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T
he face conveys information 
about a person’s age, sex, back-
ground, and identity; what they 
are feeling, thinking, or likely 
to do next. Facial expression 

regulates face-to-face interactions, indicates 
reciprocity and interpersonal attraction or 
repulsion, and enables intersubjectivity 
between members of different cultures. 
Facial expression indexes neurological and 
psychiatric functioning and reveals person-
ality and socioemotional development. Not 
surprisingly, the face has been of keen inter-
est to behavioral scientists.

About 15 years ago, computer scien-
tists became increasingly interested in the 
use of computer vision and graphics to 
automatically analyze and synthesize facial 
expression. This effort was made possible 
in part by the development in psychology 
of detailed coding systems for describing 
facial actions and their relation to basic 
emotions, that is, emotions that are inter-
preted similarly in diverse cultures. The 
most detailed of these systems, the Facial 
Action Coding System (FACS) [1], 
informed the development of the MPEG-4 
facial animation parameters for video 
transmission and enabled progress toward 
automated measurement and synthesis of 
facial actions for research in affective com-
puting, social signal processing, and 
behavioral science.

INTRODUCTION
Early work focused on expression recogni-
tion between closed sets of posed facial 
actions. More recently, investigators have 
focused on the twin challenges of action 
unit (AU) detection in naturalistic set-
tings, in which low base rates, partial 
occlusion, pose variation, rigid head 
motion, and lip movements associated 

with speech  complicate detection, and 
real-time synthesis of photorealistic ava-
tars that are accepted as live video by naïve 
participants. This article reports key 
advances in behavioral science that are 
becoming possible through these develop-
ments. Before beginning, automated facial 
image analysis and synthesis (AFAS) is 
briefly described. 

AUTOMATED FACIAL IMAGE 
ANALYSIS AND SYNTHESIS
A number of approaches to AFAS have 
been proposed. A leading one used in most 
of the research described below is referred 
to as either a morphable model (MM) [2] 
or an active appearance model (AAM) [3]. 
The terms MM and AAM can be used inter-
changeably, as discussed by [4], so for the 
purposes of this article we shall refer to 
them collectively as an AAM. The AAM is a 
statistical shape (rigid and  nonrigid) and 
appearance model that describes a holistic 
representation of the face [4]. Given a pre-
defined linear shape model with linear 
appearance variation, AAMs align the 
shape model to an unseen image contain-
ing the face and facial expression of inter-
est. The shape s of an AAM is described by 
a triangulated mesh. The coordinates of 
the mesh vertices define the shape s. These 
vertex locations correspond to a source 
appearance image, from which the shape 
is aligned. Since AAMs allow linear shape 
variation, the shape s can be expressed as a 
base shape s0 plus a linear combination of 
m shape vectors
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T 

are the shape parameters. Additionally, a 
global normalizing transformation (e.g., a 
geometric similarity transform) is applied 
to s to remove variation due to rigid head 

motion. Given a set of training shapes, 
Procrustes alignment is employed to nor-
malize these shapes and estimate the base 
shape s0, and principal component analysis 
(PCA) is used to obtain the shape and 
appearance basis eigenvectors si (Figure 1).

SYNTHESIS
An important advantage of AAMs is that 
the models are approximately invertible. 
Synthetic images that closely approxi-
mate the source video can be generated 
from the model parameters. An example 
can be seen in Figure 1(d)–(f), which 
shows appearance synthesized directly 
from an AAM. In some of the examples 
described below, we exploit the synthesis 
capabilities of AAMs to investigate human 
social dynamics. AAMs have made possi-
ble for the first time to experimentally 
disambiguate static cues (sex, age, and so 
on) from biological motion (such as 
expression and gesture).

EXPRESSION DETECTION
In many applications, it is of interest to 
know what facial actions have occurred 
and their intensity. Support vector 
machine (SVM) classifiers, as an example, 
may be trained from video that has been 
labeled for FACS AUs, emotion-specified 
expressions, or other descriptors. SVMs 
attempt to find the hyperplane that maxi-
mizes the margin between positive and 
negative observations for a specified class. 
Accuracy typically is quantified as A9, 
which is the area under the receiver oper-
ating characteristics (ROC) curve. A9 val-
ues can range between .5 (chance) and 1 
(perfect agreement).

