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Introduction

•WebGL is based on a pipeline model in which 

primitives are rendered one at time

- No shadows (except by tricks or multiple renderings)

- No multiple reflections

•Global approaches based on the rendering 

equation

- Ray tracing

- Radiosity

- Photon mapping

- Path Tracing
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The Rendering Equation

•Use physical reasoning based on 

conservation of energy

•Within a closed environment, the energy 

entering a surface must equal the energy 

leaving

•Energy leaving in a given direction 

depends on the energy arriving from all 

directions
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Rendering Equation (Kajia)
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 

i(p, p') = (p, p')((p, p') + (p, p', p' ')i(p', p' ')dp' ')

 

(p, p')

 

(p, p')

 

(p, p', p' ')
 

i(p, p')

bidirectional reflection distribution function (BRDF)

contribution from reflections from all other points

occlusion term = 0 or 1/r2

intensity from p arriving at p’

emission from p arriving at p’
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BRDF

•The BRDF characterizes the material

- Generalization of reflection coefficient

•General case requires is a 9 variable 

function at given frequency

- position

- direction of three vectors

•Special cases lead to familiar methods
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Radiosity

•Assume all surfaces are perfectly diffuse

•Light is scattered equally in all directions

•Divide space into small patches 
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Form Factors

•Need to compute the form factor between 

each pair of patches which describes 

effect of light from one patch onto the 

other
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Radiosity Rendering

•Once the form factors are computer each 

patch is a small diffuse patch

•Final render now uses only diffuse term

•As long as geometry is unchanges, 

subsequent renderings use same form 

factors
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Monte Carlo Methods

•Rendering equation cannot be solved 

analytically

•One approach to take a probabilistic 

(Monte Carlo) approach  

- Ray tracing 

- Photon mapping

- Path tracing
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Ray Tracing

•Follow rays of light from a point source

•Can account for reflection and transmission
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Ray Casting

•Only rays that reach the eye matter

•Reverse direction and cast rays

•Need at least one ray per pixel
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Path Tracing
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Adding Rays

•Basic limitation of ray tracing is the 

number of rays we can trace

•Add more rays

- multitisampling

- stochastically

- adaptively
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Photon Mapping

• Instead of tracing rays trace photons

•Send out stream of photons

•When photons strike surface, they can be

- absorbed

- go off in multiple directions

•Total number of photons limited by 

compute time required

•Off line and stochastic
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Objectives

•Develop a basic recursive ray tracer

•Computer intersections for quadrics and 

polygons
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Ray Tracing

•Follow rays of light from a point source

•Can account for reflection and 

transmission
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Computation

•Should be able to handle all physical 

interactions

•Ray tracing paradigm is not computational

•Most rays do not affect what we see

•Scattering produces many (infinite) 

additional rays

•Alternative: ray casting
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Ray Casting

•Only rays that reach the eye matter

•Reverse direction and cast rays

•Need at least one ray per pixel
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Ray Casting Quadrics

•Ray casting has become the standard 

way to visualize quadrics which are 

implicit surfaces in CSG systems

•Constructive Solid Geometry

- Primitives are solids

- Build objects with set operations

- Union, intersection, set difference
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Ray Casting a Sphere

•Ray is parametric

•Sphere is quadric

•Resulting equation is a scalar quadratic 

equation which gives entry and exit points 

of ray (or no solution if ray misses)
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Shadow Rays

•Even if a point is visible, it will not be lit 

unless we can see a light source from that 

point

•Cast shadow or feeler rays
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Reflection

•Must follow shadow rays off reflecting or 

transmitting surfaces

•Process is recursive
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Reflection and Transmission
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Ray Trees
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Ray Tree
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Diffuse Surfaces

•Theoretically the scattering at each point 

of intersection generates an infinite 

number of new rays that should be traced

• In practice, we only trace the transmitted 

and reflected rays but use the modified 

Phong model to compute shade at point 

of intersection

•Radiosity works best for perfectly diffuse 

(Lambertian) surfaces
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Building a Ray Tracer

•Best expressed recursively

•Can remove recursion later

• Image based approach
- For each ray …….

