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2
Sampling and Estimation

Fundamental concepts of sampling and estimation are the subject of 
this chapter. You will learn that (a) sampling error affects virtually all sample 
statistics, (b) interval estimation approximates margins of error associated 
with statistics, but (c) there are other sources of error variance that should 
not be ignored. You will also learn about central versus noncentral test statis-
tics, the role of bootstrapping in interval estimation, and the basics of robust 
estimation. Entire books are devoted to some of these topics, so it is impos-
sible in a single chapter to describe all of them in detail. Instead, the goal is 
to make you aware of concepts that underlie key aspects of statistics reform.

Sampling and Error

A basic distinction in the behavioral sciences is that between popula-
tions and samples. It is rare that entire populations are studied. If a popu-
lation is large, vast resources may be needed. For instance, the budget for 
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In times of change, learners inherit the Earth, while the learned find 
themselves beautifully equipped to deal with a world that no longer exists.

—Eric Hoffer (1973, p. 22)
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30           beyond significance testing

the 2010 Census in the United States was $13 billion, and about 635,000 
temporary workers were hired for it (U.S. Census Bureau, 2010). It may be 
practically impossible to study even much smaller populations. The base rate 
of schizophrenia, for example, is about 1%. But if persons with schizophrenia 
are dispersed over a large geographic area, studying all of them is probably 
impracticable.

Types of Samples

Behavioral scientists usually study samples, of which there are four 
basic kinds: random, systematic, ad hoc, and purposive. Random (probability) 
samples are selected by a chance-based method that gives all observations 
an equal likelihood of appearing in the sample. Variations on simple random 
sampling include stratified sampling and cluster sampling. In both, the popu-
lation is divided into smaller groups that are mutually exclusive and collec-
tively exhaustive. In stratified sampling, these groups are referred to as strata, 
and they are formed on the basis of shared characteristics. Strata may have 
quite different means on variables of interest. A random sample is taken from 
each stratum in proportion to its relative size in the population, and these 
subsamples are then pooled to form the total sample. Normative samples of 
psychological tests are often stratified on the basis of combinations of vari-
ables such as age, gender, or other demographic characteristics.

Partitions of the population are called clusters in cluster sampling. Each 
cluster should be generally representative of the whole population, which 
implies that clusters should also be reasonably similar on average. That is, 
most of the variation should be within clusters, not between them. In single-
stage cluster sampling, random sampling is used to select the particular clus-
ters to study. Next, all elements from the selected clusters contribute to the 
total sample, but no observations from the unselected clusters are included. 
In two-stage cluster sampling, elements from within each selected cluster are 
randomly sampled. One benefit of cluster sampling is that costs are reduced 
by studying some but not all clusters. When clusters are geographic areas, 
cases in the final sample are from the selected regions only.

Random sampling implies independent observations, which means that 
the score of one case does not influence the score of any other. If couples 
complete a relationship satisfaction questionnaire in the presence of each 
other, their responses may not be independent. The independence assump-
tion is critical in many types of statistical techniques. Scores from repeated 
measurement of the same case are probably not independent, but techniques 
for such data estimate the degree of dependence in the scores and thus 
control for it. If scores are really not independent, results of analyses that 
assume independence could be biased. There is no magic statistical fix for 
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sampling and estimation           31

lack of independence. Therefore, the independence requirement is usually 
met through design, measurement, and use of statistical techniques that take 
explicit account of score dependence, such as designs with repeated measures.

The discussion that follows assumes that random samples are not 
extraordinarily small, such as N = 2. More sophisticated ways to estimate 
minimum sample sizes are considered later, but for now let us assume more 
reasonable sample sizes of, say, N = 50 or so. There are misconceptions about 
random sampling. Suppose that a simple random sample is selected. What 
can be said about the characteristics of the observations in that sample? A 
common but incorrect response is to say that the observations are representa-
tive of the population. But this may not be true, because there is no guarantee 
that the characteristics of any particular random sample will match those in 
the population. People in a random sample could be older, more likely to be 
women, or wealthier compared with the general population. A stratified ran-
dom sample may be representative in terms of the strata on which it is based 
(e.g., gender), but results on other, nonstrata variables are not guaranteed to 
be representative. It is only across replications, or in the long run, that char-
acteristics of observations in random samples reflect those in the population. 
That is, random sampling generates representative samples on average over 
replications. This property explains the role of random sampling in the popu-
lation inference model, which is concerned with generalizability of sample 
results (external validity).

There is a related misunderstanding about randomization, or random 
assignment of cases to conditions (e.g., treatment vs. control). A particular 
randomization is not guaranteed to result in equivalent groups such that 
there are no initial group differences confounded with the treatment effect. 
Randomization results in equivalent groups only on average. Sometimes it 
happens that randomly formed groups are clearly not equal on some char-
acteristic. The expression “failure of random assignment” is used to describe 
this situation, but it is a misnomer because it assumes that randomization 
should guarantee equivalence every time it is used. Random assignment is 
part of the randomization model, which deals with the correctness of causal 
inference that treatment is responsible for changes among treated cases 
(internal validity).

The use of random sampling and randomization together—the statisti-
cian’s two-step—guarantees that the average effect observed over replica-
tions of treatment–control comparisons will converge on the value of the 
population treatment effect. But this ideal is almost never achieved in real 
studies. This is because random sampling requires a list of all observations in 
the population, but such lists rarely exist. Randomization is widely used in 
experimental studies but usually with nonrandom samples. Many more stud-
ies are based on the randomization model than on the population inference 
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32           beyond significance testing

model, but it is the latter that is assumed by the probabilities, or p values, 
generated by statistical tests and used in confidence intervals.

Observations in systematic samples are selected according to an orderly 
sampling plan that may yield a representative sample, but this is not certain. 
Suppose that an alphabetical list of every household is available for some 
area. A random number between 10 and 20 is generated and turns out to be 
17. Every 17th household on the list is contacted for an interview, which 
yields a 6% (1/17) sample in that area. Systematic samples are relatively rare 
in the behavioral sciences.

Most samples are neither random nor systematic but rather are ad hoc 
samples, also known as convenience samples, accidental samples, or locally 
available samples. Cases in such samples are selected because they happen 
to be available. Whether ad hoc samples are representative is often a con-
cern. Volunteers differ from nonvolunteers, for example, and patients seen 
in one clinic may differ from those treated in others. One way to mitigate 
bias is to measure a posteriori a variety of sample characteristics and report 
them. This allows others to compare the sample with those in related studies. 
Another option is to compare the sample profile with that of the population 
(if such a profile exists) in order to show that an ad hoc sample is not grossly 
unrepresentative.

The cases in a purposive sample are intentionally selected from defined 
groups or dimensions in ways linked to hypotheses. A researcher who wishes 
to evaluate whether the effectiveness of a drug varies by gender would inten-
tionally select both women and men. After the data are collected, gender 
would be represented as a factor in the analysis, which may facilitate gen-
eralization of the results to both genders. A purposive sample is usually a 
convenience sample, and dividing cases by gender or some other variable 
does not change this fact.

Sampling Error

This discussion assumes a population size that is very large and assumes 
that the size of each sample is a relatively small proportion of the total popu-
lation size. There are some special corrections if the population size is small, 
such as less than 5,000 cases, or if the sample size exceeds 20% or so of the 
population size that are not covered here (see S. K. Thompson [2012] for 
more information).

Values of population parameters, such as means (µ) or variances (s2), 
are usually unknown. They are instead estimated with sample statistics, such 
as M (means) or s2 (variances). Statistics are subject to sampling error, which 
refers to the difference between an estimator and the corresponding param-
eter (e.g., µ - M). These differences arise because the values of statistics from 

13170-03_Ch02-3rdPgs.indd   32 2/1/13   12:02 PM

Co
py

ri
gh

t 
Am

er
ic
an

 P
sy
ch
ol

og
ic
al
 A
ss
oc
ia
ti
on
. 
No
t 
fo
r 
fu

rt
he

r 
di

st
ri

bu
ti

on
.