FACIAL IMAGE ANALYSIS 
FOR BEHAVIORAL SCIENCE
Standard methods for facial expres-
sion analysis are manual annotation 
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(referred to as coding in behavioral sci-
ence),  perceptual judgments, and facial 
electromyography (EMG). The FACS 
[1], which is the most comprehensive 
manual method, defines over 44 ana-
tomic AUs that individually or in com-
binations can describe nearly all 
possible facial movements. FACS itself 
makes no inferences about the meaning 
of AUs (e.g., emotion). As with all man-
ual methods, FACS is inherently subjec-
tive, labor intensive, and difficult to 
employ consistently across laboratories 
and over time. Perceptual judgment 
methods can reveal the meaning of 
events and shifts in event categories but 
are less able to inform what informa-
tion people use when making judg-
ments. Manual coding and perceptual 
judgment methods can be complemen-
tary when used in combination. 

Facial EMG enables quantitative, auto-
mated measurement of muscle contrac-
tions that underlie facial actions but has 
several limitations. The number of possi-
ble sensors is limited; they lack specificity, 
may inhibit facial expression, and cannot 
distinguish between observable and occult 
facial actions. Motion capture provides 
more coverage and potential specificity 
but is expensive, time consuming, and 
reactivity effects are of particular concern. 
AFAS makes automated, quantitative mea-
surement of the timing of specific observ-
able facial actions possible without use of 
sensors or motion-capture technology that 
may inhibit spontaneous movement.

My colleagues and I have used AFAS to 
detect FACS AUs and expressions; evaluate 
its concurrent validity with manual mea-
surement of AU intensity; investigate the 
timing and configuration of facial actions 
in relation to observers’ judgments of 
facial expression; study physical pain and 
clinical depression; assess reciprocity 
between mothers and infants; and investi-
gate human social dynamics using a video-
conference paradigm.

AUTOMATIC DETECTION 
OF FACIAL AUS

Motivated by our interest in emotion 
expression and social interaction, we have 
used several databases to focus on AUs 
that are most common in these contexts. 

Rutgers University-FACS (RU-FACS) [5] 
consists of interviews with young adults. 
Head pose is frontal with small to moder-
ate head motion and speech. The Group-
Formation-Task (GFT) database [6] 
includes unstructured conversations 
between groups of three young adults over 
the course of a half hour. Partial occlu-
sion, nonfrontal pose, moderate head rota-
tion, and speech are common. The 
Spectrum database [7] includes serial 
symptom interviews with depressed out-
patients over the course of their treat-
ment. Pose is nonfrontal, AUs have lower 
intensity than in the other databases, and, 
like them, head motion, occlusion, and 
speech are common. 

Available FACS codes for each database 
vary. In RU-FACS, approximately ten AU 
occurred with sufficient frequency to 
train and tune classifiers. In GFT, the 
investigators were especially interested in 
AU 6 and AU 12 as indices of positive emo-
tion. AU 6 refers to tightening of the 
sphincter muscle around the eye (which 

lifts the cheeks and causes crow’s feet 
wrinkles to form) and AU 12 refers to the 
zygomatic major muscle that lifts the lip 
corners obliquely in a smile. These two 
AUs in combination have been described 
as the Duchenne smile.

Previous research most often has 
trained and tested classifiers in separate 
subsets of the same database. A more rig-
orous approach is to train and test in sepa-
rate databases collected under different 
conditions. We trained and tuned classifi-
ers in RU-FACS and tested them in 
Spectrum and GFT. 

