
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Curves and Surfaces

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce types of curves and surfaces

- Explicit

- Implicit

- Parametric

- Strengths and weaknesses

•Discuss Modeling and Approximations

- Conditions

- Stability

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Escaping Flatland

•Until now we have worked with flat entities

such as lines and flat polygons

- Fit well with graphics hardware

- Mathematically simple

•But the world is not composed of flat entities

- Need curves and curved surfaces

- May only have need at the application level

- Implementation can render them approximately

with flat primitives

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Modeling with Curves

data points

approximating curve

interpolating data point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

What Makes a Good

Representation?

•There are many ways to represent curves

and surfaces

•Want a representation that is

- Stable

- Smooth

- Easy to evaluate

- Must we interpolate or can we just come close

to data?

- Do we need derivatives?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Explicit Representation

•Most familiar form of curve in 2D

y=f(x)

•Cannot represent all curves

- Vertical lines

- Circles

•Extension to 3D

- y=f(x), z=g(x)

- The form z = f(x,y) defines a surface

x

y

x

y

z
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Implicit Representation

• Two dimensional curve(s)

g(x,y)=0

• Much more robust

- All lines ax+by+c=0

- Circles x2+y2-r2=0

• Three dimensions g(x,y,z)=0 defines a surface

- Intersect two surface to get a curve

• In general, we cannot solve for points that

satisfy

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Algebraic Surface

0= zyx
kj

i j k

i

•Quadric surface 2  i+j+k

•At most 10 terms

•Can solve intersection with a ray by

reducing problem to solving quadratic equation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Parametric Curves

• Separate equation for each spatial variable

x=x(u)

y=y(u)

z=z(u)

• For umax  u  umin we trace out a curve in two or

three dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Selecting Functions

•Usually we can select “good” functions

- not unique for a given spatial curve

- Approximate or interpolate known data

- Want functions which are easy to evaluate

- Want functions which are easy to differentiate

• Computation of normals

• Connecting pieces (segments)

- Want functions which are smooth

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Parametric Surfaces

•Surfaces require 2 parameters

x=x(u,v)

y=y(u,v)

z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

•Want same properties as curves:
- Smoothness

- Differentiability

- Ease of evaluation

x

y

z p(u,0)

p(1,v)
p(0,v)

p(u,1)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Normals

We can differentiate with respect to u and v to

obtain the normal at any point p























=




uvu

uvu

uvu

u

vu

/),(z

/),(y

/),(x
),(p























=




vvu

vvu

vvu

v

vu

/),(z

/),(y

/),(x
),(p

v

vu

u

vu









=

),(),(pp
n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r
q

r

p0

n

three-point form

p0

n

p1

p2

q = p1 – p0

r = p2 – p0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Parametric Sphere

x(u,v) = r cos q sin f

y(u,v) = r sin q sin f

z(u,v) = r cos f

360  q  0

180  f  0

q constant: circles of constant longitude

f constant: circles of constant latitude

differentiate to show n = p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Curve Segments

• After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T, 1  u  0

• In classical numerical methods, we design a

single global curve

• In computer graphics and CAD, it is better to

design small connected curve segments

p(u)

q(u)
p(0)

q(1)

join point p(1) = q(0)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Parametric Polynomial

Curves

ucux i
N

i

xi
=

=
0

)(ucuy j
M

j

yj
=

=
0

)(ucuz k
L

k

zk
=

=
0

)(

•If N=M=K, we need to determine 3(N+1) coefficients

•Equivalently we need 3(N+1) independent conditions

•Noting that the curves for x, y and z are independent,

we can define each independently in an identical manner

•We will use the form

where p can be any of x, y, z
ucu k

L

k

k
=

=
0

)(p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Why Polynomials

•Easy to evaluate

•Continuous and differentiable everywhere

- Must worry about continuity at join points

including continuity of derivatives

p(u)

q(u)

join point p(1) = q(0)

but p’(1)  q’(0)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Cubic Parametric