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight



sampling and estimation           33

random samples vary around that of the parameter. Some of these statistics 
will be too high and others too low (i.e., they over- or underestimate the 
parameter), and only a relatively small number will exactly equal the popu-
lation value. This variability among estimators is a statistical phenomenon 
akin to background (natural) radiation: It is always there, sometimes more or 
less, fluctuating randomly from sample to sample.

The amount of sampling error is generally affected by the variability 
of population observations, how the samples are selected, and their size. If 
the population is heterogeneous, values of sample statistics may also be quite 
variable. Obviously, estimators from biased samples may differ substantially 
from those of the corresponding parameters. But assuming random sampling 
and constant variability in the population, sampling error varies inversely 
with sample size. This means that statistics in larger samples tend to be closer 
on average than those in smaller samples to the corresponding parameter. 
This property describes the law of large numbers, and it says that one is more 
likely to get more accurate estimates from larger samples than smaller samples 
with random sampling.

It is a myth that the larger the sample, the more closely it approximates 
a normal distribution. This idea probably stems from a misunderstanding of 
the central limit theorem, which applies to certain group statistics such as 
means. This theorem predicts that (a) distributions of random means, each 
based on the same number of scores, get closer to a normal distribution as the 
sample size increases, and (b) this happens regardless of whether the popula-
tion distribution is normal or not normal. This theorem justifies approximat-
ing distributions of random means with normal curves, but it does not apply 
to distributions of scores in individual samples. Thus, larger samples do not 
generally have more normal distributions than smaller samples. If the popula-
tion distribution is, say, positively skewed, this shape will tend to show up in 
the distributions of random samples that are either smaller or larger.

The sample mean describes the central tendency of a distribution of 
scores on a continuous variable. It is the balance point in a distribution, 
because the mean is the point from which (a) the sum of deviations from M 
equals zero and (b) the sum of squared deviations is as small as possible. The 
latter quantity is the sum of squares (SS). That is, if X represents individual 
observations, then

X M SS X M−( ) −( )∑∑ = 0 and the quantity = 2.12 ( )

takes on the lowest value possible in a particular sample. Due to these proper-
ties, sample means are described as least squares estimators. The statistic M is 
also an unbiased estimator because its expected value across random samples 
of the same size is the population mean µ.

13170-03_Ch02-3rdPgs.indd   33 2/1/13   12:02 PM

Co
py

ri
gh

t 
Am

er
ic
an

 P
sy
ch
ol

og
ic
al
 A
ss
oc
ia
ti
on
. 
No
t 
fo
r 
fu

rt
he

r 
di

st
ri

bu
ti

on
.

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight

Eleventh
Highlight



34           beyond significance testing

The sample variance s2 is another least squares estimator. It estimates 
the population variance s2 without bias if computed as

s
SS
df

2 = ( )2.2

where df = N - 1. But the sample variance derived as

S
SS
N

2 = ( )2.3

is a negatively biased estimator because its values are on average less than 
s2. The reason is that squared deviations are taken from M (Equation 2.1), 
which is not likely to equal µ. Therefore, sample sums of squares are generally 
too small compared with taking squared deviations from µ. The division of SS 
by df instead of N, which makes the whole ratio larger (s2 > S2), is sufficient 
to render s2 an unbiased estimator. In larger samples, though, the values of 
s2 and S2 converge, and in very large samples they are asymptotically equal. 
Expected values of positively biased estimators exceed those of the corre-
sponding parameter.

There are ways to correct other statistics for bias. For example, although 
s2 is an unbiased estimator of s2, the sample standard deviation s is a nega-
tively biased estimator of s. Multiplication of s by the correction factor in 
parentheses that follows

ˆ ( )σ = +





1
1

4df
s 2.4

yields a numerical approximation to the unbiased estimator of s. Because the 
value of the correction factor in Equation 2.4 is larger than 1.00, ŝ > s. There 
is also greater correction for negative bias in smaller samples than in larger 
samples. If N = 5, for example, the value of the correction factor is 1.0625, 
but for N = 50 it is 1.0051, which shows relatively less adjustment for bias in 
the larger sample. For very large samples, the value of the correction factor is 
essentially 1.0. This is another instance of the law of large numbers: Averages 
of even biased statistics from large random samples tend to closely estimate 
the corresponding parameter.

A standard error is the standard deviation in a sampling distribution, 
the probability distribution of a statistic across all random samples drawn 
from the same population(s) and with each sample based on the same num-
ber of cases. It estimates the amount of sampling error in standard deviation 
units. The square of a standard error is the error variance. Standard errors of 
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sampling and estimation           35

statistics with simple distributions can be estimated with formulas that have 
appeared in statistics textbooks for some time. By “simple” I mean that (a) the 
statistic estimates only a single parameter and (b) both the shape and vari-
ance of its sampling distribution are constant regardless of the value of that 
parameter. Distributions of M and s2 are simple as just defined.

The standard error in a distribution of random means is

σ σ
M

N
= ( )2.5

Because s is not generally known, this standard error is typically estimated as

s
s

N
M = ( )2.6

As either sample variability decreases or the sample size increases, the value 
of sM decreases. For example, given s = 10.00, sM equals 10.00/251/2, or 2.00, 
for N = 25, but for N = 100 the value of sM is 10.00/1001/2, or 1.00. That is, 
the standard error is twice as large for N = 25 as it is for N = 100. A graphi-
cal illustration is presented in Figure 2.1. An original normal distribution is 
shown along with three different sampling distributions of M based on N = 4, 
16, or 64 cases. Variability of the sampling distributions in the figure decreases 
as the sample size increases.

The standard error sM, which estimates variability of the group statistic 
M, is often confused with the standard deviation s, which measures vari-
ability at the case level. This confusion is a source of misinterpretation of 
both statistical tests and confidence intervals (Streiner, 1996). Note that 

µ

N = 64 

N = 16 

N = 4 

Original
distribution 

Figure 2.1.  An original distribution of scores and three distributions of random sample 
means each based on different sample sizes, N = 4, N = 16, or N = 64.
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36           beyond significance testing

the standard error sM itself has a standard error (as do standard errors for all 
other kinds of statistics). This is because the value of sM varies over random 
samples. This explains why one should not overinterpret a confidence inter-
val or p value from a significance test based on a single sample. Exercises 1–2 
concern the distinction between s and sM.

Distributions of random means follow central (Student’s) t distribu-
tions with degrees of freedom equal to N - 1 when s is unknown. For very 
large samples, central t distributions approximate a normal curve. In central 
test distributions, the null hypothesis is assumed to be true. They are used to 
determine critical values of test statistics. Tables of critical values for distri-
butions such as t, F, and c2 found in many statistics textbooks are based on 
central test distributions. There are also web calculating pages that generate 
critical values for central test statistics.1 The t distribution originated from 
“Student’s” (William Gosset’s) attempt to approximate the distributions of 
means when the sample size is not large and s is unknown. It was only later 
that central t distributions and other theoretical probability distributions 
were associated with the practice of significance testing.

The sample variance s2 follows a central b2 distribution with N − 1 
degrees of freedom. Listed next is the equation for the standard error of s2 

when the population variance is known:

σ σs
df

2
2 2= ( )2.7

If s2 is not known, the standard error of the sample variance is estimated as

s s
df

s2
2 2= ( )2.8

As with M, the estimated standard error of s2 becomes smaller as the sample 
size increases.