Accuracy was high in both. For the ten 
most frequent AUs and AU combinations 
in Spectrum, A9 averaged 79.4. In GFT, A9 
for both AUs was .90 or greater in absence 
of partial occlusion, and .90 and .75 (for 
AU 6 and AU 12, respectively) when partial 
occlusion occurred [6]. These results were 
robust to head pose and head motion. 
Within plus/minus 20° pitch and yaw, 
accuracy ranged from .84 to .98. Together, 
these findings from depression interviews 

(a) AAM s0 (b) AAM s1 (c) AAM s2

(d) AAM λ0 (e) AAM λ1 (f) AAM λ2

(g) 3DMM s0 (h) 3DMM s1 (i) 3DMM s2

[FIG1] An example of the computation of AAM shape and appearance. The figure 
shows the mean and first two modes of variation of (a)–(c) two-dimensional AAM 
shape and (d)–(f) appearance variation and (g)–(i) first three three-dimensional shape 
modes. (Image used with permission from IEEE Computer Society). 
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and group interaction tasks suggest that 
classifiers independently trained in one 
data set can accurately detect socially sig-
nificant actions in completely independent 
data sets. 

COMPARISON WITH CRITERION 
MEASURES OF FACIAL DYNAMICS
Expression intensity and change in inten-
sity over time modulate an expression’s 
message value. Smiles perceived as insin-
cere, for instance, have more rapid onset 
to peak intensity than those judged sin-
cere. Polite smiles typically have lower 
intensity than those of enjoyment [8]. If 
automated facial image analysis can detect 
facial actions reliably, how well can it 
detect their intensity? The correlation 
between automated and manual measure-
ment of AU intensity has been evaluated 
several ways. 

One is to compare measures of physi-
cal displacement. Facial EMG is a gold 
standard for measurement of facial mus-
cle activity. AFAS and zygomaticus major 
EMG were compared for lip corner 

motion (AU 12). Not surprisingly, facial 
EMG had greater sensitivity to occult 
muscle contractions, but the two mea-
sures were highly consistent for observ-
able smiles (r = .95).

A second is to ask whether movement 
is consistent with perceptual judgments of 
an expression’s message value, such as its 
emotional valence. In [9], naïve observers 
used a joystick device to measure the per-
ceived valence of mothers’ and infants’ 
expressions during face-to-face interac-
tion. A portion of the resultant time series 
for perceived valence and FACS coded 
intensity of AU 6, AU 12, and AU 26 (mouth 
opening) are plotted in Figure 2. 
Intersystem consistency was high, which 
supports the use of automated facial image 
analysis to measure the intensity of per-
ceived positive emotion. 

SYNCHRONY 
The time series (Figure 2) reveal synchro-
ny within and between partners. Within 
partners, eye constriction and smiling (AU 
6 and AU 12, respectively) were coupled, 

which is  consistent with the hypothesis 
that the Duchenne smile is a temporally 
integrated event. Between partners, cycles 
of eye constriction and smiling were loose-
ly coupled with moderate cross correla-
tions between time series. 

CONFIGURATION AND TIMING 
OF SMILES IN RELATION TO 
THEIR PERCEIVED MEANING
Smiles are the most frequent facial expres-
sions and can communicate diverse mean-
ings. What accounts for the differences in 
meaning that may occur? All smiles 
involve an oblique pull of the lip corners 
(AU 12 in FACS), but what influences 
whether a smile is perceived as one of 
delight, embarrassment, or politeness? 
The authors in [8] used a combination of 
manual and automated measurement to 
answer this question. They selected 
unposed smiles that occurred during the 
recording of facial action tasks. Smiles 
were considered unposed if they occurred 
at times other than when participants 
were requested to perform a smile or other 

