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Inference by Eye

Confidence Intervals and How to Read Pictures of Data

Geoff Cumming and Sue Finch
La Trobe University

Wider use in psychology of confidence intervals (ClIs),
especially as error bars in figures, is a desirable develop-
ment. However, psychologists seldom use Cls and may not
understand them well. The authors discuss the interpreta-
tion of figures with error bars and analyze the relationship
between Cls and statistical significance testing. They pro-
pose 7 rules of eye to guide the inferential use of figures
with error bars. These include general principles: Seek
bars that relate directly to effects of interest, be sensitive to
experimental design, and interpret the intervals. They also
include guidelines for inferential interpretation of the over-
lap of Cls on independent group means. Wider use of
interval estimation in psychology has the potential to im-
prove research communication substantially.

nference by eye is the interpretation of graphically

presented data. On first seeing Figure 1, what questions

should spring to mind and what inferences are justified?
We discuss figures with means and confidence intervals
(ClIs), and propose rules of eye to guide the interpretation of
such figures. We believe it is timely to consider inference
by eye because psychologists are now being encouraged to
make greater use of CIs.

Many who seek reform of psychologists’ statistical
practices advocate a change in emphasis from null hypoth-
esis significance testing (NHST) to CIs, among other tech-
niques (Cohen, 1994; Finch, Thomason, & Cumming,
2002; Nickerson, 2000). The American Psychological As-
sociation’s (APA) Task Force on Statistical Inference
(TFESI) supported use of CIs (Wilkinson & TFSI, p. 599),
and the APA Publication Manual states that Cls “are, in
general, the best reporting strategy” (APA, 2001, p. 22).

Statistical reformers also encourage use of visual rep-
resentations that make clear what data have to say. Figures
can “convey at a quick glance an overall pattern of results”
(APA, 2001, p. 176). The TFSI brought together advocacy
of CIs and visual representations by stating the following:
“In all figures, include graphical representations of interval
estimates whenever possible” (Wilkinson & TFSI, 1999, p.
601). In other words, CIs should be displayed in figures.
We applaud this recommendation and believe it has the
potential to enhance research communication in psychol-
ogy. However, two difficulties are likely to hinder its
adoption. First, according to evidence presented by Belia,
Fidler, Williams, and Cumming (2004) and Cumming,
Williams, and Fidler (2004), many researchers in psychol-

ogy and some other disciplines have important misconcep-
tions about CIs. Second, there are few accepted guidelines
as to how CIs should be represented or discussed. For
example, the Publication Manual (APA, 2001) gives no
examples of CI use and no advice on style for reporting CIs
(Fidler, 2002).

Four main sections follow. In the first, we discuss
basic issues about CIs and their advantages. The second
presents our rules of eye for the interpretation of simple
figures showing means and CIs. Our main focus is CIs, but
in the third section we discuss standard error (SE) bars. We
close with comments about some outstanding issues.

Cls and Error Bars: Basic Issues
What Is a CI?

Suppose we wish to estimate the verbal ability of children
in Melbourne, Australia. We choose a recognized test of
verbal ability and are willing to assume its scores are
normally distributed in a reference population of children.
We test a random sample of Melbourne children (n = 36)
and find the sample mean (M) is 62 and the sample standard
deviation (SD) is 30. Then M is our point estimate of the
population mean verbal ability of Melbourne children. We
seek also a 95% CI, which is an interval estimate that
indicates the precision, or likely accuracy, of our point
estimate. The 95% is the confidence level, or C, of our CI,
and we are following convention by choosing C = 95. The
CI will be a range centered on M, and extending a distance
w either side of M, where w (for width) is called the margin
of error. The margin of error is based on the SE, which is
a function of SD and n. In fact, SE = SD/\/n = 30/A/36 =
5, and w is the SE multiplied by ¢, _ |, ¢, which is a critical
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value of the ¢ statistic that depends on our chosen value
of C.

For C = 95, we need the value of 7, withdf = n—-1 =
35, that cuts off the lower 2.5% and upper 2.5% of the ¢
distribution; this critical value is 2.03. Our margin of error
isw = 2.03 X 5 = 10.15. The lower limit of our CI is M
—w = 51.85, and the upper limit is M + w = 72.15, and
so the 95% CI we seek is (51.85 to 72.15), also written as
(51.85, 72.15). This is our interval estimate of the mean
verbal ability of Melbourne children.

More generally, in the simple cases we consider the CI
estimates w, the population mean, and the margin of error
is givenby w = ¢, _ ) c X SE. The Clis (M —w, M + w)
and so the full extent of the CI is twice the margin of error,
or 2 X w. Different levels of confidence give different sizes
of CI, because 7, _ 1, - depends on C. To be more confident
that our interval includes w, we need a wider interval: A
99% ClI is wider than a 95% CI based on the same data, and
a 90% CI is narrower.

Hays (1973) described a CI as “an estimated range of
values with a given high probability of covering the true
population value” (p. 375). It is essential, however, to be
extremely careful whenever probability is mentioned in
connection with a CL It is correct to state that the proba-
bility that (M —w = w = M + w) = .95, but this is a
probability statement about the lower and upper limits,
which vary from sample to sample. It would be incorrect to
state that our interval (51.85, 72.15) has probability .95 of
including u, because that suggests that y varies, whereas
is fixed, although unknown.