Other Kinds of Error

Standard errors estimate sampling error under random sampling. What 
they measure when sampling is not random may not be clear. The standard 
error in an ad hoc sample might reflect both sampling error and systematic 

1This central t distributional calculator accepts either integer or noninteger df values: http://www.usable 
stats.com/calcs/tinv
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sampling and estimation           37

selection bias that results in nonrepresentative samples. Standard errors also 
ignore the other sources of error described next:

1.	Measurement error refers to the difference between an observed 
score X and the true score on the underlying construct. The 
reliability coefficient rXX estimates the degree of measurement 
error in a particular sample. If rXX = .80, for example, at least 
1 - .80 = .20, or 20%, of the observed variance in X is due to 
random error of the type estimated by that particular reliabil-
ity coefficient. Measurement error reduces absolute effect sizes 
and the power of statistical tests. It is controlled by selecting 
measures that generally yield scores with good psychometric 
characteristics.

2.	Construct definition error involves problems with how hypo-
thetical constructs are defined or operationalized. Incorrect 
definition could include mislabeling a construct, such as when 
low IQ scores among minority children who do not speak 
English as a first language are attributed to low intelligence 
instead of to limited language familiarity. Error can also stem 
from construct proliferation, where a researcher postulates a 
new construct that is questionably different from existing con-
structs (F. L. Schmidt, 2010). Constructs that are theoretically 
distinct in the minds of researchers are not always empirically 
distinct.

3.	Specification error refers to the omission from a regression equa-
tion of at least one predictor that covaries with the measured 
(included) predictors.2 As covariances between omitted and 
included predictors increase, results based on the included pre-
dictors tend to become increasingly biased. Careful review of 
theory and research when planning a study is the main way to 
avoid a serious specification error by decreasing the potential 
number of left-out variables.

4.	Treatment implementation error occurs when an intervention 
does not follow prescribed procedures. The failure to ensure that 
patients take an antibiotic medication for the prescribed duration 
of time is an example. Prevention includes thorough training 
of those who will administer the treatment and checking after 
the study begins whether implementation remains consistent 
and true.

2It can also refer to including irrelevant predictors, estimating linear relations only when the true relation 
is curvilinear, or estimating main effects only when there is true interaction.
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38           beyond significance testing

Shadish, Cook, and Campbell (2001) described additional potential 
sources of error. Gosset used the term real error to refer all types of error 
besides sampling error (e.g., Student, 1927). In reasonably large samples, 
the impact of real error may be greater than that of sampling error. Thus, 
it is unwise to acknowledge sampling error only. This discussion implies 
that the probability that error of any kind affects sample results is virtually 
1.00, and, therefore, practically all sample results are wrong (the parameter 
is not correctly estimated). This may be especially true when sample sizes 
are small, population effect sizes are not large, researchers chase statistical 
significance instead of substantive significance, a greater variety of meth-
ods is used across studies, and there is financial or other conflict of interest 
(Ioannidis, 2005).

Interval Estimation

Assumed next is the selection of a very large number of random samples 
from a very large population. The amount of sampling error associated with 
a statistic is explicitly indicated by a confidence interval, precisely defined by 
Steiger and Fouladi (1997) as follows:

1.	A 1 - a confidence interval for a parameter is a pair of statistics 
yielding an interval that, over many random samples, includes 
the parameter with the probability 1 – a. (The symbol a is the 
level of statistical significance.)

2.	A 100 (1 – a)% confidence interval for a parameter is a pair of 
statistics yielding an interval that, over many random samples, 
includes the parameter 100 (1 – a)% of the time.

The value of 1 – a is selected by the researcher to reflect the degree of 
statistical uncertainty due to sampling error. Because the conventional levels 
of statistical significance are .05 or .01, one usually sees either 95% or 99% 
confidence intervals, but it is possible to specify a different level, such as 
a = .10 for a 90% confidence interval. Next we consider 95% confidence 
intervals only, but the same ideas apply to other confidence levels.

The lower bound of a confidence interval is the lower confidence limit, 
and the upper bound is the upper confidence limit. The Publication Manual 
(APA, 2010) recommends reporting a confidence interval in text with brack-
ets. If 21.50 and 30.50 are, respectively, the lower and upper bounds for the 
95% confidence interval based on a sample mean of 26.00, these results would 
be summarized as

M = 26.00, 95% Ci 21.50, 30.50[ ]
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sampling and estimation           39

Confidence intervals are often shown in graphics as error bars repre-
sented as lines that extend above and below (or to the left and right, depend-
ing on orientation) around a point that corresponds to a statistic. When the 
length of each error bar is one standard error (M ± sM), the interval defined 
by those standard error bars corresponds roughly to a = .32 and a 68% con-
fidence interval. There are also standard deviation bars. For example, the 
interval M ± s says something about the variability of scores around the mean, 
but it conveys no direct information about the extent of sampling error asso-
ciated with that mean. Researchers do not always state what error bars repre-
sent: About 30% of articles with such figures reviewed by Cumming, Fidler, 
and Vaux (2007) did not provide this information.

Traditional confidence intervals are based on central test distributions, 
and the statistic is usually exactly between the lower and upper bounds (the 
interval is symmetrical about the estimator). The interval is constructed by 
adding and subtracting from a statistic the product of its standard error and 
the positive two-tailed critical value at the a level of statistical significance 
in a relevant central test distribution. This product is the margin of error. 
In graphical displays of confidence intervals, each of the two error bars cor-
responds to a margin of error.

Confidence Intervals for 

The relevant test statistic for means when s is unknown is central t, 
so the general form of a 100 (1 - a)% confidence interval for µ based on a 
single observed mean is

M s t NM± −( )[ ]2-tail, 2.9α 1 ( )

where the term in brackets is the positive two-tailed critical value in a cen-
tral t distribution with N – 1 degrees of freedom at the a level of statistical 
significance. Suppose that

M s N=100.00, = 9.00, and = 25

The standard error is

sM = =9 00

25
1 800

.
.

and t2-tail, .05 (24) = 2.064. The 95% confidence interval for µ is thus

100.00 1.800 2.064 , or 100.00 3.72± ( ) ±
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40           beyond significance testing

which defines the interval [96.28, 103.72]. Exercise 3 asks you to verify that 
the 99% confidence interval is wider than the 95% confidence interval based 
on the same data. Cumming (2012) described how to construct one-sided 
confidence intervals that are counterparts to statistical tests of null hypoth-
esis versus directional (one-tailed) alternative hypotheses, such as H1:  
µ > 130.00.

Let us consider how to interpret the specific 95% confidence interval 
for µ just derived:

1.	The interval [96.28, 103.72] defines a range of values consid-
ered equivalent within the limits of sampling error at the 95% 
confidence level. But equivalent within the bounds of sampling 
error does not imply equivalent in a scientific sense. This is espe-
cially true when the range of values included in the confidence 
interval indicates very different outcomes, such as when the 
upper confidence limit for the average blood concentration of 
a drug exceeds a lethal dosage.

2.	It also provides a reasonable estimate of the population mean. 
That is, µ could be as low as 96.28 or µ could be as high as 
103.72, again at the 95% confidence level.

3.	There is no guarantee that µ is actually included in the confi-
dence interval. We could construct the 95% confidence inter-
val based on the mean in a different sample, but the center 
or endpoints of this new interval will probably be different. 
This is because confidence intervals are subject to sampling 
error, too.

4.	If 95% confidence intervals are constructed around the means 
of very many random samples drawn from the same very large 
population, a total of 95% of them will contain µ.