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

Z
 S

co
re

Z
 S

co
re

0 4 8 12 16 20 24
Seconds

28 32 36 40 44 0 2 4 6 8 10 12 14 16
Seconds

18 20 22 24 26 28

Infant A Infant B

Mother A Mother B

Smile Strength
Mouth Opening

Cheek Raising
Positive Emotion

Smile Strength
Mouth Opening

Cheek Raising
Positive Emotion

Smile Strength
Cheek Raising
Positive Emotion

Infant A

Smile Strength
Mouth Opening

Cheek Raising
Positive Emotion

Infant B

Smile Strength
Mouth Opening

Cheek Raising
Positive Emotion

Mother A

Smile Strength
Cheek Raising
Positive Emotion

Mother B

Smile Strength
Cheek Raising
Positive Emotion

[FIG2] Smile parameters and rated positive emotion over time. Infant graphs show the association of automated measurements of 
smile strength (AU 12 intensity), eye constriction (AU 6 intensity), mouth opening (AU 25-27), and rated positive emotion. Mother 
graphs show the association of automated measurements of corresponding parameters. Positive emotion is offset by 0.6 s to account 
for rating lag. (Image used with permission from Taylor & Francis Group, LLC.) 
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action. These unposed smiles then were 
shown to groups of naïve observers to clas-
sify into one of several categories: amuse-
ment, polite, and embarrassed or nervous. 
Morphological characteristics, such as 
presence or absence of AU 6 were derived 
from manual FACS coding. Dynamic char-
acteristics, such as maximum velocity of 
the lip corners during smile onsets and 
offsets, head nods and head turns, were 
measured automatically. 

The three types of smiles varied with 
respect to multiple features. Relative to 
perceived polite smiles, perceived amused 
smiles had larger amplitude, longer dura-
tion, more abrupt onset and offset, and 
more often included AU 6, open mouth, 
and smile controls. Relative to those per-
ceived as embarrassed/nervous, perceived 
amused smiles were more likely to 
include AU 6 and have less downward 
head movement. Relative to those per-
ceived as polite, perceived embarrassed/
nervous smiles had greater amplitude, 
longer duration, more downward head 
movement, and were more likely to 
include open mouth. These findings begin 
to answer the question about what char-
acteristics influence the perceived mean-
ing of facial actions and exemplify how 
automated and manual measurements 
may be used in combination.

PAIN DETECTION
Pain is difficult to assess and manage. 
Pain is fundamentally subjective and is 
typically measured by patient self-report. 
Using a visual analog scale (VAS), patients 
indicate the intensity of their pain by 
marking a line on a horizontal scale, 
anchored at each end with words such as 
“no pain” and “the worst pain imagin-
able.” This and similar techniques are 
popular because they are convenient, sim-
ple, satisfy a need to attach a number to 
the experience of pain, and often yield 
data that confirm expectations. 

Self-report measures, however, have 
several limitations. They are idiosyncratic, 
depending as they do on preconceptions 
and past experience; are susceptible to 
suggestion, impression management, and 
deception; and lack utility with young chil-
dren, individuals with certain types of neu-
rological impairment, many patients in 

postoperative care or transient states of 
consciousness, and those with severe dis-
orders requiring assisted breathing, 
among other conditions. 

Pain researchers have made significant 
progress toward identifying facial actions 
indicative of pain. These include brow low-
ering (AU 4), orbital tightening (AU 6 and 
7), eye closure (AU 43) and nose wrinkling, 
and lip raise (AU 9 and 10). Previous work 
suggested that these actions could be iden-
tified automatically. This led us to ask 
whether AFAS could replicate expert rat-
ings of pain. 

Participants with a history of shoulder 
injury (e.g., torn rotator cuff) were record-
ed while manipulating their affected and 

unaffected shoulders. Their facial behavior 
was FACS coded and pain was measured 
using a composite of AUs associated with 
pain and with self-report. AFAS successful-
ly detected each of the key AUs and pre-
cisely identified episodes of pain [10], [11]. 

Two related findings also emerged. 
First, pain could be detected with com-
parable accuracy either directly from 
AAM features fed to a classifier or by a 
two-step classification in which core 
AUs were first detected and they in turn 
were given to a classifier to detect pain. 
This finding suggests that classifier 
design may be simplified in related 
applications and has implications for 
our understanding of the face of pain. 
Second, adequate results could be 
achieved from relatively coarse ground 
truth in place of frame-by-frame behav-
ioral coding. Both findings have impli-
cations for pain detection and related 
detection tasks, especially those for 
which relatively longer behavioral 
states (e.g., pain or depression) are of 
interest rather than fast facial actions. 
An important clinical implication is 
that automated pain detection in bio-
medical settings appears feasible and 
ready for testing.

