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Objectives

• Introduce types of curves and surfaces

- Explicit

- Implicit

- Parametric

- Strengths and weaknesses

•Discuss Modeling and Approximations

- Conditions

- Stability
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Escaping Flatland

•Until now we have worked with flat entities 

such as lines and flat polygons

- Fit well with graphics hardware

- Mathematically simple

•But the world is not composed of flat entities

- Need curves and curved surfaces

- May only have need at the application level

- Implementation can render them approximately 

with flat primitives
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Modeling with Curves

data points

approximating curve

interpolating data point
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What Makes a Good 

Representation?

•There are many ways to represent curves 

and surfaces

•Want a representation that is

- Stable

- Smooth

- Easy to evaluate

- Must we interpolate or can we just come close 

to data?

- Do we need derivatives?
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Explicit Representation

•Most familiar form of curve in 2D

y=f(x)

•Cannot represent all curves

- Vertical lines

- Circles

•Extension to 3D 

- y=f(x), z=g(x)

- The form z = f(x,y) defines a surface

x

y

x

y

z
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Implicit Representation

• Two dimensional curve(s)

g(x,y)=0

• Much more robust

- All lines ax+by+c=0

- Circles x2+y2-r2=0

• Three dimensions g(x,y,z)=0 defines a surface

- Intersect two surface to get a curve

• In general, we cannot solve for points that 

satisfy
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Algebraic Surface

0= zyx
kj

i j k

i

•Quadric surface 2  i+j+k

•At most 10 terms 

•Can solve intersection with a ray by

reducing problem to solving quadratic equation
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Parametric Curves

• Separate equation for each spatial variable

x=x(u)

y=y(u)

z=z(u)

• For umax  u  umin we trace out a curve in two or 

three dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)
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Selecting Functions

•Usually we can select “good” functions 

- not unique for a given spatial curve

- Approximate or interpolate known data

- Want functions which are easy to evaluate

- Want functions which are easy to differentiate

• Computation of normals

• Connecting pieces (segments)

- Want functions which are smooth
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Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d
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Parametric Surfaces

•Surfaces require 2 parameters

x=x(u,v)

y=y(u,v)

z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

•Want same properties as curves: 
- Smoothness

- Differentiability

- Ease of evaluation

x

y

z p(u,0)

p(1,v)
p(0,v)

p(u,1)
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Normals

We can differentiate with respect to u and v to 

obtain the normal at any point p
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Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r
q

r

p0

n

three-point form

p0

n

p1

p2

q = p1 – p0

r = p2 – p0
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Parametric Sphere

x(u,v) = r cos q sin f

y(u,v) = r sin q sin f

z(u,v) = r cos f

360  q  0

180  f  0

q constant: circles of constant longitude

f constant: circles of constant latitude

differentiate to show  n = p
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Curve Segments

• After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T,   1  u  0

• In classical numerical methods, we design a 

single global curve

• In computer graphics and CAD, it is better to 

design small connected curve segments

p(u)

q(u)
p(0)

q(1)

join point p(1) = q(0)
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Parametric Polynomial 

Curves

ucux i
N

i

xi
=

=
0

)( ucuy j
M

j

yj
=

=
0

)( ucuz k
L

k

zk
=

=
0

)(

•If N=M=K, we need to determine 3(N+1) coefficients

•Equivalently we need 3(N+1) independent conditions

•Noting that the curves for x, y and z are independent,

we can define each independently in an identical manner

•We will use the form                       

where p can be any of x, y, z 
ucu k

L

k

k
=

=
0

)(p
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Why Polynomials

•Easy to evaluate

•Continuous and differentiable everywhere

- Must worry about continuity at join points 

including continuity of derivatives

p(u)

q(u)

join point p(1) = q(0)

but p’(1)  q’(0)
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Cubic Parametric 

Polynomials

• N=M=L=3, gives balance between ease of 
evaluation and flexibility in design

• Four coefficients to determine for each of x, y and z

• Seek four independent conditions for various 
values of u resulting in 4 equations in 4 unknowns 
for each of x, y and z

- Conditions are a mixture of continuity 
requirements at the join points and conditions for 
fitting the data 

ucu k

k

k
=

=
3

0

)(p
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Cubic Polynomial Surfaces

vucvu ji

i j

ij
= =

=
3

0

3

0

),(p

p(u,v)=[x(u,v), y(u,v), z(u,v)]T

where 

p is any of x, y or z

Need 48 coefficients ( 3 independent sets of 16) to 

determine a surface patch
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Objectives