Polynomials

• N=M=L=3, gives balance between ease of
evaluation and flexibility in design

• Four coefficients to determine for each of x, y and z

• Seek four independent conditions for various
values of u resulting in 4 equations in 4 unknowns
for each of x, y and z

- Conditions are a mixture of continuity
requirements at the join points and conditions for
fitting the data

ucu k

k

k
=

=
3

0

)(p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Cubic Polynomial Surfaces

vucvu ji

i j

ij
= =

=
3

0

3

0

),(p

p(u,v)=[x(u,v), y(u,v), z(u,v)]T

where

p is any of x, y or z

Need 48 coefficients (3 independent sets of 16) to

determine a surface patch

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Designing Parametric Cubic

Curves

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Objectives

• Introduce the types of curves

- Interpolating

- Hermite

- Bezier

- B-spline

•Analyze their performance

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Matrix-Vector Form

ucu k

k

k
=

=
3

0

)(p



















=

c

c

c

c

3

2

1

0

c



















=

u

u

u

3

2

1

udefine

uccu
TTu ==)(pthen

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3

determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Interpolation Equations

apply the interpolating conditions at u=0, 1/3, 2/3, 1

p0=p(0)=c0

p1=p(1/3)=c0+(1/3)c1+(1/3)2c2+(1/3)3c2

p2=p(2/3)=c0+(2/3)c1+(2/3)2c2+(2/3)3c2

p3=p(1)=c0+c1+c2+c2

or in matrix form with p = [p0 p1 p2 p3]
T

p=Ac











































































=

1111
3

2

3

2

3

2
1

3

1

3

1

3

1
1

0001

32

32

A

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Interpolation Matrix

Solving for c we find the interpolation matrix



















−−

−−

−−
==

−

5.45.135.135.4

5.4185.229

15.495.5

0001

1

AM I

c=MIp

Note that MI does not depend on input data and

can be used for each segment in x, y, and z

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Interpolating Multiple

Segments

use p = [p0 p1 p2 p3]
T use p = [p3 p4 p5 p6]

T

Get continuity at join points but not

continuity of derivatives

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Blending Functions

Rewriting the equation for p(u)

p(u)=uTc=uTMIp = b(u)Tp

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is

an array of blending polynomials such that

p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)

b1(u) = 13.5u (u-2/3)(u-1)

b2(u) = -13.5u (u-1/3)(u-1)

b3(u) = 4.5u (u-1/3)(u-2/3)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Blending Functions

•These functions are not smooth

- Hence the interpolation polynomial is not smooth

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Interpolating Patch

vucvup j

j

ij

i

oi


==

=
3

0

3

),(

Need 16 conditions to determine the 16 coefficients cij

Choose at u,v = 0, 1/3, 2/3, 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Matrix Form

Define v = [1 v v2 v3]T

C = [cij] P = [pij]

p(u,v) = uTCv

If we observe that for constant u (v), we obtain

interpolating curve in v (u), we can show

p(u,v) = uTMIPMI
Tv

C=MIPMI

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Blending Patches

pvbubvup
ijj

j

i

oi

)()(),(
3

0

3


==

=

Each bi(u)bj(v) is a blending patch

Shows that we can build and analyze surfaces

from our knowledge of curves

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Other Types of Curves and

Surfaces

•How can we get around the limitations of

the interpolating form

- Lack of smoothness

- Discontinuous derivatives at join points

•We have four conditions (for cubics) that

we can apply to each segment

- Use them other than for interpolation

- Need only come close to the data

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and

two derivative conditions per segment

Ensures continuity and first derivative

continuity between segments

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Equations

Interpolating conditions are the same at ends

p(0) = p0 = c0

p(1) = p3 = c0+c1+c2+c3

Differentiating we find p’(u) = c1+2uc2+3u2c3

Evaluating at end points

p’(0) = p’0 = c1

p’(1) = p’3 = c1+2c2+3c3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Matrix Form

