

Language Technologies Institute

Multimodal Affective Computing

Lecture 5: Vocal Messages

Louis-Philippe Morency Jeffrey Girard

Originally developed with help from Stefan Scherer and Tadas Baltrušaitis

Outline of this week's lectures

- Multiple Layers of Vocal Messages
 - What we can convey with speech
- Fundamentals of speech production and hearing
 - Anatomy of the vocal tract and the physiology of hearing
 - Fundamental speech measures (direct vs. perceptual measures)
- Prosodic manipulation and its meaning
- Use and detection of varying voice quality
- Nonverbal vocal expressions
 - Laughter, pause filler (e.g. uh, um), and moans
- Practical tools for speech signal processing
- Automatic Techniques for visual processing

Upcoming Schedule

- Week 5
 - Tuesday 2/12: Lecture on Vocal Messages
 - Thursday 2/14: Discussion (visual & vocal messages)
- Week 6:
 - Tuesday 2/19: Lecture on Verbal Messages
 - Thursday 2/21: Proposal presentations
 - Sunday 2/24: Due date for proposal reports
- Week 7:
 - Tuesday 2/26: Lecture on Statistical Analysis
 - Thursday 2/28: Discussion (verbal messages)

A story is told as much by silence as by speech. Susann Griffin

Multiple Layers of Vocal Messages

Linguistic layer

- Carries the semantic information
- Language, grammar, phonemes, parts of prosody

Paralinguistic layer

- Non-linguistic and nonverbal layer
- Conveys information about current affective state, mood, attitude etc.
- Voice quality, prosody, nonverbal vocal expressions (e.g. laughter, moans, sighs)
- Main topic of this lecture!

Extralinguistic layer

 Identifies the speaker (e.g. age, gender, pitch range, habitual characteristics)

Fundamentals of Speech

Language Technologies Institute

Anatomy of the vocal tract

- Speech production involves multiple organs that shape the sound
 - Lungs
 - Vocal folds
 - Mouth/tongue
 - Nasal cavity
 - Lips

Pictures from Gray's anatomy 1918

Anatomy of the vocal tract (2)

- Vocal folds vibrate and produce fundamental frequency (f0)
- Vibration is based on muscular tension and air pressure

Source: youtube.com

Anatomy of the vocal tract (3)

- Vowels
- Tongue position influences the tone
- Tongue modulates the length of the cavities in the mouth

Source: wikipedia.org

Anatomy of the vocal tract (4)

- Mouth opening, lip rounding and teeth influence the sound
- Other Sounds:
 - Nasal sounds (e.g. [m], [n])
 - Stops (e.g. [k],[t],...)
 - · · ·

Ladefoged, A course in phonetics, 2004

Language Technologies Institute

Anatomy of the hearing organ

- Outer ear collects sound waves
 - Filters and allows directionality detection
- In the middle ear the sound waves are transferred via drum and three little bones called ossicles
- The inner ear transfers physical waves into nervous signals

Pictures from Gray's anatomy 1918

Anatomy of the hearing organ (2)

- Transformation between sound waves and nervous signals sent to the brain is not linear
- There are perceptual differences:
 - Not every frequency is perceived with the same intensity or accuracy

Pictures from Gray's anatomy 1918

Anatomy of the hearing organ (3)

Anatomy of the hearing organ (4)

Perceptual measures

- Loudness vs. intensity
- Pitch vs. fundamental frequency

Try it out: http://tinyurl.com/px5g7cf

Representation Of Speech

Language Technologies Institute

Representations of speech

Different domain representations:

- Time
- frequency
- Signal can be transferred from one domain to the other using Fourier transformation
 - Measures the amount of "presence" of a sine wave with a certain frequency in the original signal
- Two types: broadband and narrowband spectrogram
 - Bandwidth is defined by width of analysis window

Fundamental Frequency

Fundamental frequency (f0) is the basic resonance of the vocal folds

 Harmonics are multiples of f0

Formant Frequencies

Formant frequencies are resonance frequencies dependent on the length of the vocal tract cavities

 The vocal tract is manipulated by the tongue etc.