Figure 2 illustrates how M and w, and thus the 95%
CI, vary if the experiment is repeated many times. In the
long run, we expect 95% (more generally, C%) of the Cls
to include . As Figure 2 also illustrates, w is more often

captured by the central part of a CI than by either extreme.
The occasional CI (two cases in Figure 2; 5% of cases in
the long run) will not include w. Running an experiment is
equivalent to choosing just one CI like those shown in
Figure 2, and of course we do not know whether our
interval does or does not capture . Our CI comes from an
infinite sequence of potential CIs, 95% of which include p,
and in that sense there is a chance of .95 that our interval
includes u. However, probability statements about individ-
ual CIs can so easily be misinterpreted that they are best
avoided. Bear in mind Figure 2 and that our calculated CI
is just one like those illustrated.

Why Use Cis?

Four major advantages of Cls are that (a) they give point
and interval estimates in measurement units that should be
readily comprehensible in the research situation; (b) there
is a link between Cls and p values and hence familiar
NHST; (c) CIs help combine evidence over experiments:
They support meta-analysis and meta-analytic thinking fo-
cused on estimation; and (d) CIs give information about

Figure 1
Two Fictitious Sample Means With Error Bars
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Note. Sample size is n = 25 for each, the means are M, and Mg, and the
length of a single bar is w, or wg, which is half the extent of the whole interval.
If the error bars depict confidence intervals, w, and wg are the margins of error.
The first ambiguity is that the bars may instead depict standard error bars or
may even show standard deviation. The second ambiguity concerns experimen-
tal design, as Figure 3 illustrates.
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precision, and this may be more useful than a calculation of
statistical power. In our primer on CIs (Cumming & Finch,
2001), we discussed these four aspects further.

There are complex situations, including multivariate
analyses and assessment of the fit of models, where it may
be difficult or impossible to find appropriate CIs. However
the home territory of Cls is being expanded. Smithson
(2000) wrote a statistics textbook for the behavioral sci-
ences that places CIs center stage. Guidance for the calcu-
lation of ClIs is given for a broad range of situations by
Altman, Machin, Bryant, and Gardner (2000), Smithson
(2002), and Kline (2004). More specific guidance is given
by Steiger and Fouladi (1997) for CIs requiring noncentral
distributions; Cumming and Finch (2001) for the standard-
ized effect size measure known as Cohen’s d; Fidler and
Thompson (2001), Bird (2002), and Steiger (2004) for
some analysis of variance effect sizes; and Smithson (2001)
for some regression effect sizes and parameters.

In this article, we refer often to the link between Cls
and p values, which we hope may assist researchers de-
velop their CI thinking and practices, but this link is only
one of the four points above. We agree with the numerous
writers, including Krantz (1999), Oakes (1986), and Rossi
(1997), who argue that CIs offer important advantages
beyond the link with statistical significance testing. When
interpreting Cls, any or all of the four aspects may give
insight, and it is important to avoid thinking only of p
values or whether a null hypothesis should be rejected.

The very common choice of C = 95, which corre-
sponds to a = .05, may be a legacy of NHST, but research-
ers can use C = 90, or 99, or some other value if there is
good reason. In this article, however, we focus on 95% Cls
not to reinforce the link with NHST but for consistency
with most common CI practice. We aim first to encourage

good intuitions about 95% ClIs rather than discussing in-
tervals that differ because of various choices of C.

In traditional NHST practice, a dichotomous decision
is made: A null hypothesis is rejected if p < .05, and
otherwise is not rejected. The corresponding, but not nec-
essarily appropriate, conclusion is often that an effect is
real or not. The Publication Manual (APA, 2001) describes
dichotomous decision making and also describes the prac-
tice of reporting exact p values. It concludes by saying “in
general it is the exact probability (p value) that should be
reported” (p. 25). Reporting exact p values encourages a
move from NHST as dichotomous decision making to the
consideration of p values as useful input to interpretation.
We believe this is a positive move and, further, that CIs can
also assist psychologists to move beyond dichotomous
NHST. Development of better ways to present and discuss
CIs, and the wider use of CIs, could lead psychology
researchers to formulate their ideas more in estimation
terms and to design their experiments accordingly. This
should lead to theories that are more quantitative (Wilkin-

Figure 2
The 95% Confidence Interval (Cl) for the Population
Mean p, for 20 Independent Replications of a Study

Dependent variable
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Note. Each sample has size n = 36. The horizontal line is . The Cls are
based on sample estimates of the population variance and so vary in width from
sample to sample. Filled circles are the means whose bars include 1, and open
circles are those whose bars do not include . In the long run, 95% of the Cls
are expected fo include (18 do here). Note that the Cl varies from sample to
sample, but  is fixed and usually unknown.
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son & TFSI, 1999), experiments that are more informative,
and generally to a stronger empirical discipline.

