
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Global Rendering

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Introduction

•WebGL is based on a pipeline model in which

primitives are rendered one at time

- No shadows (except by tricks or multiple renderings)

- No multiple reflections

•Global approaches based on the rendering

equation

- Ray tracing

- Radiosity

- Photon mapping

- Path Tracing
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Rendering Equation

•Use physical reasoning based on

conservation of energy

•Within a closed environment, the energy

entering a surface must equal the energy

leaving

•Energy leaving in a given direction

depends on the energy arriving from all

directions

4Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering Equation (Kajia)

5



i(p, p') = (p, p')((p, p') + (p, p', p' ')i(p', p' ')dp' ')



(p, p')



(p, p')



(p, p', p' ')


i(p, p')

bidirectional reflection distribution function (BRDF)

contribution from reflections from all other points

occlusion term = 0 or 1/r2

intensity from p arriving at p’

emission from p arriving at p’

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

BRDF

•The BRDF characterizes the material

- Generalization of reflection coefficient

•General case requires is a 9 variable

function at given frequency

- position

- direction of three vectors

•Special cases lead to familiar methods

6Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Radiosity

•Assume all surfaces are perfectly diffuse

•Light is scattered equally in all directions

•Divide space into small patches

7Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Form Factors

•Need to compute the form factor between

each pair of patches which describes

effect of light from one patch onto the

other

8Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Radiosity Rendering

•Once the form factors are computer each

patch is a small diffuse patch

•Final render now uses only diffuse term

•As long as geometry is unchanges,

subsequent renderings use same form

factors

9Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Monte Carlo Methods

•Rendering equation cannot be solved

analytically

•One approach to take a probabilistic

(Monte Carlo) approach

- Ray tracing

- Photon mapping

- Path tracing

10Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Ray Tracing

•Follow rays of light from a point source

•Can account for reflection and transmission

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Ray Casting

•Only rays that reach the eye matter

•Reverse direction and cast rays

•Need at least one ray per pixel

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Path Tracing

13Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding Rays

•Basic limitation of ray tracing is the

number of rays we can trace

•Add more rays

- multitisampling

- stochastically

- adaptively

14Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Photon Mapping

• Instead of tracing rays trace photons

•Send out stream of photons

•When photons strike surface, they can be

- absorbed

- go off in multiple directions

•Total number of photons limited by

compute time required

•Off line and stochastic

15Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Ray Tracing

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

17Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Objectives

•Develop a basic recursive ray tracer

•Computer intersections for quadrics and

polygons

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Ray Tracing

•Follow rays of light from a point source

•Can account for reflection and

transmission

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Computation

•Should be able to handle all physical

interactions

•Ray tracing paradigm is not computational

•Most rays do not affect what we see

•Scattering produces many (infinite)

additional rays

•Alternative: ray casting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Ray Casting

•Only rays that reach the eye matter

•Reverse direction and cast rays

•Need at least one ray per pixel

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Ray Casting Quadrics

•Ray casting has become the standard

way to visualize quadrics which are

implicit surfaces in CSG systems

•Constructive Solid Geometry

- Primitives are solids

- Build objects with set operations

- Union, intersection, set difference

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Ray Casting a Sphere

•Ray is parametric

•Sphere is quadric

•Resulting equation is a scalar quadratic

equation which gives entry and exit points

of ray (or no solution if ray misses)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Shadow Rays

•Even if a point is visible, it will not be lit

unless we can see a light source from that

point

•Cast shadow or feeler rays

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Reflection

•Must follow shadow rays off reflecting or

transmitting surfaces

•Process is recursive

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Reflection and Transmission

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Ray Trees

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Ray Tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Diffuse Surfaces

•Theoretically the scattering at each point

of intersection generates an infinite

number of new rays that should be traced

• In practice, we only trace the transmitted

and reflected rays but use the modified

Phong model to compute shade at point

of intersection

•Radiosity works best for perfectly diffuse

(Lambertian) surfaces

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Building a Ray Tracer

•Best expressed recursively

•Can remove recursion later

• Image based approach
- For each ray …….