•Find intersection with closest surface
- Need whole object database available

- Complexity of calculation limits object types

•Compute lighting at surface

•Trace reflected and transmitted rays
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When to stop

•Some light will be absorbed at each 

intersection

- Track amount left

• Ignore rays that go off to infinity

- Put large sphere around problem

•Count steps
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Recursive Ray Tracer

color c = trace(point p, vector 

d, int step)

{

color local, reflected,

transmitted;

point q;

normal n;

if(step > max)

return(background_color);
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Recursive Ray Tracer

q = intersect(p, d, status);

if(status==light_source) 

return(light_source_color);

if(status==no_intersection) 

return(background_color);

n = normal(q);

r = reflect(q, n);

t = transmit(q,n);
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Recursive Ray Tracer

local = phong(q, n, r);

reflected = trace(q, r, step+1);

transmitted = trace(q,t, step+1);

return(local+reflected+

transmitted);
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Computing Intersections

• Implicit Objects

- Quadrics

•Planes

•Polyhedra

•Parametric Surfaces
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Implicit Surfaces

Ray from p0 in direction d

p(t) = p0 +t d

General implicit surface

f(p) = 0

Solve scalar equation

f(p(t)) = 0

General case requires numerical methods
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Quadrics

General quadric can be written as

pTAp + bTp +c = 0

Substitute equation of ray

p(t) = p0 +t d

to get quadratic equation
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Sphere

(p – pc) • (p – pc) – r2 = 0

p(t) = p0 +t d

p0 • p0 t2+ 2 p0 • (d – p0) t + (d – p0) • (d – p0) 

– r2 = 0
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Planes

p • n + c = 0

p(t) = p0 +t d

t = -(p0 • n + c)/ d • n 

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



40

Polyhedra

•Generally we want to intersect with closed 

convex objects such as polygons and 

polyhedra rather than planes

•Hence we have to worry about 

inside/outside testing

•For convex objects such as polyhedra 

there are some fast tests
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Ray Tracing Polyhedra

• If ray enters an object, it must enter a front 

facing polygon and leave a back facing polygon

• Polyhedron is formed by intersection of planes

• Ray enters at furthest intersection with front 

facing planes

• Ray leaves at closest intersection with back 

facing planes

• If entry is further away than exit, ray must miss 

the polyhedron
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What we can do now

•Create basic 3D web applications

- can integrate with other HTML5 packages

•Work with event-driven input

•Use a variety of texture-based methods

•Make use of off-screen rendering
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What we haven’t covered

•More OpenGL capabilities

•Modeling

•Alternate renderers

• Integration with Web

•Where are things going
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What’s in desktop OpenGL

•Much more control and many more options

- Geometry,Tessellation and Compute Shaders

- Level of Detail (LOD)

- 1-4 Dimensional Textures

- Many more texture options

•Vertex Array Buffers

•Occlusion Queries
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What should we expect 

soon in APIs

•Movement of more desktop OpenGL 

features to ES and WebGL

•WebCL 1.0 released March 2014

•ES 3.0 and ES 3.1

•ECMA 6 Script draft (new version of JS)

•Many JS variants such as Coffee Script
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The Players have Changed

•Originally hardware and software was 

dominated by the scientific and CAD 

communities

- SGI key for both hardware and software

- OpenGL developed by SGI

•With PCs and graphics cards leadership 

moved to Microsoft and game users

- DirectX

- Video Toaster  
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Players Have Changed

•Development of GPUs

- Nvidia, AMD and Intel dominate

- OpenGL makes a comeback

- Cg (Nvidia) leads to GLSL

- Interactive games control direction of hw and sw

•Web and smart phones

- Google, Mozilla, Nokia and others dominate 

software

- ARM dominates smart phone chips
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Advanced Topics

•Level of Detail (LOD)

• Image based rendering

•Light field rendering

•Ray Tracing (CS 413)

•Volume Rendering

•Point Clouds

•Particle Systems

• Information Visualization
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What about Games?

•Need more courses

- Digital Storytelling

- Game AI

- HCI

- Real-time graphics
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Supercomputing

•Fastest supercomputers use GPUs for 

floating point operations

- GPGPU

- OpenCL/WebGL

- Compute shaders

•Low power is a major issue

- Exascale machine will require 20MW

- Intel vs ARM?
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