Graphical Ambiguity and Experimental
Design

Consider the mean M, in Figure 1. Error bars extend above
and below the mean, and each has length 23, marked as w,.
Error bars like these represent some measure of variability
associated with the mean. If they depict a CI, each bar has
a length equal to the margin of error. Unfortunately, the
same graphic has also traditionally been used to depict the
SE or the SD. SE bars extend 1 SE above and 1 SE below
the mean, similarly for SD bars. Error bars of the three
types obviously give quite different information. Further-
more, even if readers know that the bars show a CI, there
is potential ambiguity, because C may be 95 or some other
value. It is essential that figure captions explain error bars,
as the Publication Manual requires (APA, 2001, pp. 180,
182). Our focus is on Cls, but in some journals SE bars are
often shown in figures, so we discuss SE bars in a separate
section toward the end of the article. From here on, we
assume that all bars in Figures 1 and 3 depict 95% Cls.
The second ambiguity concerns experimental design,
and Figure 3 illustrates how additions to Figure 1 can
distinguish three cases. In Figure 3a, the original means,
M, and My, are of two independent groups, each shown
with its CI. The difference between the two means (Mg —

M) is shown as a triangle against a difference axis. The
95% CI on this difference has margin of error wp, and is the
interval [(Mg — M) — wp, (Mg — M,) + wp], which is our
interval estimate of the difference between the population
means (ug — Mma). Now wp is about /2 (or 1.4) times
either of the original margins of error, w, and wg, assum-
ing these are similar. It makes sense that this CI is larger
than either of the original intervals because sampling error
in the difference is a compounding of sampling error from
each of the two independent means. If, as usual for two
independent groups, we are interested in the difference
between means, then Figure 3a provides on the right the CI
directly relevant for our desired inference.

Another possibility is that Figure 1 summarizes paired
data. The A and B means may, for example, be of pre- and
posttest scores for a single group of participants. There is a
single repeated-measure independent variable (IV) and the
two scores are almost certainly correlated. Our interest is
probably in the differences, and Figure 3b shows as a
triangle the mean M, of the posttest minus pretest differ-
ences on a difference axis. The CI on this mean has margin
of error wy and is the interval (My — wy, My + wy), which
is our interval estimate of the population mean of differ-
ences. Note that M, equals My — M, and that wy, like the
t value for the paired ¢ test, is based on the SE of the
differences. We discuss the case of paired data in a separate
section later.

Figure 3
Ad(ditions to Figure 1 That lllustrate Three Possibilities
1 a Two independent groups 1b Paired data 1 ¢ Meta-analysis
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Note. (We assume that Figures 1 and 3 show 95% confidence intervals [Cls].) (a) The A and B means are of independent groups, and their difference (Mg — M,)

is plotted as a friangle on a difference axis. The Cl on this difference has margin of error wp, that is virtually always greater than w and wg, the margins of error
on the original means. (b) A repeated-measure design, with correlated A and B scores, for example, pre- and posttest scores for a single group of participants. The
triangle is Mg, the mean of the posttest minus pretest differences, which also equals Mz — M. The small margin of error wy of its Cl reflects a high correlation, .85,
between pre- and posttest scores. (c) The A and B means are for separate experiments examining the same question. The square is the mean resulting from pooling
the two experiments—a simple form of meta-analysis—and its Cl has a smaller margin of error wc.
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A third possibility is that A and B are separate studies
that investigate the same issue. Figure 3c illustrates pooling
of the two studies, which is the bare-bones meta-analysis of
Hunter and Schmidt (2004). The pooled mean, marked by
the square, is our best estimate of w based on combining
the original studies, and its CI is typically smaller than that
of either original study. Such a summary plot of more than
one experiment is known in medicine as a forest plot
(Altman et al., 2000, pp. 134-135). The value of a CI
display of a meta-analysis is discussed by Cumming and
Finch (2001), Light, Singer, and Willett (1994), Schmidt
(1996), and Thompson (2002).

Figures 1 and 3 emphasize that experimental design is
crucial for the interpretation of figures and that displays of
means and CIs can easily leave experimental design am-
biguous. Clear figure captions are necessary to resolve such
ambiguity. Further, Gardner and Altman (1986) advised
that “the major contrasts of a study should be shown
directly, rather than only vaguely in terms of the separate
means” (p. 748); they would therefore approve of Figure 3
but not Figure 1. In the three cases discussed above, our
interest is in a difference or combination of means, rather
than the two separate means shown in Figure 1. In each
case, Figure 3 displays a single mean and CI that are
directly relevant to our interest and sufficient to support
inferential interpretation; this is perhaps the most valuable
representation we could be given, regardless of whether the
original two means are also shown.

The argument extends beyond simple differences. In
more complex designs, Figure 1 would show more than
two cell means. The mean that is added for Figure 3 could
be of a main effect, simple main effect, interaction, or
indeed any contrast. The CI on that effect or contrast would
be shown, although it may be challenging to select an
appropriate error term to use to calculate the CI (Loftus &
Masson, 1994; Masson & Loftus, 2003).