• Introduce the types of curves

- Interpolating

- Hermite

- Bezier

- B-spline

•Analyze  their performance

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



25

Matrix-Vector  Form
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Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3

determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3
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Interpolation Equations

apply the interpolating conditions at u=0, 1/3, 2/3, 1

p0=p(0)=c0

p1=p(1/3)=c0+(1/3)c1+(1/3)2c2+(1/3)3c2

p2=p(2/3)=c0+(2/3)c1+(2/3)2c2+(2/3)3c2

p3=p(1)=c0+c1+c2+c2

or in matrix form with p = [p0 p1 p2 p3]
T

p=Ac
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Interpolation Matrix

Solving for c we find the interpolation matrix
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5.45.135.135.4

5.4185.229

15.495.5

0001

1

AM I

c=MIp

Note that MI does not depend on input data and

can be used for each segment in x, y, and z
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Interpolating Multiple 

Segments

use p = [p0 p1 p2 p3]
T use p = [p3 p4 p5 p6]

T

Get continuity at join points but not

continuity of derivatives 
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Blending Functions

Rewriting the equation for p(u)

p(u)=uTc=uTMIp = b(u)Tp

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is

an array of blending polynomials such that

p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)

b1(u) = 13.5u (u-2/3)(u-1)

b2(u) = -13.5u (u-1/3)(u-1)

b3(u) = 4.5u (u-1/3)(u-2/3)
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Blending Functions

•These functions are not smooth

- Hence the interpolation polynomial is not smooth
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Interpolating Patch

vucvup j

j

ij

i

oi


==

=
3

0

3

),(

Need 16 conditions to determine the 16 coefficients cij

Choose at u,v = 0, 1/3, 2/3, 1
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Matrix Form

Define v = [1 v v2 v3]T

C = [cij]      P = [pij] 

p(u,v) = uTCv

If we observe that for constant u (v), we obtain

interpolating curve in v (u), we can show

p(u,v) = uTMIPMI
Tv 

C=MIPMI
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Blending Patches

pvbubvup
ijj
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3
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Each bi(u)bj(v) is a blending patch

Shows that we can build and analyze surfaces 

from our knowledge of curves
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Other Types of Curves and 

Surfaces

•How can we get around the limitations of 

the interpolating form

- Lack of smoothness

- Discontinuous derivatives at join points

•We have four conditions (for cubics) that 

we can apply to each segment

- Use them other than for interpolation

- Need only come close to the data
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Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and

two derivative conditions per segment

Ensures continuity and first derivative

continuity between segments
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Equations

Interpolating conditions are the same at ends

p(0) = p0 = c0

p(1) = p3 = c0+c1+c2+c3

Differentiating we find p’(u) = c1+2uc2+3u2c3

Evaluating at end points

p’(0) = p’0 = c1

p’(1) = p’3 = c1+2c2+3c3
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Matrix Form

cq
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Solving, we find c=MHq where MH is the Hermite matrix 
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Blending Polynomials

p(u) = b(u)Tq
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Although these functions are smooth, the Hermite form

is not used directly in Computer Graphics and CAD 

because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form
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Parametric and Geometric 

Continuity

•We can require the derivatives of x, y,and 

z to each be continuous at join points 

(parametric continuity)

•Alternately, we can only require that the 

tangents of the resulting curve be 

continuous (geometry continuity)

•The latter gives more flexibility as we 

have need satisfy only two conditions 

rather than three at each join point
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Example

•Here the p and q have the same tangents 

at the ends of the segment but different 

derivatives

•Generate different 

Hermite curves

•This techniques is used

in drawing applications
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Higher Dimensional 

Approximations

•The techniques for both interpolating and 
Hermite curves can be used with higher 
dimensional parametric polynomials

•For interpolating form, the resulting matrix 
becomes increasingly more ill-conditioned 
and the resulting curves less smooth and 
more prone to numerical errors

• In both cases, there is more work in 
rendering the resulting polynomial curves 
and surfaces
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Objectives

• Introduce the Bezier curves and surfaces

•Derive the required matrices

• Introduce the B-spline and compare it to 

the standard cubic Bezier
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Bezier’s Idea

• In graphics and CAD, we do not usually 

have derivative data

•Bezier suggested using the same 4 data 

points as with the cubic interpolating 

curve to approximate the derivatives in 

the Hermite form 
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Approximating Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