cq



















=



















=

3210

0010

1111

0001

p'

p'

p

p

3

0

3

0

Solving, we find c=MHq where MH is the Hermite matrix



















−

−−−
=

1122

1233

0100

0001

MH

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Blending Polynomials

p(u) = b(u)Tq



















−

+−

+−

+−

=

uu

uuu

uu

uu

u

23

23

23

23

2

32

132

)(b

Although these functions are smooth, the Hermite form

is not used directly in Computer Graphics and CAD

because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Parametric and Geometric

Continuity

•We can require the derivatives of x, y,and

z to each be continuous at join points

(parametric continuity)

•Alternately, we can only require that the

tangents of the resulting curve be

continuous (geometry continuity)

•The latter gives more flexibility as we

have need satisfy only two conditions

rather than three at each join point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Example

•Here the p and q have the same tangents

at the ends of the segment but different

derivatives

•Generate different

Hermite curves

•This techniques is used

in drawing applications

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Higher Dimensional

Approximations

•The techniques for both interpolating and
Hermite curves can be used with higher
dimensional parametric polynomials

•For interpolating form, the resulting matrix
becomes increasingly more ill-conditioned
and the resulting curves less smooth and
more prone to numerical errors

• In both cases, there is more work in
rendering the resulting polynomial curves
and surfaces

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bezier and Spline Curves and

Surfaces

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

44Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Objectives

• Introduce the Bezier curves and surfaces

•Derive the required matrices

• Introduce the B-spline and compare it to

the standard cubic Bezier

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

Bezier’s Idea

• In graphics and CAD, we do not usually

have derivative data

•Bezier suggested using the same 4 data

points as with the cubic interpolating

curve to approximate the derivatives in

the Hermite form

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

Approximating Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

3/1

pp
)0('p 01

−


3/1

pp
)1('p 23

−


slope p’(0) slope p’(1)

u

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

48

Equations

p(0) = p0 = c0

p(1) = p3 = c0+c1+c2+c3

p’(0) = 3(p1- p0) = c0

p’(1) = 3(p3- p2) = c1+2c2+3c3

Interpolating conditions are the same

Approximating derivative conditions

Solve four linear equations for c=MBp

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

49

Bezier Matrix



















−−

−

−
=

1331

0363

0033

0001

MB

p(u) = uTMBp = b(u)Tp

blending functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

50

Blending Functions



b(u) =

3
(1− u)

3u
2

(1− u)

3 2
u (1− u)

3
u



















Note that all zeros are at 0 and 1 which forces

the functions to be smooth over (0,1)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

51

Bernstein Polynomials

•The blending functions are a special case

of the Bernstein polynomials

•These polynomials give the blending

polynomials for any degree Bezier form

- All zeros at 0 and 1

- For any degree they all sum to 1

- They are all between 0 and 1 inside (0,1)

)1(
)!(!

!
)(kd uu

kdk

d
ub

kdk −
−

=
−

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

52

Convex Hull Property

• The properties of the Bernstein polynomials

ensure that all Bezier curves lie in the convex

hull of their control points

• Hence, even though we do not interpolate all the

data, we cannot be too far away

p0

p1 p2

p3

convex hull

Bezier curve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

53

Bezier Patches

Using same data array P=[pij] as with interpolating form

vupvbubvup T
BB

T

ijj

i j

i MPM== 
= =

)()(),(
3

0

3

0

Patch lies in

convex hull

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

Analysis

• Although the Bezier form is much better than the

interpolating form, we have the derivatives are not

continuous at join points

• Can we do better?