The last point gives a more precise definition of “95% confident” from 
a frequentist or long-run relative-frequency view of probability as the like-
lihood of an outcome over repeatable events under constant conditions 
except for random error. A frequentist view assumes that probability is a 
property of nature that is independent of what the researcher believes. In 
contrast, a subjectivist or subjective degree-of-belief view defines prob-
ability as a personal belief that is independent of nature. The same view 
also does not distinguish between repeatable and unique events (Oakes, 
1986). Although researchers in their daily lives probably take a subjective 
view of probabilities, it is the frequentist definition that generally underlies 
sampling theory.

A researcher is probably more interested in knowing the probability 
that a specific 95% confidence interval contains µ than in knowing that 
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sampling and estimation           41

95% of all such intervals do. From a frequentist perspective, this probabil-
ity for any specific interval is either 0 or 1.00; that is, either the interval 
contains the parameter or it does not. Thus, it is generally incorrect to  
say that a specific 95% confidence interval has a 95% likelihood of includ-
ing the corresponding parameter. Reichardt and Gollob (1997) noted that 
this kind of specific probability inference is permitted only in the circum-
stance that every possible value of the parameter is considered equally 
likely before the data are collected. In Bayesian estimation, the same cir-
cumstance is described by the principle of indifference, but it is rare when 
a researcher truly has absolutely no information about plausible values for 
a parameter.

There is language that splits the difference between frequentist and 
subjectivist perspectives. Applied to our example, it goes like this: The inter-
val [96.28, 103.72] estimates µ, with 95% confidence. This statement is not 
quite a specific probability inference, and it also gives a nod to the subjectiv-
ist view because it associates a degree of belief with a unique interval. Like 
other compromises, however, it may not please purists who hold one view 
of probability or the other. But this wording does avoid the blatant error of 
claiming that a specific 95% confidence interval contains the parameter with 
the probability .95.

Another interpretation concerns the capture percentage of random 
means from replications that fall within the bounds of a specific 95% confi-
dence interval for µ. Most researchers surveyed by Cumming, Williams, and 
Fidler (2004) mistakenly endorsed the confidence-level misconception that 
the capture percentage for a specific 95% confidence interval is also 95%. 
This fallacy for our example would be stated as follows: The interval [96.28, 
103.72] contains 95% of all replication means. This statement would be 
true for this interval only if the values of µ - M and s – s were both about 
zero; otherwise, capture percentages drop off quickly as the absolute distance 
between µ and M increases. Cumming and Maillardert (2006) estimated that 
the average capture percentage across random 95% confidence intervals for 
µ is about 85% assuming normality and N ≥ 20, but percentages for more 
extreme samples are much lower (e.g., < 50%).

These results suggest that researchers underestimate the impact of sam-
pling error on means. Additional evidence described in the next chapter says 
that researchers fail to appreciate that sampling error affects p values from 
statistical tests, too. It seems that many researchers believe that results from 
small samples behave like those from large samples; that is, they believe that 
results from small samples are likely to replicate. Tversky and Kahneman 
(1971) labeled such errors the law of small numbers, an ironic twist on the 
law of large numbers, which (correctly) says that there is greater variation 
across results from small samples than from large samples.
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42           beyond significance testing

Confidence Intervals for m1 – m2

Next we assume a design with two independent samples. The standard 
error in a distribution of contrasts between pairs of means randomly selected 
from different populations is

σ σ σ
M M

n n1 2

1
2

1

2
2

2
− = + ( )2.10

where σ2
1 and σ2

2 are the population variances and n1 and n2 are the sizes of 
each group. If we assume homogeneity of population variance or homosce-
dasticity (i.e., σ2

1 = σ2
2), the expression for the standard error reduces to

σ σM M
n n1 2

2

1 2

1 1
− = +



 ( )2.11

where s2 is the common population variance. This parameter is usually 
unknown, so the standard error of mean differences is estimated by

s s
n n

M M1 2
2

1 2

1 1
− = +



pool 2.12( )

where s2
pool is the weighted average of the within-groups variances. Its equa-

tion is

s
df s df s

df df
SS
df

W

W
pool 2.132 1 1

2
2 2

2

1 2
= +

+
=( ) ( )

( ))

where s2
1 and s2

2  are the group variances, df1 = n1 – 1, df2 = n2 – 1, and SSW and 
dfW are, respectively, the pooled within-groups sum of squares and the degrees 
of freedom. The latter can also be expressed as dfW = N – 2. Only when the 
group sizes are equal can s2

pool also be calculated as the simple average of the 
two group variances, or (s2

1 + s2
2)/2.

The general form of a 100 (1 – a)% confidence interval for µ1 – µ2 based 
on the difference between two independent means is

M M s t NM M1 2 21 2 2−( ) ± −( )[ ]− −tail 2.14, ( )α

Suppose in a design with n = 10 cases in each group we observe

M s M s1 2 2
2=13.00, =7.50 and = 11.00, = 5.001

2
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sampling and estimation           43

which implies M1 – M2 = 2.00 and s2
pool = (7.50 + 5.00)/2 = 6.25. The esti-

mated standard error is

sM M1 2 6 25
1

10
1

10
1 118− = +



 =. .

and t2-tail, .05 (18) = 2.101. The 95% confidence interval for µ1 – µ2 is

2.00 1.118 2.101± ( )

which defines the interval [-.35, 4.35]. On the basis of these results, we can 
say that µ1 – µ2 could be as low as -.35 or as high as 4.35, with 95% confidence.

The specific interval [-.35, 4.35] includes zero as an estimate of µ1 – µ2. 
This fact is subject to misinterpretation. For example, it may be incorrectly 
concluded that µ1 = µ2 because zero falls within the interval. But zero is only 
one value within a range of estimates of µ1 – µ2, so it has no special status 
in interval estimation. Confidence intervals are subject to sampling error, so 
zero may not be included within the 95% confidence interval in a replication. 
Confidence intervals also assume that other sources of error are nil. All these 
caveats should reduce the temptation to fixate on a particular value (here, 
zero) in a confidence interval.

There is special relation between a confidence interval for µ1 – µ2 and 
the outcome of the independent samples t test based on the same data: 
Whether a 100 (1 – a)% confidence interval for µ1 – µ2 includes zero yields 
an outcome equivalent to either rejecting or not rejecting the corresponding 
null hypothesis at the a level of statistical significance for a two-tailed test. 
For example, the specific 95% confidence interval [-.35, 4.35] includes zero; 
thus, the outcome of the t test for these data of H0: µ1 – µ2 = 0 is not statisti-
cally significant at the .05 level, or

t p18 =
2.00

1.118
=1.789, = .091( )

But if zero is not contained within a particular 95% confidence interval for 
µ1 – µ2, the outcome of the independent samples t test will be statistically 
significant at the .05 level.

Be careful not to falsely believe that confidence intervals are just statis-
tical tests in disguise (B. Thompson, 2006a). One reason is that null hypoth-
eses are required for statistical tests but not for confidence intervals. Another 
is that many null hypotheses have little if any scientific value. For example, 
Anderson et al. (2000) reviewed null hypotheses tested in several hundred 
empirical studies published from 1978 to 1998 in two environmental sciences 
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44           beyond significance testing

journals. They found many implausible null hypotheses that specified things 
such as equal survival probabilities for juvenile and adult members of a spe-
cies or that growth rates did not differ across species, among other assump-
tions known to be false before collecting data. I am unaware of a similar 
survey of null hypotheses in the behavioral sciences, but I would be surprised 
if the results would be very different.

