C

1

1

1
T1

T2

T3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

75

Producing Colors

•Consider a device such as a CRT with

RGB primaries and sensitivity curves

•Tristimulus values

lll dCRT)()(1 =
lll dCGT)()(2 =

lll dCBT)()(3 =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

76

Matching

•This T1, T2, T3 is dependent on the

particular device

• If we use another device, we will get

different values and these values will not

match those of the human cone curves

•Need a way of matching and a way of

normalizing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

77

Color Systems

• Various color systems are used

- Based on real primaries:

• NTSC RGB

• UVW

• CMYK

• HLS

- Theoretical

• XYZ

• Prefer to separate brightness (luminance) from
color (chromatic) information

- Reduce to two dimensions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

78

Tristimulus Coordinates

TTT
T

t
321

1

1 ++
=

TTT
T

t
321

2

2 ++
=

For any set of primaries, define

TTT
T

t
321

3

3 ++
=

1ttt 321
=++ 0,,1 ttt 321



Note

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

79

Maxwell Triangle

Project onto 2D: chromaticity space

1

1
T1 + T2+T3 =1

1

color solid

t1

t2

1

1

possible colors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

80

NTSC RGB

1

1

r

g

r+g+b=1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

81

Producing Other Colors

• However colors producible on one system (its
color gamut) is not necessarily producible on any
other

• Not that if we produce all the pure spectral colors
in the 350-750 nm range, we can produce all
others by adding spectral colors

• With real systems (CRT, film), we cannot produce
the pure spectral colors

• We can project the color solid of each system into
chromaticity space (of some system) to see how
close we can get

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

82

Color Gamuts

spectral colors
printer colors

CRT colors

350 nm

750 nm

600 nm

producible color on

CRT but not on printer

producible color on

both CRT and printer

unproducible

color

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

83

XYZ

• Reference system in which all visible pure

spectral colors can be produced

• Theoretical systems as

there are no corresponding

physical primaries

• Standard reference system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

84

Color Systems

• Most correspond to real primaries

- National Television Systems Committee

(NTSC) RGB matches phosphors in CRTs

• Film both additive (RGB) and subtractive (CMY)

for positive and negative film

• Print industry CMYK (K = black)

- K used to produce sharp crisp blacks

- Example: ink jet printers

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

85

Color Transformations

•Each additive color system is a linear

transformation of another

R

R’

GG’

B
B’

C = (T1, T2, T3) = (T’1, T’2, T’3)

in RGB system

in R’G’B’system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

86

RGB, CMY, CMYK

• Assuming 1 is max of a primary

C = 1 – R

M = 1 – G

Y = 1 – B

• Convert CMY to CMYK by

K = min(C, M, Y)

C’ = C – K

M’ = M – K

Y’ = Y - K

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

87

Color Matrix

• Exists a 3 x 3 matrix to convert from
representation in one system to representation
in another

• Example: XYZ to NTSC RGB

- find in colorimetry references

• Can take a color in XYZ and find out if it is
producible by transforming and then checking if
resulting tristimulus values lie in (0,1)

















=

















T
T
T

T'
T'
T'

3

2

1

3

2

1

M

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

88

YIQ

• NTSC Transmission Colors

• Here Y is the luminance

- Arose from need to separate brightness from

chromatic information in TV broadcasting

• Note luminance shows high green sensitivity

































=

















B

G

R

0.3110.523-0.212

0.321-0.275-0.596

0.1140.5870.299

Q

I

Y

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

89

Other Color Systems

• UVW: equal numerical errors are closer to equal

perceptual errors

• HLS: perceptual color (hue, saturation, lightness)

- Polar representation of color space

- Single and double cone versions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

90

Gamma

• Intensity vs CRT voltage is nonlinear

I = cVg

• Can use a lookup table to correct

• Human brightness response is logarithmic

- Equal steps in gray levels are not

perceived equally

- Can use lookup table

• CRTs cannot produce a full black

- Limits contrast ratio

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

sRGB

•Standard for Internet

•Adjust colors to match standard gamma of

panels

- match gamma over most of the range

- enhance less bright colors

•OpenGL (soon WebGL?) can input sRGB

and convert to RGB for processing and

then back to sRGB

91Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