The present article is about interpreting, rather than
designing, figures, but the discussion above highlights the
value of presenting the mean and CI that are directly
relevant for the effect or comparison of primary research
interest. Good figure design is vital for appropriate data
interpretation, and we expect to see increasing use of
figures that present means and CIs for contrasts of infer-
ential interest. It remains necessary, however, to consider
the interpretation of figures showing separate means with
error bars, as in Figure 1, because they appear so frequently
in journals. We now turn to our main topic, discussion of
how simple pictures of means with CIs might be read.

Rules of Eye for Reading Data
Pictures With Cls

How should a figure with CIs—whether printed in a journal
or projected on a screen during a conference presenta-
tion—be interpreted? We propose five rules of eye that
apply to figures that show means and CIs; the Appendix
summarizes these rules and also two rules for SE bars we
describe later. By analogy with rules of thumb, our rules
are intended to be useful heuristics or pragmatic guidelines.

They are not intended to be numerically exact or to replace
statistical calculations: If exact p values are desired, they
should also be presented. Our focus is on the broad infer-
ential understanding that rules of eye may prompt. Some of
the rules have general application to inference beyond the
interpretation of figures, but they are essential for graphical
interpretation—the focus of this article—so we include
them as rules of eye.

Rule of Eye 1: Identify what the means and error bars represent.

At the beginning of this article, we asked “On first seeing
Figure 1, what questions should spring to mind?” We can
now specify four questions, whose answers should together
satisfy Rule 1: (a) What is the dependent variable? Is it
expressed in original units, or is it standardized in some
way, for example as Cohen’s d? (b) Does the figure show
95% Cls, SE or SD bars, or possibly Cls with a different
confidence level C? (c) What is the experimental design?
(d) What effect or comparison is our major interest, and
how do the displayed means and ClIs relate to this? Where
should we focus our inferential attention?

Rule of Eye 2: Make a substantive interpretation of the means.

The first interpretive focus should be the means, or com-
binations or pattern of means, and these should be assessed
against any theoretical predictions. Use knowledgeable
judgment in the research situation and consider the extent
to which an effect is (a) important or interesting and (b)
large. Distinguish practical or clinical significance from
statistical significance (Kendall, 1999; Kirk, 1996).

Interpretation of a ClI
Rule of Eye 3: Make a substantive interpretation of the CI.

We suggest four approaches to the interpretation of any CI.
We refer to a 95% CI, but there are generalizations for a
C% CL

Our Cl is just one from an infinite se-
quence. As we discussed earlier, and referring to Fig-
ure 2, if the experiment were repeated many times and a CI
calculated for each, in the long run 95% of the intervals
would include u. This is the fundamental and correct way
to think about a CI. Equivalently, a researcher who rou-
tinely reports 95% Cls can expect over a lifetime that about
95% of those intervals will capture the parameters esti-
mated (Cohen, 1995).

Focus on the interval and values in the
interval. The general idea is that values within the CI
are a good bet for w and those outside it are not, but
scholars differ on what words give an acceptable way to
express this, without implying inappropriate statements
about probability. We give several alternatives, each of
which may be queried by some authorities. There are not
yet widely agreed ways to say all that needs to be said when
interpreting Cls.

e This is our favorite: Our CI is a range of plausible
values for w. Values outside the CI are relatively
implausible.
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e We can be 95% confident that our CI includes w.

e Our data are compatible with any value of p within
the CI but relatively incompatible with any value
outside it.

e The lower limit is a likely lower bound estimate of
the parameter; the upper limit a likely upper bound.

e Consider substantive interpretation of values any-
where in the interval. For example, consider inter-
pretations of the lower and upper limits and com-
pare these with interpretation of the mean (Rule 2).

The CI, NHST, and p values. Any value out-
side the CI, when considered as a null hypothesis, gives
two-tailed p < .05. Any value inside the CI, when consid-
ered as a null hypothesis, gives p > .05. Considering our
example CI (51.85, 72.15), the null hypothesis w = 50
would give p < .05 because 50 is outside the interval, but
the null hypothesis w = 60 would give p > .05.

If the lower or upper CI limit is considered as a null
hypothesis, the p value is exactly .05 or, more generally, 1
— C/100. Recall that changing C changes the size of the CI.
Suppose we increase C to widen our example CI until the
lower limit is exactly 50; this requires C = 97.8. The
corresponding p = (1 —97.8/100) = .022, and this is the p
value calculated from our data for the null hypothesis u =
50. If we can adjust C, CIs are not limited to indicating
whether p < .05 but can give exact p values, which we
recommended earlier.'

An index of precision: w. We can be 95%
confident that our point estimate is no more than w from the
true value of w, so w is the largest error of estimation we
are likely to make—although larger errors are possible—
and w is an index of the precision of the study. Make a
substantive interpretation of w.

The margin of error w may come to be recognized as
more useful than a statistical power estimate for planning
an experiment (What n is needed to achieve a desired w?)
and also for reporting results (Cumming & Finch, 2001).
Smithson (2002, chap. 7) also discussed the relation be-
tween Cls and power.