Confidence intervals over replications may be less susceptible to mis-
interpretation than results of statistical tests. Summarized in Table 2.1 are 
outcomes of six hypothetical replications where the same two conditions 
are compared on the same outcome variable. Results of the independent 
samples t test lead to rejection of the null hypothesis at p < .05 in three out 
of six studies, a “tie” concerning statistical significance (3 yeas, 3 nays). More 
informative than the number of null hypothesis replications is the average 
of M1 – M2 across all six studies, 3.54. This average is from a meta-analysis 
of all results in the table for a fixed effects model, where a single population 
effect size is presumed to underlie the observed contrasts. (I show you how 
to calculate this average in Chapter 9.) The overall average of 3.54 may be a 
better estimate of µ1 - µ2 than M1 – M2 in any individual study because it is 
based on all available data.

The 95% confidence intervals for µ1 – µ2 in Table 2.1 are shown in 
Figure 2.2 as error bars in a forest plot, which displays results from replications 
and a meta-analytic weighted average with confidence intervals (Cumming, 
2012). The 95% confidence interval based on the overall average of 3.54, or 
[2.53, 4.54] (see Table 2.1), is narrower than any of the intervals from the six 
replications (see Figure 2.2). This is because more information contributes 
to the confidence interval based on results averaged over all replications. For 
these data, µ1 – µ2 may be as low as 2.53 or as high as 4.54, with 95% confi-
dence based on all available data.

Table 2.1
Results of Six Hypothetical Replications

Study M1 − M2 s1
2 s2

2 t (38) Reject H0? 95% CI

1 2.50 17.50 16.50 1.92 No -.14, 5.14
2 4.00 16.00 18.00 3.07 Yes 1.36, 6.64
3 2.50 14.00 17.25 2.00 No -.03, 5.03
4 4.50 13.00 16.00 3.74 Yes 2.06, 6.94
5 5.00 12.50 16.50 4.15 Yes 2.56, 7.44
6 2.50 15.00 17.00 1.98 No -.06, 5.06

Average: 3.54 2.53, 4.54

Note.  Independent samples assumed. For all replications, the group size is n = 20, a = .05, the null hypothe-
sis is H0: µ1 − µ2 = 0, and H1 is two-tailed. Results for the average difference are from a meta-analysis assum-
ing a fixed effects model. CI = confidence interval.
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sampling and estimation           45

There is a widely accepted—but unfortunately incorrect—rule of thumb 
that the difference between two independent means is statistically significant 
at the a level if there is no overlap of the two 100 (1 – a)% confidence inter-
vals for µ (Belia, Fidler, Williams, & Cumming, 2005). It also maintains that 
the overlap of the two intervals indicates that the mean contrast is not sta-
tistically significant at the corresponding level of a. This rule is often applied 
to diagrams where confidence intervals for µ are represented as error bars that 
emanate outward from points that symbolize group means.

A more accurate heuristic is the overlap rule for two independent 
means (Cumming, 2012), which works best when n ≥ 10 and the group sizes 
and variances are approximately equal. The overlap rule is stated next for 
a = .05:

1.	If there is a gap between the two 95% confidence intervals for 
µ (i.e., no overlap), the outcome of the independent samples 
t test of the mean difference is p < .01. But if the confidence 
intervals just touch end-to-end, p is approximately .01.

2.	No more than moderate overlap of the 95% confidence inter-
vals for µ implies that the p value for the t test is about .05, but 
less overlap indicates p < .05. Moderate overlap is about one half 
the length of each error bar in a graphical display.
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Figure 2.2.  A forest plot of 95% confidence intervals for µ1 – µ2 based on mean 
differences from the six replications in Table 2.1 and the meta-analytic 95%  
confidence interval for µ1 – µ2 across all replications for a fixed effects model.
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46           beyond significance testing

Summarized next are the basic descriptive statistics for the example 
where n1 = n2 = 10:

M s M s1 2=13.00, =7.50 and =11.00, = 5.001
2

2
2

You should verify for these data the results presented next:

s

s

M

M

1

2

= .866, 95% Ci for 11.04,14.96

= .707,

1µ [ ]
995% Ci for 9.40,12.602µ [ ]

These confidence intervals for µ are plotted in Figure 2.3 along with the 95% 
confidence interval for µ1 – µ2 for these data [-.35, 4.35]. Group means are 
represented on the y-axis, and the mean contrast (2.00) is represented on 
the floating difference axis (Cumming, 2012) centered at the grand mean 
across both groups (12.00). The error bars of the 95% confidence intervals 
for µ overlap by clearly more than one half of their lengths. According to 
the overlap rule, this amount of overlap is more than moderate. So the mean 
difference should not be statistically significant at the .05 level, which is true 
for these data.

M
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Figure 2.3.  Plot of the 95% confidence interval for µ1, 95% confidence interval for µ2, 
and 95% confidence interval for µ1 – µ2, given M1 = 13.00, s2

1  = 7.50, M2 = 11.00, s2
2 = 

5.00, and n1 = n2 = 10. Results for the mean difference are shown on a floating differ-
ence axis where zero is aligned at the grand mean across both samples (12.00).
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sampling and estimation           47

Confidence intervals for µ1 – µ2 based on sM1 – M2
 assume homoscedastic-

ity. In the Welch procedure (e.g., Welch, 1938), the standard error of a mean 
contrast is estimated as

s
s
n

s
n

Wel 2.15= +1
2

1

2
2

2
( )

where s2
1 estimates s2

1 and s2
2 estimates s2

2 (i.e., heteroscedasticity is allowed). 
The degrees of freedom for the critical value of central t in the Welch proce-
dure are estimated empirically as

df

s
n

s
n

s
n n

sWel =
+





−
+

1
2

1

2
2

2

2

1
2 2

1
2

1

2

1
( )
( )

( 22 2

2
2

2 1
)

( )

( )

n n −

2.16

Summarized next are descriptive statistics for two groups:

M s n

M s

1 1
2

1

2

=112.50, =75.25, = 25

=108.30, =15.02
2 00, = 202n

Variability among cases in the first group is obviously greater than that in the 
second group. A pooled within-groups variance would mask this discrepancy. 
The researcher elects to use the Welch procedure. The estimated standard 
error is

sWel 1 939= + =75 25
25

15 00
20

. .
.

and the approximate degrees of freedom are

dfWel =
+





+

75 25
25

15 00
20

75 25
25 24

1

2

2

2

. .

.
( )

55 00
20 19

2

2

.
( )

.= 34 727

The general form of a 100 (1 – a)% confidence interval for µ1 – µ2 in 
the Welch procedure is

M M s t df1 2 Wel 2-tail, Wel– 2.17( ) ± ( )[ ]α ( )
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48           beyond significance testing

Tables for critical values of central t typically list integer df values only. An alter-
native is to use a web distributional calculator page that accepts noninteger df 
(see footnote 1). Another is to use a statistical density function built into widely 
available software. The statistical function TINV in Microsoft Excel returns 
critical values of central t given values of a and df. The function Idf.T (Inverse 
DF) in SPSS returns the two-tailed critical value of central t given df and 1 – a/2, 
which is .975 for a 95% confidence interval. For this example, SPSS returned

t2-tail, .05 34.727 = 2.031( )

The 95% confidence interval for µ1 – µ2 is

112.50 – 108.30 1.939 2.031( ) ± ( )

which defines the interval [.26, 8.14]. Thus, the value of µ1 – µ2 could be as 
low as .26 or as high as 8.14, with 95% confidence and not assuming homo
scedasticity. Widths of confidence intervals in the Welch procedure tend to 
be narrower than intervals based on sM1 – M2 for the same data when group 
variances are unequal. Welch intervals may less accurate when the popula-
tion distributions are severely and differently nonnormal or when the group 
sizes are unequal and small, such as n < 30 (Bonett & Price, 2002); see also 
Grissom and Kim (2011, Chapter 2).