3/1

pp
)0('p 01

−


3/1

pp
)1('p 23

−


slope p’(0) slope p’(1)

u
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Equations

p(0) = p0 = c0

p(1) = p3 = c0+c1+c2+c3

p’(0) = 3(p1- p0) = c0

p’(1) = 3(p3- p2) = c1+2c2+3c3

Interpolating conditions are the same

Approximating derivative conditions

Solve four linear equations for c=MBp
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Bezier Matrix
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blending functions
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Blending Functions
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Note that all zeros are at 0 and 1 which forces

the functions to be smooth over (0,1)
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Bernstein Polynomials

•The blending functions are a special case 

of the Bernstein polynomials

•These polynomials give the blending 

polynomials for any degree Bezier form

- All zeros at 0 and 1

- For any degree they all sum to 1

- They are all between 0 and 1 inside (0,1) 

)1(
)!(!

!
)(kd uu

kdk

d
ub

kdk −
−

=
−
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Convex Hull Property

• The properties of the Bernstein polynomials 

ensure that all Bezier curves lie in the convex 

hull of their control points

• Hence, even though we do not interpolate all the 

data, we cannot be too far away

p0

p1 p2

p3

convex hull

Bezier curve
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Bezier Patches

Using same data array P=[pij] as with interpolating form

vupvbubvup T
BB

T

ijj

i j

i MPM== 
= =

)()(),(
3

0

3

0

Patch lies in

convex hull
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Analysis

• Although the Bezier form is much better than the 

interpolating form, we have the derivatives are not 

continuous at join points

• Can we do better?

- Go to higher order Bezier

• More work

• Derivative continuity still only approximate

• Supported by fixed function OpenGL

- Apply different conditions 

• Tricky without letting order increase
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B-Splines

• Basis splines: use the data at p=[pi-2 pi-1 pi pi-1]
T 

to define curve only between pi-1 and pi

• Allows us to apply more continuity conditions to 

each segment

• For cubics, we can have continuity of function, 

first and second derivatives at join points

• Cost is 3 times as much work for curves

- Add one new point each time rather than three

• For surfaces, we do 9 times as much work 
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Cubic B-spline
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Blending Functions
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convex hull property
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B-Spline Patches

vupvbubvup T
SS

T

ijj

i j

i MPM== 
= =

)()(),(
3
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3

0

defined over only 1/9 of region
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Splines and Basis

• If we examine the cubic B-spline from the 
perspective of each control (data) point, 
each interior point contributes (through 
the blending functions) to four segments

•We can rewrite p(u) in terms of the data 
points as

defining the basis functions {Bi(u)}

puBup
ii )()( =
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Basis Functions
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In terms of the blending polynomials
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Generalizing Splines

•We can extend to splines of any degree 

•Data and conditions to not have to given 

at equally spaced values (the knots)

- Nonuniform and uniform splines

- Can have repeated knots

• Can force spline to interpolate points

•Cox-deBoor recursion gives method of 

evaluation
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NURBS

•Nonuniform Rational B-Spline curves and 

surfaces add a fourth variable w to x,y,z

- Can interpret as weight to give more 

importance to some control data

- Can also interpret as moving to homogeneous 

coordinate

•Requires a perspective division

- NURBS act correctly for perspective viewing

•Quadrics are a special case of NURBS
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Objectives

• Introduce methods to draw curves

- Approximate with lines

- Finite Differences

•Derive the recursive method for 

evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data 

to data for Bezier polynomials
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Evaluating Polynomials

•Simplest method to render a polynomial 

curve is to evaluate the polynomial at many 

points and form an approximating polyline

•For surfaces we can form an approximating 

mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate 

polynomials

p(u)=c0+u(c1+u(c2+uc3))

- 3 multiplications/evaluation for cubic
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deCasteljau Recursion

•We can use the convex hull property of 

Bezier curves to obtain an efficient 

recursive method that does not require 

any function evaluations

- Uses only the values at the control points

•Based on the idea that “any polynomial 

and any part of a polynomial is a Bezier 

polynomial for properly chosen control 

data”
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Splitting a Cubic Bezier

p0, p1 , p2 , p3 determine a cubic Bezier polynomial

and its convex hull

Consider left half l(u) and right half r(u)
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l(u) and r(u)

Since l(u) and r(u) are Bezier curves, we should be able to

find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}

that determine them
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Convex Hulls