Great caution is needed whenever NHST tempts the
acceptance of a null hypothesis. CIs do not reduce the need
for caution, but w is likely to give strong guidance. A large
w may suggest an experiment is of little value. On the other
hand, if the CI is narrow and close to a null hypothesized
value w (which may be contained in the interval), and if we
judge every value in the CI to be for practical purposes
equal to w, then the CI justifies our regarding w for prac-
tical purposes as the true value (Tryon, 2001).

Two Independent Groups

Our first three rules are the most general. The fourth rule
applies to the two-independent-groups case. First, we de-
scribe an example, which we suspect may be surprising to
some. Referring to Figure 4, suppose Groups 1 and 2 are
independent and that 95% Cls are displayed. Knowing the
means, sample sizes, and margins of error (and of course
that the error bars depict 95% Cls) is sufficient to determine
the p value for the 7 test comparison between the means.

. _______________________________________________________________________|]
Figure 4

Means With 95% Confidence Intervals (Cls) for a
Two-Independent-Groups Example
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Note. The group sizes are n; = 30 and n, = 34, and margins of error are
w; = 28.0 and w, = 30.8. The p value for the difference between the means
is .047, so that difference is close to the conventional statistical significance
borderline (a = .05). The dotted horizontals help estimation of proportion
overlap. The Cls overlap by a litfle over half the average margin of error;
proportion overlap is actually .58 (see text). Compare this with the Rule 4
criterion of .50.

Our analysis is based on the method of Welch (1938) and
Satterthwaite (1946), which pools error variances for the
denominator of an independent-groups ¢ statistic without
requiring the assumption of equal variance in the two
underlying populations.

We define proportion overlap as the vertical distance
between the dotted horizontals in Figure 4, expressed as a
proportion of the average margin of error. The groups have
sizes n; = 30 and n, = 34. The margins of error are w, =
28.0 and w, = 30.8, so the average margin of error is 29.4.
The overlap is 77.0 — 60.0 = 17.0, in the units of the
dependent variable, so proportion overlap is 17.0/29.4 =
.58. Inspection of Figure 4 confirms that proportion overlap
of the Cls is a little more than .50: The intervals overlap by

' A component of the Exploratory Software for Confidence Intervals
(ESCI; “ess-key”), which runs under Microsoft Excel, can be used to
generate figures similar to those in this article and to adjust C. This
component of ESCI may be downloaded, for personal use without cost,
from www.latrobe.edu.au/psy/esci.

February—March 2005 ¢ American Psychologist

175



5
=
7
el
=
o
e
_’L)

This document is copyrighted by the American Psychological Association or one of its
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

a little more than half the average of w; and w,. The p value
for the difference between the two independent means is
.047, and so Figure 4 illustrates the configuration of means
and error bars when the difference between the means is
near the border of statistical significance, using the most
common criterion of a = .05. This configuration gives the
basis for our fourth rule. Figure 5 illustrates this rule when
group sizes are equal and not small and w, = w,.

Rule of Eye 4: For a comparison of two independent means, p =
.05 when the overlap of the 95% ClIs is no more than about half
the average margin of error, that is, when proportion overlap is
about .50 or less (see Figure 4; Figure 5, left panel). In addition,
p = .01 when the two CIs do not overlap, that is, when propor-
tion overlap is about 0 or there is a positive gap (see Figure 5,
right panel). These relationships are sufficiently accurate when
both sample sizes are at least 10, and the margins of error do not
differ by more than a factor of 2.

Note that, other things being equal, a greater difference
between the means implies a smaller overlap or greater gap

Figure 5
Rule of Eye 4 for Two Independent Groups, Both of
Size 50 and With Equal Margins of Error
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Note. Proportion overlap of the 95% confidence intervals (Cls) is .50 in the left
panel and .00 in the right, and the corresponding approximate p values are .05
and .01, respectively. The vertical scale on the right shows the p value as a
function of the value of the Group 2 (G2) mean, all other aspects remaining the
same: Hold the Group 1 (G1) mean fixed, move the G2 mean to any position,
then the point on the scale that is aligned horizontally with the G2 mean gives
the two-tailed p value for that difference between means. This scale shows that
the p values stated are a little conservative—in the left panel the G2 mean is a
little below .05 on the scale, and in the right panel a little below .01.

and a smaller p value for the ¢ test comparison of the
means. We explored the relation between proportion over-
lap and p value for a wide variety of sample sizes and
margins of error. We concluded that overlap, expressed as
a proportion of average margin of error, is the best way to
summarize the complex relationships underlying inference
from Cls for two independent means (Cumming, 2004).

In the majority of cases that have proportion overlap
of .50 and meet the stated conditions—sample sizes of at
least 10 and w, and w, not differing by more than a factor
of 2—the p value is between .04 and .05 and, in virtually
every case that meets the conditions, p is between .03 and
.05 (Cumming, 2004). Therefore, the rule is generally a
little conservative in the sense that the true p value is
usually a little less than the upper bound for p stated in the
rule. It is striking that the rule holds even when group sizes
are quite different, providing that each is at least 10 and the
margins of error do not differ by more than a factor of 2.