- Go to higher order Bezier

• More work

• Derivative continuity still only approximate

• Supported by fixed function OpenGL

- Apply different conditions

• Tricky without letting order increase

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

B-Splines

• Basis splines: use the data at p=[pi-2 pi-1 pi pi-1]
T

to define curve only between pi-1 and pi

• Allows us to apply more continuity conditions to

each segment

• For cubics, we can have continuity of function,

first and second derivatives at join points

• Cost is 3 times as much work for curves

- Add one new point each time rather than three

• For surfaces, we do 9 times as much work

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

Cubic B-spline



















−−

−

−
=

1331

0363

0303

0141

MS

p(u) = uTMSp = b(u)Tp

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Blending Functions





















−++

+−

−

=

u

uuu

uu

u

u

3

22

32

3

3331

364

)1(

6

1
)(b

convex hull property

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

B-Spline Patches

vupvbubvup T
SS

T

ijj

i j

i MPM== 
= =

)()(),(
3

0

3

0

defined over only 1/9 of region

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

Splines and Basis

• If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through
the blending functions) to four segments

•We can rewrite p(u) in terms of the data
points as

defining the basis functions {Bi(u)}

puBup
ii)()(=

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

60

Basis Functions

2

21

1

1

12

2

0

)1(

)(

)1(

)2(

0

)(

3

2

1

0

+

++

+

−

−−

−















−

+

+

=

iu

iui

iui

iui

iui

iu

ub

ub

ub

ub

uBi

In terms of the blending polynomials

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

Generalizing Splines

•We can extend to splines of any degree

•Data and conditions to not have to given

at equally spaced values (the knots)

- Nonuniform and uniform splines

- Can have repeated knots

• Can force spline to interpolate points

•Cox-deBoor recursion gives method of

evaluation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

NURBS

•Nonuniform Rational B-Spline curves and

surfaces add a fourth variable w to x,y,z

- Can interpret as weight to give more

importance to some control data

- Can also interpret as moving to homogeneous

coordinate

•Requires a perspective division

- NURBS act correctly for perspective viewing

•Quadrics are a special case of NURBS

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering Curves and Surfaces

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

64Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Objectives

• Introduce methods to draw curves

- Approximate with lines

- Finite Differences

•Derive the recursive method for

evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data

to data for Bezier polynomials

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Evaluating Polynomials

•Simplest method to render a polynomial

curve is to evaluate the polynomial at many

points and form an approximating polyline

•For surfaces we can form an approximating

mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate

polynomials

p(u)=c0+u(c1+u(c2+uc3))

- 3 multiplications/evaluation for cubic

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

deCasteljau Recursion

•We can use the convex hull property of

Bezier curves to obtain an efficient

recursive method that does not require

any function evaluations

- Uses only the values at the control points

•Based on the idea that “any polynomial

and any part of a polynomial is a Bezier

polynomial for properly chosen control

data”

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Splitting a Cubic Bezier

p0, p1 , p2 , p3 determine a cubic Bezier polynomial

and its convex hull

Consider left half l(u) and right half r(u)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

l(u) and r(u)

Since l(u) and r(u) are Bezier curves, we should be able to

find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}

that determine them

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Convex Hulls

{l0, l1, l2, l3} and {r0, r1, r2, r3}each have a convex hull that

that is closer to p(u) than the convex hull of {p0, p1, p2, p3}

This is known as the variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation

to p(u). Repeating recursively we get better approximations.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

Equations

Start with Bezier equations p(u)=uTMBp

l(u) must interpolate p(0) and p(1/2)

l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8(p0 +3 p1 +3 p2 + p3)