DEPRESSION SEVERITY
Diagnosis and assessment of symptom 
severity in psychopathology are almost 
entirely informed by what patients, fami-
lies, or caregivers report. Standardized 
procedures for incorporating facial and 
related nonverbal expression are lacking. 
This is especially salient for depression, for 
which there are strong indications that 
facial expression and other nonverbal 
communication may be powerful indica-
tors of disorder severity and response to 
treatment. In comparison with nonde-
pressed individuals, depressed individuals 
look less at conversation partners, gesture 
less, show fewer Duchenne smiles, more 
sadness and suppressor movements, and 
less facial animation. Depressed mothers 
are slower and more variable to respond to 
their infants [7].

To learn whether such effects might be 
detected using AFAS, we studied patients 
enrolled in a clinical trial for treatment of 
depression. Each was seen on up to four 
occasions over 20 weeks. Sessions were 
divided into those with clinically signifi-
cant severity and those meeting criteria 
for remission. Automated measurement 
was 79% accurate in discriminating these 
two types [7]. More recent findings sug-
gest that lowered head pitch and head 
turns away from the clinician along with 
more  variable vocal turn-taking were espe-
cially discriminative. 

These findings are particularly infor-
mative in that all participants initially met 
criteria for depression. Almost all previous 
work has compared only depressed and 
nondepressed comparison participants. 
Because depression is moderately to high-
ly correlated with  personality (especially 
neuroticism)  comparisons between 
depressed and nondepressed participants 
lack specificity for depression. This study 
is one of very few to find within a clinical 
sample that depression severity is revealed 
by expressive behavior and to do so using 
automated measurement.

FACIAL IMAGE SYNTHESIS 
FOR BEHAVIORAL SCIENCE
In conversation, expectations about 
another person’s identity are insepara-
ble from their actions. Even over the 
telephone, when visual information is 

AN IMPORTANT CLINICAL 
IMPLICATION IS THAT 

AUTOMATED PAIN DETECTION 
IN BIOMEDICAL SETTINGS 
APPEARS FEASIBLE AND 

READY FOR TESTING.
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unavailable, we make inferences from 
the sound of the voice about the other 
person’s gender, age, and background. 
To what extent do we respond to whom 
we think we are talking to rather than 

to the dynamics of their behavior? This 
question had been unanswered because 
it is difficult to separately manipulate 
expectations about a person’s identity 
from their actions. An individual has a 

characteristic and unified appearance, 
head motions, facial expressions, and 
vocal inflection. For this reason, most 
studies of person perception and social 
expectation are naturalistic or manipu-
lations in which behavior is artificially 
scripted and acted. But scripted and 
natural conversations have different 
dynamics. AFAS provides a way out of 
this dilemma. For the first time, static 
and dynamic cues become separable.

Pairs of participants had conversa-
tions in a video-conference paradigm. 
One was a confederate for whom an 
AAM had previously been trained. 
Unbeknownst to the other participant, 
a resynthetized avatar was substituted 
for the live video of the confederate 
(Figure 3) [12]. The avatar had the face 
of the confederate or another person of 
same or opposite sex. All were animated 
by the actual motion parameters of the 
confederate (Figure 4). 

The apparent identity and sex of a 
confederate was randomly assigned and 
the confederate was blind to the identi-
ty and sex that they appeared to have 
in any particular conversation. The 
manipulation was believable in that, 
when given an opportunity to guess 
the manipulation at the end of experi-
ment, none of the naive participants 
was able to do so. Significantly, the 
amplitude and velocity of head move-
ments were influenced by the dynam-
ics (head and facial movement and 
vocal timing) but not the perceived sex 
of the partner. 

These findings suggest that gender-
based social expectations are unlikely to be 
the source of reported gender differences 
in head nodding between partners. 
Although men and women adapt to each 
other’s head movement amplitudes it 
appears that adaptation may simply be a 
case of people (independent of sex) adapt-
ing to each other’s head movement ampli-
tude. A shared equilibrium is formed when 
two people interact. 

These results are consistent with a 
hypothesis of separate perceptual streams 
for appearance and biological motion. 
Head movements generated during con-
versation respond to dynamics but not 
appearance. In a separate perceptual study, 

(a) (b)

(c) (d)

[FIG3] Illustration of the videoconference paradigm. (a) Video of the source person; (b) 
AAM tracking of the source person; (c) AAM reconstruction that is viewed by the naive 
participant; d) video of the naive participant. (Image reused from Figure 5 in [12] with 
permission from the Royal Society.)