Confidence Intervals for D

I use the symbol MD to refer to the mean difference (change, gain) 
score when two dependent samples are compared. A difference score is com-
puted as D = X1 – X2 for each of the n cases in a repeated measures design or 
for each of the n pairs of cases in a matched groups design. If D = 0, there is 
no difference; any other value indicates a higher score in one condition than 
in the other. The average of all difference scores equals the dependent mean 
contrast, or MD = M1 – M2. Its standard error is

σ σ
M

D
D

n
= ( )2.18

where sD is the population standard deviation of the difference scores. The 
variance of the difference scores can be expressed as

σ σ ρD
2 2= 2 2.191 12−( ) ( )

where s2 is the common population variance assuming homoscedasticity and 
r12 is the population cross-conditions correlation of the original scores.
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sampling and estimation           49

When there is a stronger subjects effect—cases maintain their relative 
positions across the conditions—r12 approaches 1.00. This reduces the vari-
ance of the difference scores, which in turn lowers the standard error of the 
mean contrast (Equation 2.18). It is the subtraction of consistent individual 
differences from the standard error that makes confidence intervals based on 
dependent mean contrasts generally narrower than confidence intervals based 
on contrasts between unrelated means. It also explains the power advantage 
of the t test for dependent samples over the t test for independent samples. 
But these advantages are realized only if r12 > .50 (Equation 2.19); other-
wise, confidence intervals and statistical tests may be wider and less powerful 
(respectively) for dependent mean contrasts.

The standard deviation sD is usually unknown, so the standard error of 
MD is estimated as

s
s

n
M

D
D = ( )2.20

where sD is the sample standard deviation of the D scores. The corresponding 
variance is

s s s covD
2

1
2

2
2

122= + − ( )2.21

where cov12 is the cross-conditions covariance of the original scores. The latter is

cov r s s12 12 1 2= 2.22( )

where r12 is the sample cross-conditions correlation. (The correlation r12 is 
presumed to be zero when the samples are independent.)

The general form of a 100 (1 – a)% confidence interval for µD is

M s t nD MD± −( )[ ]2-tail, 2.23α 1 ( )

Presented in Table 2.2 are raw scores and descriptive statistics for a small data 
set where the mean contrast is 2.00. In a dependent samples analysis of these 
data, n = 5 and r12 = .735. The cross-conditions covariance is

cov12 = .735 2.739 2.236 = 4.50( ) ( )

and the variance of the difference scores is

sD
2 =7.50 + 5.00 – 2 4.50 = 3.50( )

which implies that sD = 3.501/2, or 1.871. The standard error of MD = 2.00 is 
estimated as
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50           beyond significance testing

sMD = =1 871

5

.
.837

The value of t2-tail, .05 (4) is 2.776, so the 95% confidence interval for µD is

2.00 .837 2.776± ( )

which defines the interval [-.32, 4.32]. Exercise 4 asks you to verify that the 
95% confidence interval for µD assuming a correlated design is narrower than 
the 95% confidence interval for µ1 – µ2 assuming unrelated samples for the 
same data (see Table 2.2), which is [-1.65, 5.65].

Confidence Intervals Based on Other Kinds of Statistics

Many statistics other than means have complex distributions. For exam-
ple, distributions of the Pearson correlation r are symmetrical only if the pop-
ulation correlation is r = 0, but they are negatively skewed when r > 0 and 
positively skewed when r < 0. Other statistics have complex distributions, 
including some widely used effect sizes introduced in Chapter 5, because they 
estimate more than one parameter.

Until recently, confidence intervals for statistics with complex distri-
butions were estimated with approximate methods. One method involves 
confidence interval transformation (Steiger & Fouladi, 1997), where the 
statistic is mathematically transformed into normally distributed units. The 
confidence interval is built by adding and subtracting from the transformed 
statistic the product of the standard error in the transformed metric and the 
appropriate critical value of the normal deviate z. The lower and upper bounds 

Table 2.2
Raw Scores and Descriptive Statistics for Two Samples

Sample

1 2

9 8
12 12
13 11
15 10
16 14

M 13.00 11.00
s2 7.50 5.00
s 2.739 2.236

Note.  In a dependent samples analysis, r12 = .735.
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sampling and estimation           51

of this interval are then transformed back into the original metric, and the 
resulting confidence interval may be asymmetric (unequal margins of error). 
Fisher’s transformation is used to approximate construct intervals for r. It 
converts a sample correlation r with the function

Z
r
r

r = +
−







1
2

1
1

ln ( )2.24

where ln is the natural log function to base e, which is about 2.7183. The 
sampling distribution of Zr is approximately normal with the standard error

s
N

Zr =
−
1

3
( )2.25

The lower and upper bounds of the 100 (1 – a)% confidence interval based 
on Zr are defined by

Z s zr Zr± ( )2-tail, 2.26α ( )

where z2-tail, a is the positive two-tailed critical value of the normal deviate, 
which is 1.96 for a = .05 and the 95% confidence level. Next, transform both 
the lower and upper bounds of the confidence interval in Zr units back to  
r units by applying the inverse transformation

r
e
e

Z

Z

Z

r

r

= −
+

2

2

1
1

( )2.27

There are calculating web pages that automatically generate approximate 
95% or 99% confidence intervals for r, given values of r and the sample size.3 
Four-decimal accuracy is recommended for hand calculation.

In a sample of N = 20 cases, r = .6803. Fisher’s transformation and its 
standard error are

Z sr Zr
= +

−






= =1
2

1 6803
1 6803

1
20

ln
.
.

.8297 and
−−

=
3

.2425

The approximate 95% confidence interval in Zr units is

.8297 .2425 1.96± ( )

3http://faculty.vassar.edu/lowry/rho.html
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52           beyond significance testing

which defines the interval [.3544, 1.3051]. To convert the lower and upper 
bounds of this interval to r units, I apply the inverse transformation to each:

e
e

e2 3544

2 3544

2 1 30511
1

0
1(. )

(. )

( . )

.
−
+

= −
34 3 and

ee2 1 3051 1
0

( . )
.

+
= 863

In r units, the approximate 95% confidence interval for r is [.34, .86] at two-
place accuracy.

Another approximate method builds confidence intervals directly 
around the sample statistic; thus, they are symmetrical about it. The width 
of the interval on either side is a product of the two-tailed critical value of a 
central test statistic and an estimate of the asymptotic standard error, which 
estimates what the standard error would be in a large sample (e.g., > 500). If 
the researcher’s sample is not large, though, this estimate may not be accu-
rate. Another drawback is that some statistics, such as R2 in multiple regres-
sion, have distributions so complex that a computer is needed to estimate 
standard error. Fortunately, there are increasing numbers of computer tools 
for calculating confidence intervals, some of which are mentioned later.

A more precise method is noncentrality interval estimation (Steiger & 
Fouladi, 1997). It also deals with situations that cannot be handled by approx-
imate methods. This approach is based on noncentral test distributions that 
do not assume a true null hypothesis. Some perspective is in order. Families 
of central distributions of t, F, and c2 (in which H0 is assumed to be true) are 
special cases of noncentral distributions of each test statistic just mentioned. 
Compared to central distributions, noncentral distributions have an extra 
parameter called the noncentrality parameter that indicates the degree to 
which the null hypothesis is false.