Source: wikipedia.org

Example Use of Formant Frequencies

Vowel space

 Gender and age define vowel space size.

What could be a reason for reduced vowel space?

Example Use of Formant Frequencies

Vowel space

 Medical relevance: Parkinson's Disease ALS Depression

Mel frequency cepstral coefficients (MFCC)

Mel frequency cepstral coefficients (MFCC)

- Compact representation of the spectrum
- Emulates human hearing
- Popular for speech recognition

Mel frequency cepstral coefficients (MFCC)

Mel frequency cepstral coefficients (MFCC)

Language Technologies Institute

23

Prosody

Language Technologies Institute

Prosody can strongly influence the meaning

Elements of prosody

- Prosody, the suprasegmental envelope of an utterance, is composed by:
 - Syllable length
 - Loudness
 - Pitch
 - Pauses
- Prosody influences and defines:
 - Prosodic boundaries
 - Question or statement
 - Sarcasm
 - Emotional state
 - Meaning of words (e.g. in Chinese)

Prosodic Boundaries

Can you hear the difference?

I met Mary and Elena's mother at the mall yesterday.

Sally saw % the man with the binoculars. Sally saw the man % with the binoculars.

When Madonna sings % the song is a hit. When Madonna sings the song % it's a hit.

Same 'tune', different alignment

What is a good source of vitamins?

Same 'tune', different alignment

Are legumes a source of vitamins?

Same 'tune', different alignment

What are legumes a good source of?

Other Uses of Pitch Contour Analysis

- Rising pitch contour towards the end of an utterance indicates a yes-no question
- WH-questions have a falling pitch contour
- Signaling doubt or uncertainty can be expressed by rising contour in the end of an utterance

Yes-No question tune

Rise from the main accent to the end of the sentence.

Yes-No question tune

Rise from the main accent to the end of the sentence.

Yes-No question tune

Rise from the main accent to the end of the sentence.

Rising statements

Emotional state

Prosody can be used to express emotion

Acoustic Parameters	Arousal/Stress	Happiness	Anger	Sadness	Fear	Boredom
Speech rate and fluency						
Number of syllables	>	>=	\diamond	<	>	<
Syllable duration	<	<=	\diamond	>	<	>
Number/duration of pauses	<	<	<	>	<>	>
f ₀ and prosody						
f ₀ mean	>	>	>	<	>	<=
f ₀ deviation	>	>	>	<	>	<
f ₀ range	>	>	>	<	<>	<=
Gradient of f ₀	>	>	>	<	<>	<=
Vocal Effort/phonation						
Intensity (dB) mean	>	>=	>	<=		<=
Intensity (dB) deviation	>	>	>	<		<
Jitter		>=	>=		>	=
Shimmer		>=	>=		>	=

Emotional state: Neutral

- Low pitch
- Low pitch variation
- Moderate loudness

Emotional state: Angry

- High pitch
- High pitch variation
- High intensity

Emotional state: Fear

- Average pitch
- Average pitch variation
- Average intensity

Language Technologies Institute

Emotional state (5)

 QUIZ (Who knows the Germans best?)

- Allowed answers:
 - Happiness
 - Anger
 - Sadness

- Disgust
- Fear
- Neutral

Voice Quality

Language Technologies Institute

Voice Quality

- Does not refer to a term concerning fidelity or "goodness"
- Refers to the timbre or coloring of a voice
- Functions:
 - Meaning or disambiguation of words (e.g. in Gujarati) (<u>http://www.phonetics.ucla.edu/vowels/chapter12/gujarati.html</u>)
 - Paralinguistic signal
 - Attitude
 - Mood
 - Social factors (e.g. standing, (*inter*-)personality)
 - Affective state
 - Turn-management (e.g. in Finnish)

Voice Quality

- Can be seen as the signal residue after removing effects of the vocal tract filter
- The phonation and manner of the vocal folds vibrate play a major role (exceptions: e.g. whisper)

Vocal Folds: Phonation Gestures

Adductive tension: Movement toward the mi dline of the vocal fold.