When group sizes are equal and not small, margins of
error are equal, and proportion overlap = .50, then p =
.038 (rather less than .05), and when proportion overlap is
zero, p = .006 (considerably less than .01). Schenker and
Gentleman (2001) reported that many medical researchers
take zero overlap of Cls as equivalent to statistical signif-
icance at the .05 level. This equivalence is, however, a
misconception (Saville, 2003; Wolfe & Hanley, 2002):
When 95% Cls just touch end to end, the p value is about
.006, very much less than .05. Figure 5 includes a p value
scale, which we suggest may be useful for pedagogy rather
than for the routine reporting of results. It gives a general
insight into the way p varies with separation between the
means and with proportion overlap.

Paired Data

In the two-independent-groups case, if we have Figure 3a,
we can interpret the single CI on the difference between
means; if not, we can apply Rule 4 to the CIs on the two
independent means A and B. In stark contrast, however,
with paired data we do not have the second option: The CIs
on M, and My, the two score means, are irrelevant for
inference about the mean difference. For inference with
paired data, we need the CI on the mean of the differences.
This CI is shown on the right in Figure 3b, and its margin
of error w, is sensitive to the correlation between the two
scores. The relation is w3 = wi + wg — 2rw,wg, where r
is the Pearson product-moment correlation of the two
scores, calculated for the data. When, as is common, the
correlation is positive, then the larger the correlation, the
smaller is wy. With zero correlation, Figure 3b becomes
similar to Figure 3a. In practice, the correlation is rarely
negative, but it could be, in which case w, can be as much
as twice w, or wg. In summary, w, may in principle have
any value from practically zero up to about twice w, or wg,
depending on the correlation between the two scores.
Therefore, knowing w, and wy gives not even the roughest
of guides for inference. In the paired data case, Figure 1
cannot support inference, and it is not possible to formulate
a rule of eye based on overlap of separate Cls.
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This conclusion applies to any repeated-measure sit-
uation: Error bars on separate means are simply irrelevant
for any inference on the repeated-measure IV. They may be
highly misleading for a reader who is not alert to the
presence of repeated-measure I'Vs and what that implies for
inference.

Rule of Eye 5: For paired data, focus on and interpret the mean
of the differences and the CI on this mean (see Figure 3b).
Noting whether the CI on the mean of the differences captures
0 is a test of the null hypothesis of no difference between the
means. The Cls for the two separate scores (e.g., pretest and
posttest) are irrelevant for inferences about the mean of the
differences. In general, beware of separate error bars for a
repeated-measure 1V: They are irrelevant for the inferences
likely to be of interest.

Interpreting p Values

Two further aspects of p values deserve consideration in
relation to our rules. Earlier we noted that reporting exact
p values encourages a move from dichotomous NHST to
the consideration of p values as useful input to interpreta-
tion. We suggest a similar attitude should be taken when
interpreting CIs. Just as p values of .04 and .07 are unlikely
to justify dramatically different conclusions, so we should
not make a big issue of whether a CI just includes or
excludes a value of interest. If independent means are
compared, Rule 4 can be used to assess p values against .05
and .01 but without undue concern for precise accuracy, or
for justifying borderline dichotomous decisions. (Recall
that we advocate inference by eye for the appreciation,
broadly, of the inferential import of figures. It is not in-
tended to replace p value calculations if these are desired.)

Second, by discussing single inferences, we have
taken a decisionwise approach and have not mentioned any
adjustment of C, or p values, to allow for multiple infer-
ences, as required by an experimentwise approach. For
inference by eye, as for any inference, the author and reader
should decide what approach is best for a given research
situation and interpretive aims. Our simple decisionwise
approach is probably reasonable if there are few inferences
and they were identified in advance. When many inferences
are examined, or if selection is post hoc from a large
number of possible inferences, some small p values can
easily be produced by sampling variability. Rather than
proposing an experimentwise version of Rule 4, or the use
of CIs with unfamiliar C values (Tryon, 2001), we suggest
it will suffice if the issue is borne in mind. If more than a
handful of inferences are being considered, a researcher
may choose to adopt a more conservative approach to p
values and to interpreting Cls.

SE Bars

Cleveland (1994) regarded the practice of showing SE bars
in figures as “a naive translation of the convention for
numerical reporting of sample-to-sample variation” (p.
218). Referring to SE bars he wrote the following:

The difficulty . . . is that we are visually locked into what is shown
by the error bars; it is hard to multiply the bars visually by some

constant to get a desired visual confidence interval on the graph.
Another difficulty, of course, is that confidence intervals are not
always based on standard errors. (p. 219)

The constant Cleveland refers to is #,, _ ¢, a critical
t value, which varies with n and C. When n is not small, SE
bars correspond approximately to a 68% CI, and the critical
t value is about 2 so the SE bars need to be doubled in
length to give a 95% CI. When 7 is very small—Iess than
about 10—the critical ¢ value increases above 2, and C for
the equivalent CI drops below 68. One example figure in
the Publication Manual shows SE bars for groups of size
n =2andn =4 (APA, 2001, p. 182), which correspond to
50% and 61% ClIs, respectively. In such cases, SE bars are
likely to be a misleading basis for inference.