Central t distributions are defined by a single parameter, the degrees of 
freedom (df), but noncentral t distributions are described by both df and the 
noncentrality parameter D (Greek uppercase delta). In two-group designs, 
the value of D for noncentral t is related to (but not exactly equal to) the true 
difference between the population means µ1 and µ2. The larger that differ-
ence, the more the noncentral t distribution is skewed. That is, if µ1 > µ2, then 
D > 0 and the resulting noncentral t distributions are positively skewed, and 
if µ1 < µ2, then D < 0 and the corresponding resulting noncentral t distribu-
tions are negatively skewed. But if µ1 = µ2 (i.e., there is no difference), then 
D = 0 and the resulting distributions are the familiar and symmetrical central 
t distributions. Presented in Figure 2.4 are two t distributions where df = 10. 
For the central t distribution in the left part of the figure, D = 0, but for the 
noncentral t distribution in the right side of the figure, D = 4.00. (The mean-
ing of a particular value for D is defined in Chapter 5.) Note in the figure that 
the distribution for noncentral t (10, 4.00) is positively skewed.
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sampling and estimation           53

Noncentral test distributions play a role in estimating the power of 
statistical tests. This is because the concept of power assumes that the null 
hypothesis is false. Thus, computer tools for power analysis analyze non
central test distributions. A population effect size that is not zero generally 
corresponds to a value of the noncentrality parameter that is also not zero. 
This is why some methods of interval estimation for effect sizes rely on non-
central test distributions. Noncentrality interval estimation for effect sizes is 
covered in Chapter 5.

Calculating noncentral confidence intervals is impractical without 
relatively sophisticated computer programs. Until recently, such programs 
were not widely available to applied researchers. An exception is Exploratory 
Software for Confidence Intervals (ESCI; Cumming, 2012), which runs 
under Microsoft Excel. It is structured as a tool for learning about confidence 
intervals, noncentral test distributions, power estimation, and meta-analysis. 
Demonstration modules for ESCI can be downloaded.4 I used ESCI to create 
Figure 2.4.

Another computer tool for power estimation and noncentrality inter-
val estimation is Steiger’s Power Analysis procedure in STATISTICA 11 
Advanced, an integrated program for general statistical analyses, data mining, 
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Figure 2.4.  Distributions of central t and noncentral t where the degrees of freedom 
are df = 10 and where the noncentrality parameter is D = 4.00 for noncentral t.

4http://www.thenewstatistics.com/
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54           beyond significance testing

and quality control.5 Power Analysis can automatically calculate noncentral 
confidence intervals based on several different types of effect sizes. Other 
computer tools or scripts for interval estimation with effect sizes are described 
in later chapters. The website for this book also has links to corresponding 
download pages. Considered next is bootstrapping, which can also be used 
for interval estimation.

Bootstrapped Confidence Intervals

The technique of bootstrapping, developed by the statistician Bradley 
Efron in the 1970s (e.g., 1979), is a computer-based method of resampling 
that recombines the cases in a data set in different ways to estimate statistical 
precision, with fewer assumptions than traditional methods about population 
distributions. Perhaps the best known form is nonparametric bootstrapping, 
which generally makes no assumptions other than that the distribution in the 
sample reflects the basic shape of that in the population. It treats your data file 
as a pseudo-population in that cases are randomly selected with replacement 
to generate other data sets, usually of the same size as the original. Because of 
sampling with replacement, (a) the same case can be selected in more than 
one generated data set or at least twice in the same generated sample, and 
(b) the composition of cases will vary slightly across the generated samples.

When repeated many times (e.g., 1,000) by the computer, bootstrap-
ping simulates the drawing of many random samples. It also constructs an 
empirical sampling distribution, the frequency distribution of the values 
of a statistic across the generated samples. Nonparametric percentile boot-
strapped confidence intervals for the parameter estimated by the statistic 
are calculated in the empirical distribution. The lower and upper bounds of a 
95% bootstrapped confidence interval correspond to, respectively, the 2.5th 
and 97.5th percentiles in the empirical sampling distribution. These limits 
contain 95% of the bootstrapped values of the statistic.

Presented in Table 2.3 is a small data set where N = 20 and r = .6803. 
I used the nonparametric bootstrap procedure of SimStat for Windows 
(Provalis Research, 1995–2004) to resample from the data in Table 2.3 in 
order to generate a total of 1,000 bootstrapped samples each with 20 cases.6 
The empirical sampling distribution is presented in Figure 2.5. As expected, 
this distribution is negatively skewed. SimStat reported that the mean and 
median of the sampling distribution are, respectively, .6668 and .6837. The 
standard deviation in the distribution of Figure 2.5 is .1291, which is actually 

5http://www.statsoft.com/#
6http://www.provalisresearch.com/
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the bootstrapped estimate of the standard error. The nonparametric boot-
strapped 95% confidence interval for r is [.3615, .8626], and the bias-adjusted 
95% confidence interval is [.3528, .8602]. The latter controls for lack of inde-
pendence due to potential selection of the same case multiple times in the 
same generated sample.

The bias-adjusted bootstrapped 95% confidence interval for r, which is 
[.35, .86] at two-decimal accuracy, is similar to the approximate 95% confi-
dence interval of [.34, .86] calculated earlier using Fisher’s approximation for 
the same data. The bootstrapped estimate of the standard error in correlation 
units generated by SimStat is .129. Nonparametric bootstrapping is potentially 

Table 2.3
Example Data Set for Nonparametric Bootstrapping

Case X Y Case X Y

A 12 16 K 16 37
B 19 46 L 13 30
C 21 66 M 18 32
D 16 70 N 18 53
E 18 27 O 22 52
F 16 27 P 17 34
G 16 44 Q 22 54
H 20 69 R 12 5
I 16 22 S 14 38
J 18 61 T 14 38

F
re

qu
en

cy
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r
.30 .40 .50 .60 .70 .90.20.10 .800

Figure 2.5. E mpirical sampling distribution for the Pearson correlation r in 1,000 
bootstrapped samples for the data in Table 2.3.
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56           beyond significance testing

more useful when applied to statistics for which there is no approximate 
method for calculating standard errors and confidence intervals. This is also 
true when no computer tool for noncentral interval estimation is available 
for statistics with complex distributions.

The technique of nonparametric bootstrapping seems well suited for inter-
val estimation when the researcher is either unwilling or unable to make a lot 
of assumptions about population distributions. Wood (2005) demonstrated 
the calculation of bootstrapped confidence intervals based on means, medi-
ans, differences between two means or proportions, correlations, and regres-
sion coefficients. His examples are implemented in an Excel spreadsheet7 and 
a small stand-alone program.8 Another computer tool is Resampling Stats 
(Statistics.com, 2009).9 Bootstrapping capabilities were recently added to 
some procedures in SPSS and SAS/STAT.

Outlined next are potential limitations of nonparametric bootstrapping:

1.	Nonparametric bootstrapping simulates random sampling, but 
true random sampling is rarely used in practice. This is another 
instance of the design–analysis mismatch.

2.	It does not entirely free the researcher from having to make 
assumptions about population distributions. If the shape of 
the sample distribution is very different compared with that 
in the population, results of nonparametric bootstrapping may 
have poor external validity.

3.	The “population” from which bootstrapped samples are drawn 
is merely the original data file. If this data set is small or the 
observations are not independent, resampling from it will not 
somehow fix these problems. In fact, resampling can magnify the 
effects of unusual features in a small data set (Rodgers, 2009).

4.	Results of bootstrap analyses are probably quite biased in small 
samples, but this is true of many traditional methods, too.

The starting point for parametric bootstrapping is not a raw data file. 
Instead, the researcher specifies the numerical and distributional properties of 
a theoretical probability density function, and then the computer randomly 
samples from that distribution. When repeated many times by the com-
puter, values of statistics in these synthesized samples vary randomly about 
the parameters specified by the researcher, which simulates sampling error. 
Bootstrapped estimation in parametric mode can also approximate standard 

7http://woodm.myweb.port.ac.uk/nms/resample.xls
8http://woodm.myweb.port.ac.uk/nms/resample.exe
9Resampling Stats is available for a 10-day trial from http://www.resample.com/
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sampling and estimation           57

errors for statistics where no textbook equation or approximate method is 
available, given certain assumptions about the population distribution. These 
assumptions can be added incrementally in parametric bootstrapping or suc-
cessively relaxed over the generation of synthetic data sets.