Matching slopes, taking into account that l(u) and r(u)

only go over half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0)

l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

Efficient Form

l0 = p0

r3 = p3

l1 = ½(p0 + p1)

r1 = ½(p2 + p3)

l2 = ½(l1 + ½(p1 + p2))

r1 = ½(r2 + ½(p1 + p2))

l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

Every Curve is a Bezier

Curve

• We can render a given polynomial using the

recursive method if we find control points for its

representation as a Bezier curve

• Suppose that p(u) is given as an interpolating

curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

74

Matrices

Interpolating to Bezier

B-Spline to Bezier























−−

−−

=−

1000
6

5
3

2

3

3

1
3

1

2

3
3

6

5
0001

1
MM IB



















=−

1410

0420

0240

0141

1
MM SB

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

75

Example

These three curves were all generated from the same

original data using Bezier recursion by converting all

control point data to Bezier control points

Bezier Interpolating B Spline

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

76

Surfaces

• Can apply the recursive method to surfaces if

we recall that for a Bezier patch curves of

constant u (or v) are Bezier curves in u (or v)

• First subdivide in u

- Process creates new points

- Some of the original points are discarded

original and kept new

original and discarded

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

77

Second Subdivision

16 final points for

1 of 4 patches created

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

78

Normals

•For rendering we need the normals if we

want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine

- OpenGL can compute automatically

v

vu

u

vu









=

),(),(pp
n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering Other Polynomials

•Every polynomial is a Bezier polynomial

for some set of control data

•We can use a Bezier renderer if we first

convert the given control data to Bezier

control data

- Equivalent to converting between matrices

•Example: Interpolating to Bezier

MB = MIMBI

79Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

80

Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

81

Quadrics

• Any quadric can be written as the quadratic form

pTAp+bTp+c=0 where p=[x, y, z]T

with A, b and c giving the coefficients

• Render by ray casting

- Intersect with parametric ray p(a)=p0+ad that
passes through a pixel

- Yields a scalar quadratic equation

• No solution: ray misses quadric

• One solution: ray tangent to quadric

• Two solutions: entry and exit points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

82

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering the Teapot

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

83Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

84

Objectives

•Look at rendering with WebGL

•Use Utah teapot for examples

- Recursive subdivision

- Polynomial evaluation

- Adding lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

85

Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

vertices.js

86

var numTeapotVertices = 306;

var vertices = [

vec3(1.4 , 0.0 , 2.4),

vec3(1.4 , -0.784 , 2.4),

vec3(0.784 , -1.4 , 2.4),

vec3(0.0 , -1.4 , 2.4),

vec3(1.3375 , 0.0 , 2.53125),

.

.

.

];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

patches.js

87

var numTeapotPatches = 32;

var indices = new Array(numTeapotPatches);

indices[0] = [0, 1, 2, 3,

4, 5, 6, 7,

8, 9, 10, 11,

12, 13, 14, 15

];

indices[1] = [3, 16, 17, 18,

.

.

];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Evaluation of Polynomials

88Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bezier Function

89

bezier = function(u) {

var b = [];

var a = 1-u;

b.push(u*u*u);

b.push(3*a*u*u);

b.push(3*a*a*u);

b.push(a*a*a);

return b;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Patch Indices to Data

90

var h = 1.0/numDivisions;

patch = new Array(numTeapotPatches);

for(var i=0; i<numTeapotPatches; i++)

patch[i] = new Array(16);

for(var i=0; i<numTeapotPatches; i++)

for(j=0; j<16; j++) {

patch[i][j] = vec4([vertices[indices[i][j]][0],

vertices[indices[i][j]][2],

vertices[indices[i][j]][1], 1.0]);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Data

91

for (var n = 0; n < numTeapotPatches; n++) {

var data = new Array(numDivisions+1);

for(var j = 0; j<= numDivisions; j++) data[j] = new Array(numDivisions+1);

for(var i=0; i<=numDivisions; i++) for(var j=0; j<= numDivisions; j++) {

data[i][j] = vec4(0,0,0,1);

var u = i*h;

var v = j*h;

var t = new Array(4);

for(var ii=0; ii<4; ii++) t[ii]=new Array(4);

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++)

t[ii][jj] = bezier(u)[ii]*bezier(v)[jj];