{l0, l1, l2, l3} and {r0, r1, r2, r3}each have a convex hull that

that is closer to p(u) than the convex hull of {p0, p1, p2, p3}

This is known as the variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation 

to p(u). Repeating recursively we get better approximations.
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Equations

Start with Bezier equations p(u)=uTMBp

l(u) must interpolate p(0) and p(1/2)

l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8( p0 +3 p1 +3 p2 + p3 )

Matching slopes, taking into account that l(u) and r(u)

only go over half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0 )

l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u)
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Efficient Form

l0 = p0

r3 = p3

l1 = ½(p0 + p1)

r1 = ½(p2 + p3)

l2 = ½(l1 + ½( p1 + p2))

r1 = ½(r2 + ½( p1 + p2))

l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!
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Every Curve is a Bezier 

Curve

• We can render a given polynomial using the 

recursive method if we find control points for its 

representation as a Bezier curve 

• Suppose that p(u) is given as an interpolating 

curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp
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Matrices

Interpolating to Bezier

B-Spline to Bezier
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Example

These three curves were all generated from the same

original data using Bezier recursion by converting all

control point data to Bezier control points

Bezier Interpolating B Spline
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Surfaces

• Can apply the recursive method to surfaces if 

we recall that for a Bezier patch curves of 

constant u (or v) are Bezier curves in u (or v)

• First subdivide in u 

- Process creates new points 

- Some of the original points are discarded

original and kept new

original and discarded

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



77

Second Subdivision

16 final points for

1 of 4 patches created
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Normals

•For rendering we need the normals if we 

want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine

- OpenGL can compute automatically

v

vu

u

vu









=

),(),( pp
n
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Rendering Other Polynomials

•Every polynomial is a Bezier polynomial 

for some set of control data

•We can use a Bezier renderer if we first 

convert the given control data to Bezier 

control data

- Equivalent to converting between matrices

•Example: Interpolating to Bezier

MB = MIMBI
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Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches
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Quadrics

• Any quadric can be written as the quadratic form

pTAp+bTp+c=0 where p=[x, y, z]T

with A, b and c giving the coefficients

• Render by ray casting

- Intersect with parametric ray p(a)=p0+ad that 
passes through a pixel

- Yields a scalar quadratic equation

• No solution: ray misses quadric

• One solution: ray tangent to quadric

• Two solutions: entry and exit points
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Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico
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Rendering the Teapot

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico
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Objectives

•Look at rendering with WebGL

•Use Utah teapot for examples

- Recursive subdivision

- Polynomial evaluation

- Adding lighting
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Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches
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vertices.js

86

var numTeapotVertices = 306;

var vertices = [

vec3(1.4 , 0.0 , 2.4),

vec3(1.4 , -0.784 , 2.4),

vec3(0.784 , -1.4 , 2.4),

vec3(0.0 , -1.4 , 2.4),

vec3(1.3375 , 0.0 , 2.53125),

.

.

.

];
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patches.js
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var numTeapotPatches = 32;

var indices = new Array(numTeapotPatches);

indices[0] = [0, 1, 2, 3,

4, 5, 6, 7,

8, 9, 10, 11,

12, 13, 14, 15

];

indices[1] = [3, 16, 17, 18,

.

.

];
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Evaluation of Polynomials
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Bezier Function
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bezier = function(u) {

var b = [];

var a = 1-u;

b.push(u*u*u);

b.push(3*a*u*u);

b.push(3*a*a*u);

b.push(a*a*a); 

return b;

}
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Patch Indices to Data
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var h = 1.0/numDivisions;

patch = new Array(numTeapotPatches);

for(var i=0; i<numTeapotPatches; i++)

patch[i] = new Array(16);

for(var i=0; i<numTeapotPatches; i++)

for(j=0; j<16; j++) {

patch[i][j] = vec4([vertices[indices[i][j]][0],

vertices[indices[i][j]][2],

vertices[indices[i][j]][1], 1.0]);

}
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Vertex Data
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for ( var n = 0; n < numTeapotPatches; n++ ) {

var data = new Array(numDivisions+1);

for(var j = 0; j<= numDivisions; j++) data[j] = new Array(numDivisions+1);

for(var i=0; i<=numDivisions; i++) for(var j=0; j<= numDivisions; j++) {

data[i][j] = vec4(0,0,0,1);

var u = i*h;

var v = j*h;

var t = new Array(4);

for(var ii=0; ii<4; ii++) t[ii]=new Array(4);