•Find intersection with closest surface
- Need whole object database available

- Complexity of calculation limits object types

•Compute lighting at surface

•Trace reflected and transmitted rays

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

When to stop

•Some light will be absorbed at each

intersection

- Track amount left

• Ignore rays that go off to infinity

- Put large sphere around problem

•Count steps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Recursive Ray Tracer

color c = trace(point p, vector

d, int step)

{

color local, reflected,

transmitted;

point q;

normal n;

if(step > max)

return(background_color);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Recursive Ray Tracer

q = intersect(p, d, status);

if(status==light_source)

return(light_source_color);

if(status==no_intersection)

return(background_color);

n = normal(q);

r = reflect(q, n);

t = transmit(q,n);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Recursive Ray Tracer

local = phong(q, n, r);

reflected = trace(q, r, step+1);

transmitted = trace(q,t, step+1);

return(local+reflected+

transmitted);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Computing Intersections

• Implicit Objects

- Quadrics

•Planes

•Polyhedra

•Parametric Surfaces

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Implicit Surfaces

Ray from p0 in direction d

p(t) = p0 +t d

General implicit surface

f(p) = 0

Solve scalar equation

f(p(t)) = 0

General case requires numerical methods

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Quadrics

General quadric can be written as

pTAp + bTp +c = 0

Substitute equation of ray

p(t) = p0 +t d

to get quadratic equation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Sphere

(p – pc) • (p – pc) – r2 = 0

p(t) = p0 +t d

p0 • p0 t2+ 2 p0 • (d – p0) t + (d – p0) • (d – p0)

– r2 = 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Planes

p • n + c = 0

p(t) = p0 +t d

t = -(p0 • n + c)/ d • n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Polyhedra

•Generally we want to intersect with closed

convex objects such as polygons and

polyhedra rather than planes

•Hence we have to worry about

inside/outside testing

•For convex objects such as polyhedra

there are some fast tests

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Ray Tracing Polyhedra

• If ray enters an object, it must enter a front

facing polygon and leave a back facing polygon

• Polyhedron is formed by intersection of planes

• Ray enters at furthest intersection with front

facing planes

• Ray leaves at closest intersection with back

facing planes

• If entry is further away than exit, ray must miss

the polyhedron

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What’s Next

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

43Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What we can do now

•Create basic 3D web applications

- can integrate with other HTML5 packages

•Work with event-driven input

•Use a variety of texture-based methods

•Make use of off-screen rendering

44Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What we haven’t covered

•More OpenGL capabilities

•Modeling

•Alternate renderers

• Integration with Web

•Where are things going

45Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What’s in desktop OpenGL

•Much more control and many more options

- Geometry,Tessellation and Compute Shaders

- Level of Detail (LOD)

- 1-4 Dimensional Textures

- Many more texture options

•Vertex Array Buffers

•Occlusion Queries

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What should we expect

soon in APIs

•Movement of more desktop OpenGL

features to ES and WebGL

•WebCL 1.0 released March 2014

•ES 3.0 and ES 3.1

•ECMA 6 Script draft (new version of JS)

•Many JS variants such as Coffee Script

47Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Players have Changed

•Originally hardware and software was

dominated by the scientific and CAD

communities

- SGI key for both hardware and software

- OpenGL developed by SGI

•With PCs and graphics cards leadership

moved to Microsoft and game users

- DirectX

- Video Toaster

48Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Players Have Changed

•Development of GPUs

- Nvidia, AMD and Intel dominate

- OpenGL makes a comeback

- Cg (Nvidia) leads to GLSL

- Interactive games control direction of hw and sw

•Web and smart phones

- Google, Mozilla, Nokia and others dominate

software

- ARM dominates smart phone chips

49Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Advanced Topics

•Level of Detail (LOD)

• Image based rendering

•Light field rendering

•Ray Tracing (CS 413)

•Volume Rendering

•Point Clouds

•Particle Systems

• Information Visualization

50Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

What about Games?

•Need more courses

- Digital Storytelling

- Game AI

- HCI

- Real-time graphics

51Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Supercomputing

•Fastest supercomputers use GPUs for

floating point operations

- GPGPU

- OpenCL/WebGL

- Compute shaders

•Low power is a major issue

- Exascale machine will require 20MW

- Intel vs ARM?

52Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