(a) (b) (c)

(d) (e) (f)

[FIG4] Applying expressions of a male to the appearances of other persons. In (a), the 
avatar has the appearance of the person whose motions were tracked. In (b) and (c), the 
avatars have the same–sex appearance. Parts (d)–(f) show avatars with opposite–sex 
appearance. (Image courtesy of the APA.) 
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we found that judgments of sex were influ-
enced by appearance but not dynamics. 
Judgments of masculinity and femininity 
were more complicated; appearance and 
dynamics each contributed. This dissocia-
tion of the effects of appearance and 
dynamics is difficult to explain without 
independent streams for appearance and 
biological motion.

CONCLUSION AND 
FUTURE DIRECTIONS
Significant progress has been made in 
developing and applying AFAS to behav-
ioral science applications. In several rela-
tively challenging data sets, we have 
detected socially relevant AUs, expres-
sions, and behavioral states (e.g., pain 
and depression) of theoretical, develop-
mental, and clinical import. Beginning 
with the Spectrum database, clinical tri-
als have begun. 

An ongoing effort is to make “auto-
mated” measurement more automated 
and to use it to extend human perfor-
mance. As mentioned previously, AAMs 
can be used for both analysis (i.e., estimat-
ing nonrigid shape and appearance) and 
synthesis. The analysis process is com-
monly referred to as “tracking” in the 
computer vision literature as it is estimat-
ing shape and appearance measurements 
from a temporal image sequence. The 
AAM tracking approach we have exploited 
requires that about 3% of video be hand 
annotated to train person-specific models. 
While this is feasible for research use, 
clinical and many affective computing and 
social signal processing applications seek 
approaches that can work “out of the box.” 
While person-independent (i.e., generic) 
alternatives to AAM tracking have been 
proposed (most notably constrained local 
models (CLMs) [13], they lack the rela-
tively precise shape estimation possible 
with person-specific AAM. When face-
shape tracking loses precision, the infor-
mation value of shape and many 
appearance features degrades ungraceful-
ly. An exciting development is registration 
invariant representations (e.g., Gabor 
magnitudes) to provide a way out of this 
dilemma. In combination with real-time 
tracking via more generic but imprecise 
trackers (e.g., CLM), “AAM-like” expres-

sion detection results can be obtained in 
the presence of noisy dense registration 
through the use of registration invariant 
features [14]. These results are limited so 
far to posed facial actions. Current work is 
applying CLM and registration invariant 
features to the more challenging video 
databases described above. 

A fruitful approach is to use AFAS to 
extend the reach and yield of manual 
efforts. The research on types of smiles, 
for instance, illustrates the advantages 
that accrue by using a combination of new 
and traditional tools for video analysis. 
Our group has shown that manual coding 
time can be reduced by over half when 
AFAS is used in combination with manual 
FACS coding. FACS coders code only AU 
peaks; AFAS then automatically finds the 
onsets and offsets of each AU. Systems 
that enhance user expertise and efficiency 
by automated facial video analysis are 
coming online. 

The real-time, veridical animation 
capabilities of AFAS are an especially excit-
ing research direction. As noted above, for 
the first time it is possible to experimen-
tally separate appearance and motion and 
to manipulate temporal dynamics as well. 
The finding that head nodding is regulated 
by dynamics rather than by the partner’s 
evident gender informs theory in embod-
ied cognition. 

Correlational evidence suggests that 
specific facial expressions (e.g., the 
Duchenne smile) have unique signal 
value. Until now, experimental tests of 
this hypothesis have not been possible. 
Using the communication avatar, facial 
displays might be manipulated on the 
fly to test their functional role. Initial 
work toward this goal has already 
begun. We found that attenuating facial 
expression and head nods in the avatar 
caused a reciprocal increase in expres-
siveness by the partner. Age and ethnic-
ity are among other variables to explore 
with this approach, as well as extensions 
to video conferencing and electronic 
entertainment. 

In summary, AFAS is well advanced, 
making contributions to a range of topics 
in emotion, developmental, and social 
psychology, pain, and human social 
dynamics. 
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