Cleveland’s (1994) emphasis on inference is justified,
and he makes a good case for preferring Cls over SE bars.
It is CIs that have been the focus of statistical reform, and
CIs are also preferred in medicine (International Commit-
tee of Medical Journal Editors, 1997). However, despite the
Publication Manual’s advocacy of Cls (APA, 2001, p. 22),
the only error bars shown in its example figures (pp. 180,
182), and in Nicol and Pexman (2003), are SE bars. In
addition, figures published in some psychology and many
behavioral neuroscience journals often include SE bars, and
so we include below two rules of eye for SE bars.

Cohen (1994) suggested that one reason psychologists
seldom report CIs may be that their CIs are often embar-
rassingly large. If researchers prefer to publish SE bars
merely because they are shorter, they are capitalizing on
their readers’ presumed lack of understanding of SE bars,
95% ClIs, and the relation between the two.

A problem arising from the first ambiguity of Figure
1—bars may be SE or CIs, or even SD—is that it is easy to
find journal articles that show error bars in figures but do
not state what they represent (Finch et al., 2004; Vaux,
2004). It is extremely unfortunate that the ambiguous
graphic of Figure 1 has several different meanings.

Rule of Eye 6: For n at least 10, SE bars can be doubled in
length to get, approximately, the 95% CI; and the SE bars
themselves give approximately a 68% CI, so in about two thirds
of cases SE bars capture p. Thinking of either of these Cls
allows Rule 3 to be applied. For n less than 10, SE bars give a
CI with C distinctly less than 68.

For two independent groups, halving the intervals in Rule
4 and Figure 5 gives the corresponding Rule 7 and Figure
6 for SE bars. Note that for Figure 6 the sample sizes,
positions of the means, and amount of variability in each
group are all the same as in Figure 5. Therefore, the p
values for the differences between the means have not
changed from Figure 5 to Figure 6, and the same p value
scale can be displayed in both figures.

Rule of Eye 7: For a comparison of two independent means, p =
.05 when the gap between the SE bars is at least about the size
of the average SE, that is, when the proportion gap is about 1 or
greater (see Figure 6, left panel). In addition, p = .01 when the
proportion gap is about 2 or more (see Figure 6, right panel).
These relationships are sufficiently accurate when both sample
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Figure 6
Rule of Eye 7 for Two Independent Groups, Both of
Size 50 and With Equal SEs

Rule 7
SE bars

p
r 1.0

r.025

Dependent variable

- .001
- proportion

gap =1
p=.05

1 proportion
gap =2

p=.01

G1 G2 G1 G2

Note. The proportion gap between the standard error (SE) bars is 1 in the left
panel and 2 in the right, and the corresponding approximate p values are .05
and .01, respectively. As in Figure 5, the vertical scale on the right shows the
p value as a function of the value of the Group 2 (G2) mean, all other aspects
remaining the same. This scale, which applies to both panels, shows that the p
values stated are a little conservative. G1 = Group 1.

sizes are at least 10, and the SEs of the two groups do not differ
by more than a factor of 2.

Outstanding Issues
Complex Experimental Designs

Figure 7 shows cell means with error bars for a two-way
design, with one repeated measure. This is a common
design, and both examples in the Publication Manual of
figures with bars are of this design (APA, 2001, pp. 180,
182). The trouble is that the bars shown may legitimately
be used to assess between-subjects comparisons but may
not be used to assess any within-subjects effect. Rules 4
(for 95% CIs) or 7 (for SE bars) may be used to assess
between-subjects comparisons such as Experimental 1 with
Control 1, but the error bars needed to assess a within-
subjects comparison such as Experimental 1 with Experi-
mental 2 are not provided in the figure. Error bars on cell
means are irrelevant for any within-subjects effect. Belia et
al. (2004) found that a large majority of researchers tend to
overlook statements identifying a repeated-measure IV and

to interpret error bars erroneously, as if the means were
independent. We suspect, therefore, that few researchers
have the crucial distinction between within-subjects and
between-subjects effects clearly in mind when examining
figures such as Figure 7.

The problem of how the CIs needed for effects in-
volving within-subjects IVs can be represented in figures
has been discussed by Estes (1997), Loftus (2002), Loftus
and Masson (1994), and Masson and Loftus (2003). Vari-
ous generalizations of Figures 3a and 3b could be consid-
ered, and any additional means displayed may be of main
effects, interactions, or any contrasts of interest. Different
contrasts are likely to have CIs of different widths, and it
may be enlightening to see these displayed in a single
figure. However, if more than a few effects are of interest,
the graphical challenge is very great, and no convincing
and proven graphical designs have yet emerged. Investiga-
tion is needed of the extent to which ClIs can be effectively
used with complex experimental designs.