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {

temp = vec4(patch[n][4*ii+jj]);

temp = scale(t[ii][jj], temp);

data[i][j] = add(data[i][j], temp);

}

}Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quads

92

for(var i=0; i<numDivisions; i++)

for(var j =0; j<numDivisions; j++) {

points.push(data[i][j]);

points.push(data[i+1][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j+1]);

index += 6;

}

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Recursive Subdivision

93Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Curve

94

divideCurve = function(c, r , l){

// divides c into left (l) and right (r) curve data

var mid = mix(c[1], c[2], 0.5);

l[0] = vec4(c[0]);

l[1] = mix(c[0], c[1], 0.5);

l[2] = mix(l[1], mid, 0.5);

r[3] = vec4(c[3]);

r[2] = mix(c[2], c[3], 0.5);

r[1] = mix(mid, r[2], 0.5);

r[0] = mix(l[2], r[1], 0.5);

l[3] = vec4(r[0]); return;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

95

dividePatch = function (p, count) {

if (count > 0) {

var a = mat4();

var b = mat4();

var t = mat4();

var q = mat4();

var r = mat4();

var s = mat4();

// subdivide curves in u direction, transpose results, divide

// in u direction again (equivalent to subdivision in v)

for (var k = 0; k < 4; ++k) {

var pp = p[k];

var aa = vec4();

var bb = vec4();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

96

divideCurve(pp, aa, bb);

a[k] = vec4(aa);

b[k] = vec4(bb);

}

a = transpose(a);

b = transpose(b);

for (var k = 0; k < 4; ++k) {

var pp = vec4(a[k]);

var aa = vec4();

var bb = vec4();

divideCurve(pp, aa, bb);

q[k] = vec4(aa);

r[k] = vec4(bb);

}

for (var k = 0; k < 4; ++k) {

var pp = vec4(b[k]);

var aa = vec4(); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

97

var bb = vec4();

divideCurve(pp, aa, bb);

t[k] = vec4(bb);

}

// recursive division of 4 resulting patches

dividePatch(q, count - 1);

dividePatch(r, count - 1);

dividePatch(s, count - 1);

dividePatch(t, count - 1);

}

else {

drawPatch(p);

}

return;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Draw Patch

98

drawPatch = function(p) {

// Draw the quad (as two triangles) bounded by

// corners of the Bezier patch

points.push(p[0][0]);

points.push(p[0][3]);

points.push(p[3][3]);

points.push(p[0][0]);

points.push(p[3][3]);

points.push(p[3][0]);

index+=6;

return;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding Shading

99Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Face Normals

100

var t1 = subtract(data[i+1][j], data[i][j]);

var t2 =subtract(data[i+1][j+1], data[i][j]);

var normal = cross(t1, t2);

normal = normalize(normal);

normal[3] = 0;

points.push(data[i][j]); normals.push(normal);

points.push(data[i+1][j]); normals.push(normal);

points.push(data[i+1][j+1]); normals.push(normal);

points.push(data[i][j]); normals.push(normal);

points.push(data[i+1][j+1]); normals.push(normal);

points.push(data[i][j+1]); normals.push(normal);

index+= 6;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Exact Normals

101

nbezier = function(u) {

var b = [];

b.push(3*u*u);

b.push(3*u*(2-3*u));

b.push(3*(1-4*u+3*u*u));

b.push(-3*(1-u)*(1-u));

return b;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Geometry Shader

•Basic limitation on rasterization is that

each execution of a vertex shader is

triggered by one vertex and can output

only one vertex

•Geometry shaders allow a single vertex

and other data to produce many vertices

•Example: send four control points to a

geometry shader and it can produce as

many points as needed for Bezier curve

102Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Tessellation Shaders

•Can take many data points and produce

triangles

•More complex since tessellation has to

deal with inside/outside issues and

topological issues such as holes

•Neither geometry or tessellation shaders

supported by ES

•ES 3.1 (just announced) has compute

shaders

103Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