- Medial compression: adductive force on vocal processes
- Longitudinal pressure: tension of vocal folds

- "Neutral" mode
- Muscular adjustments moderate
- Vibration of vocal folds periodic, full closing of glottis, no audible friction
- Frequency of vibration and loudness in low to mid range for conversational speech

Harsh/Tense Voice

 Very strong tension of vocal folds, very high tension in vocal tract

Whispery Voice

- Little or no vocal fold vibration
- Very low adductive tension
- Medial compression moderately high
- Longitudinal tension moderately high
 - Turbulence generated by friction of air in and above larynx, with vocal folds not vibrating

Creaky Voice (vocal Fry)

- Vocal fold vibration at low frequency, irregular
- Low tension
- The vocal folds strongly adducted
- Longitudinal tension weak
- Moderately high medial compression

C<mark>arnegie Mellon University</mark>

Language Technologies Institute

lilule

Breathy Voice

- Tension low
 - Minimal adductive tension
 - Weak medial compression
- Medium longitudinal vocal fold tension
- Vocal folds do not come together completely, leading to frication

Creaky voice (Vocal fry)

Examples of Voice Quality Measures

- Open Quotient (OQ)
- Normalized Amplitude Quotient (NAQ)
- Peak Slope

Suicide Prevention

[ICASSP 2013]

- Nonverbal indicators of suicidal ideations
- Dataset: 30 suicidal adolescents/30 non-suicidal adolescents
- Suicidal teenagers use more breathy tones

Nonverbal Vocal Expressions

Language Technologies Institute

Nonverbal vocal expressions

- Nonverbal vocal expressions are paralinguistic utterances
 - Backchannel (e.g. uhu, hm, yeh)
 - Laughter
 - Moans/Sighs
 - Pause fillers (e.g. um, uh)
- Varying functions and possible interpretations
- Distinct prosodic and vocal characteristics
- Often accompanied with distinct facial expressions (e.g. laughing)

Backchannels

- Backchannels are important fragments of speech
- Functions:
 - Turn-taking management
 - Signals agreement and attention

•••

- Important social communicational expression
- Understood by all cultures
- Varying meanings:
 - Humorous laughter
 - Signals agreement
 - Uncertainty (e.g. social laughter, nervous laughter)
- Multimodal!

"Laughter [...] *is performed almost exclusively during social encounters; solitary laughter seldom occurs except in response to media, a source of vicarious social stimulation."* – Provine and Yong

0

Time [s]

Language Technologies Institute

- Acoustically very distinct but variable
 - Snort-like
 - Inhaled
 - Exhaled
- Often arranged in *bouts* consisting of single *calls*
 - Often about 200ms in length, but quite variable in length

Hesitations/Pause fillers

- Hesitations (e.g. pause fillers: um, uh)
- Multiple functions
 - Signal anxiety or nervousness
 - Proficiency in speaking
- Characterized by prolonged vowels and static spectrum

Practical Tools for Speech Processing

Language Technologies Institute

Useful Software

COVAREP - A Cooperative Voice Analysis Repository for Speech Technologies (Matlab and Octave) <u>https://github.com/covarep/covarep/</u>

Degottex, G., Kane, J., Drugman, T., Raitio, T., and Scherer, S., COVAREP - A collaborative voice analysis repository for speech technologies, under review at International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

openSMILE - Speech & Music Interpretation by Large Space Extraction

 openSMILE is a fast, real-time (audio) feature extraction utility (C++)

http://opensmile.sourceforge.net/

Useful Software

- Praat
- http://www.fon.hum.uva.nl/praat/
- Useful for feature extraction/visualization and more!

Upcoming Conferences

- Affective Computing & Intelligent Interaction (ACII)
 - http://acii-conf.org/2019/
 - Deadline: April 12, 2019
- International Conference on Multimodal Interaction (ICMI)
 - https://icmi.acm.org/2019/
 - Deadline: May 7th, 2019
- Affective Computing Pre-Conference at ISRE (International Society of Research on Emotion)
 - <u>https://www.isre2019.org/program/pre-conferences/affective-computing</u>
 - Deadline: May 7th, 2019
- Empirical Methods in Natural Language Processing
 - https://www.emnlp-ijcnlp2019.org/
 - Deadline: May 21th, 2019