The problem is illustrated by a figure in the Publica-
tion Manual (APA, 2001, p. 181), which shows the means

Figure 7
Means With Error Bars for a Two-Way Design With
One Repeated Measure

120 1 —e— Expt (E)
1 T —A— Control (C)
100 A
|olET 7 T
280 E2 F
©
E o
> L e =
5601 I
©
C i E S L
(0]
[oX
S 40 4
20 A -
O T T T
1 2 3 4
Test occasion

Note. Fictitious data. Experimental (Expt; E)-control (C) is a between-subjects
independent variable, and test occasion is the within-subjects independent
variable. The error bars shown on the cell means, whether confidence intervals
or standard error bars, may be used to assess between-subjects comparisons
such as E1 with C1 but are irrelevant for any within-subjects comparison, such
as E1 with E2.
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for a two-way design with one within-subjects IV. A line
segment is shown, with the notation “If a difference is this
big, it is significant at the .05 level.” The problem is that
different differences need to be specified for each of the
two main effects, for simple main effects on either IV, and
for any other contrast or interaction of interest. Showing a
single interval with such a general notation cannot be
correct.

Statistical Cognition

Statistical cognition is the study of how people think about
statistical concepts and representations. There is scant cog-
nitive evidence that CIs, and other techniques recom-
mended by reformers, can in fact give the improved un-
derstanding and communication that is claimed for them.
With its research skills and knowledge of perception and
cognition, as well as statistics, psychology is uniquely
placed to help develop interval estimation practice that is
evidence based. What representations and guidelines will
prompt easy intuitive understanding and minimize miscon-
ception? Such cognitive research is needed to guide reform
of statistical practices. Belia et al. (2004) and Cumming et
al. (2004) are examples of one type of statistical cognition
study.

Inference by Eye: Broadening the Scope

Note the limitations of our discussion. We have focused on
two-sided CIs on the mean, with an underlying normally
distributed population. Rules 4 and 7 are for independent
groups, with sample sizes of at least 10 and error bars that
do not differ in length by more than a factor of 2. We have
considered single inferences, with no adjustment to account
for inflated error rates with multiple inferences.

There are important generalizations to be explored,
including one-sided intervals (corresponding to one-tailed
hypothesis tests); parameters with restricted ranges that
generally have nonsymmetric Cls, including proportions
and correlations; a wide range of other parameters beyond
the mean; ordinal measurement (McGill, Tukey, & Larsen,
1978); relaxation of the assumption of normality and use of
robust methods (Wilcox, 1998, 2003); and ClIs generated in
different ways, such as via resampling (Edgington, 1995).
Our Rules 1, 2, and 3 are sufficiently fundamental that,
with minor changes of wording (e.g., point estimate for
mean), they will largely apply across most generalizations.
Similarly, the caution of Rule 5 about repeated measures
applies generally. Rule 6 is not so general because the
relation between SE and CI bars may be different in dif-
ferent situations, as it is for very small n. The breadth of
applicability of Rules 4 and 7 requires investigation. We
speculate that they hold approximately when ClIs are close
to symmetric and the underlying populations do not depart
drastically from normal. Also, in such situations it may
make little difference whether the Cls are derived by con-
ventional calculation or, for example, via resampling.

Conclusions

Wider use of interval estimation has the potential to im-
prove research communication and, more fundamentally, to

encourage more sophisticated theorizing and testing of
theories in our discipline. Achieving routine use of inter-
vals will, however, be a very substantial change, requiring
changed attitudes and practices on the part of researchers,
editors and their consultants, and those involved in statis-
tics education within psychology. Difficulties include the
unfamiliarity of CIs to many psychologists, widespread
misconceptions, ambiguities in common graphical designs,
and the lack of guidelines for the reporting and interpreta-
tion of ClIs.

The more we work with CIs, the more we realize how
little their representation and understanding seem to have
been investigated. We regard the suggestions in this article
as an early step and look forward to further development of
inference by eye. We are optimistic, however, that discov-
ering how to exploit statistical estimation could be very
fruitful for our discipline.
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Appendix

Abbreviated Statements of Rules of Eye for Simple Figures Showing
Means With Error Bars

1. Identify what the means and error bars represent.
Do bars show confidence intervals (CIs) or standard errors
(SEs)? What is the experimental design?

2. Make a substantive interpretation of the means.

3. Make a substantive interpretation of the CIs or other
error bars.

4. For a comparison of two independent means, p =
.05 when proportion overlap of the 95% ClIs is about .50 or
less. (Proportion overlap is expressed as a proportion of the
average margin of error for the two groups.) In addition,
p = .01 when the proportion overlap is about 0 or there is
a positive gap (see Figure 5). (Rule 4 applies when both
sample sizes are at least 10 and the two margins of error do
not differ by more than a factor of 2.)

5. For paired data, interpret the mean of the differ-
ences and error bars for this mean. In general, beware
of bars on separate means for a repeated-measure indepen-
dent variable: They are irrelevant for inferences about
differences.

6. SE bars are about half the size of 95% CI bars and
give approximately a 68% CI, when n is at least 10.

7. For a comparison of two independent means, p =
.05 when the proportion gap between SE bars is at least
about 1. (Proportion gap is expressed as a proportion of the
average SE for the two groups.) In addition, p = .01 when
the proportion gap is at least about 2 (see Figure 6). (Rule
7 applies when both sample sizes are at least 10 and the two
SEs do not differ by more than a factor of 2.)
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