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++)

t[ii][jj] = bezier(u)[ii]*bezier(v)[jj];

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {

temp = vec4(patch[n][4*ii+jj]);

temp = scale( t[ii][jj], temp);

data[i][j] = add(data[i][j], temp);

}
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Quads
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for(var i=0; i<numDivisions; i++)

for(var j =0; j<numDivisions; j++) {

points.push(data[i][j]);

points.push(data[i+1][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j]); 

points.push(data[i+1][j+1]);

points.push(data[i][j+1]);

index += 6;

}

}
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Recursive Subdivision
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Divide Curve

94

divideCurve = function( c, r , l){

// divides c into left (l) and right ( r ) curve data  

var mid = mix(c[1], c[2], 0.5);

l[0] = vec4(c[0]);

l[1] = mix(c[0], c[1], 0.5 );

l[2] = mix(l[1], mid, 0.5 );

r[3] = vec4(c[3]);

r[2] = mix(c[2], c[3], 0.5 );

r[1] = mix( mid, r[2], 0.5 );

r[0] = mix(l[2], r[1], 0.5 );

l[3] = vec4(r[0]);    return;

}
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Divide Patch

95

dividePatch = function (p, count ) {

if ( count > 0 ) {

var a =  mat4();

var b =  mat4();

var t = mat4();

var q = mat4();

var r = mat4();

var s = mat4();

// subdivide curves in u direction, transpose results, divide

// in u direction again (equivalent to subdivision in v)

for ( var k = 0; k < 4; ++k ) {

var pp = p[k];

var aa = vec4();

var bb = vec4();
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Divide Patch

96

divideCurve( pp, aa, bb );

a[k] = vec4(aa);

b[k] = vec4(bb); 

}

a = transpose( a );

b = transpose( b );

for ( var k = 0; k < 4; ++k ) {

var pp = vec4(a[k]);

var aa = vec4();

var bb = vec4();

divideCurve( pp, aa, bb );

q[k] = vec4(aa);

r[k] = vec4(bb);

}

for ( var k = 0; k < 4; ++k ) {

var pp = vec4(b[k]);
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Divide Patch

97

var bb = vec4();                                

divideCurve( pp, aa, bb );

t[k] = vec4(bb);

}

// recursive division of 4 resulting patches

dividePatch( q, count - 1 );

dividePatch( r, count - 1 );

dividePatch( s, count - 1 );

dividePatch( t, count - 1 );

}

else {

drawPatch( p );

}

return;

}
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Draw Patch

98

drawPatch = function(p) {

// Draw the quad (as two triangles) bounded by

//   corners of the Bezier patch

points.push(p[0][0]);

points.push(p[0][3]);

points.push(p[3][3]);

points.push(p[0][0]);

points.push(p[3][3]);

points.push(p[3][0]);

index+=6;

return;

}
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Adding Shading
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Using Face Normals

100

var t1 = subtract(data[i+1][j], data[i][j]);

var t2  =subtract(data[i+1][j+1], data[i][j]);

var normal = cross(t1, t2);

normal = normalize(normal);

normal[3] =  0;

points.push(data[i][j]);            normals.push(normal);

points.push(data[i+1][j]);        normals.push(normal); 

points.push(data[i+1][j+1]);    normals.push(normal); 

points.push(data[i][j]);             normals.push(normal);

points.push(data[i+1][j+1]);    normals.push(normal);      

points.push(data[i][j+1]);        normals.push(normal);

index+= 6;
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Exact Normals
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nbezier = function(u) {

var b = [];

b.push(3*u*u);

b.push(3*u*(2-3*u));

b.push(3*(1-4*u+3*u*u));

b.push(-3*(1-u)*(1-u));

return b;

}
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Geometry Shader

•Basic limitation on rasterization is that 

each execution of a vertex shader is 

triggered by one vertex and can output 

only one vertex

•Geometry shaders allow a single vertex 

and other data to produce many vertices

•Example: send four control points to a 

geometry shader and it can produce as 

many points as needed for Bezier curve
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Tessellation Shaders

•Can take many data points and produce 

triangles

•More complex since tessellation has to 

deal with inside/outside issues and 

topological issues such as holes

•Neither geometry or tessellation shaders 

supported by ES

•ES 3.1 (just announced) has compute 

shaders
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