Robust Estimation

The least squares estimators M and s2 are not robust against the effects 
of extreme scores. This is because their values can be severely distorted by 
even a single outlier in a smaller sample or by just a handful of outliers in a 
larger sample. Conventional methods to construct confidence intervals rely 
on sample standard deviations to estimate standard errors. These methods 
also rely on critical values in central test distributions, such as t and z, that 
assume normality or homoscedasticity (e.g., Equation 2.13).

Such distributional assumptions are not always plausible. For example, 
skew characterizes the distributions of certain variables such as reaction times. 
Many if not most distributions in actual studies are not even symmetrical, 
much less normal, and departures from normality are often strikingly large 
(Micceri, 1989). Geary (1947) suggested that this disclaimer should appear 
in all introductory statistics textbooks: “Normality is a myth; there never was, 
and never will be, a normal distribution” (p. 214). Keselman et al. (1998) 
reported that the ratios across different groups of largest to smallest variances 
as large as 8:1 were not uncommon in educational and psychological studies, 
so perhaps homoscedasticity is a myth, too.

One option to deal with outliers is to apply transformations, which con-
vert original scores with a mathematical operation to new ones that may be 
more normally distributed. The effect of applying a monotonic transforma-
tion is to compress one part of the distribution more than another, thereby 
changing its shape but not the rank order of the scores. Examples of transfor-
mations that may remedy positive skew include X1/2, log10 X, and odd-root 
functions (e.g., X1/3). There are many other kinds, and this is one of their 
potential problems: It can be difficult to find a transformation that works in 
a particular data set. Some distributions can be so severely nonnormal that 
basically no transformation will work. The scale of the original scores is lost 
when scores are transformed. If that scale is meaningful, the loss of the scal-
ing metric creates no advantage but exacts the cost that the results may be 
difficult (or impossible) to interpret.

An alternative that also deals with departures from distributional 
assumptions is robust estimation. Robust (resistant) estimators are gener-
ally less affected than least squares estimators by outliers or nonnormality. 
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58           beyond significance testing

An estimator’s quantitative robustness can be described by its finite-sample 
breakdown point (BP), or the smallest proportion of scores that when made 
arbitrarily very large or small renders the statistic meaningless. The lower the 
value of BP, the less robust the estimator. For both M and s2, BP = 0, the low-
est possible value. This is because the value of either statistic can be distorted 
by a single outlier, and the ratio 1/N approaches zero as sample size increases. 
In contrast, BP = .50 for the median because its value is not distorted by 
arbitrarily extreme scores unless they make up at least half the sample. But 
the median is not an optimal estimator because its value is determined by a 
single score, the one at the 50th percentile. In this sense, all the other scores 
are discarded by the median.

A compromise between the sample mean and the median is the trimmed 
mean. A trimmed mean Mtr is calculated by (a) ordering the scores from low-
est to highest, (b) deleting the same proportion of the most extreme scores 
from each tail of the distribution, and then (c) calculating the average of the 
scores that remain. The proportion of scores removed from each tail is ptr. If  
ptr = .20, for example, the highest 20% of the scores are deleted as are the 
lowest 20% of the scores. This implies that

1.	the total percentage of scores deleted from the distribution is 
2ptr = 2(.20), or 40%;

2.	the number of deleted scores is 2nptr = .40n, where n is the 
original group size; and

3.	the number of scores that remain is ntr = n – 2nptr = n - .40n, 
where ntr is the trimmed group size.

For an odd number of scores, round the product nptr down to the near-
est integer and then delete that number of scores from each tail of the dis-
tribution. The statistics Mtr and M both estimate µ without bias when the 
population distribution is symmetrical. But if that distribution is skewed, Mtr 
estimates the trimmed population mean µtr, which is typically closer to more 
of the observations than µ.

A common practice is to trim 20% of the scores from each tail of the 
distribution when calculating trimmed estimators. This proportion tends to 
maintain the robustness of trimmed means while minimizing their standard 
errors when sampling from symmetrical distributions; it is also supported by the 
results of computer simulation studies (Wilcox, 2012). Note that researchers 
may specify ptr < .20 if outliers constitute less than 20% of each tail in the 
distribution or ptr > .20 if the opposite is true. For 20% trimmed means, BP = 
.20, which says they are robust against arbitrarily extreme scores unless such 
outliers make up at least 20% of the sample.

A variability estimator more robust than s2 is the interquartile range, 
or the positive difference between the score that falls at the 75th percen-

13170-03_Ch02-3rdPgs.indd   58 2/1/13   12:02 PM

Co
py

ri
gh

t 
Am

er
ic
an

 P
sy
ch
ol

og
ic
al
 A
ss
oc
ia
ti
on
. 
No
t 
fo
r 
fu

rt
he

r 
di

st
ri

bu
ti

on
.



sampling and estimation           59

tile in a distribution and the score at the 25th percentile. Although BP = 
.25 for the interquartile range, it uses information from just two scores. An 
alternative that takes better advantage of the data is the median absolute 
deviation (MAD), the 50th percentile in the distribution of |X – Mdn|, 
the absolute differences between each score and the median. Because it is 
based on the median, BP = .50 for the MAD. This statistic does not esti-
mate the population standard deviation s, but the product of MAD and 
the scale factor 1.483 is an unbiased estimator of s in a normal population 
distribution.

The estimator 1.483 (MAD) is part of a robust method for outlier 
detection described by Wilcox and Keselman (2003). The conventional 
method is to calculate for each score the normal deviate z = (X – M)/s, which 
measures the distance between each score and the mean in standard devia-
tion units. Next, the researcher applies a rule of thumb for spotting potential 
outliers based on z (e.g., if |z|> 3.00, then X is a potential outlier). Masking, 
or the chance that outliers can so distort values of M or s that they cannot be 
detected, is a problem with this method. A more robust method is based on 
this decision rule applied to each score:

X Mdn−
( ) >

1 483
2 24

.
. ( )

mad
2.28

The value of the ratio in Equation 2.28 is the distance between a score and 
the median expressed in robust standard deviation units. The constant 2.24 
in the equation is the square root of the approximate 97.5th percentile in a 
central c2 distribution with a single degree of freedom. A potential outlier 
thus has a score on the ratio in Equation 2.28 that exceeds 2.24. Wilcox 
(2012) described additional robust detection methods.

A robust variance estimator is the Winsorized variance s2
Win. (The 

terms Winsorized and Winsorization are named after biostatistician Charles 
P. Winsor.) When scores are Winsorized, they are (a) ranked from lowest 
to highest. Next, (b) the ptr most extreme scores in the lower tail of the 
distribution are all replaced by the next highest original score that was not  
replaced, and (c) the ptr most extreme scores in the upper tail are all replaced 
by the next lowest original score that was not replaced. Finally, (d) s2

Win is 
calculated among the Winsorized scores using the standard formula for s2 
(Equation 2.3) except that squared deviations are taken from the Winsorized 
mean MWin, the average of the Winsorized scores, which may not equal Mtr 
in the same sample. The statistic s2

Win estimates the Winsorized population 
variance σ2

Win, which may not equal s2 if the population distribution is 
nonnormal.
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60           beyond significance testing

Suppose that N = 10 scores ranked from lowest to highest are as follows:

15 16 19 20 22 24 24 29 90 95

The mean and variance of these scores are M = 35.40 and s2 = 923.60, both 
of which are affected by the extreme scores 90 and 95. The 20% trimmed 
mean is calculated by first deleting the lower and upper .20 (10) = 2 most 
extreme scores from each end of the distribution, represented next by the 
strikethrough characters:

15 16 19 20 22 24 24 29 90 95

Next, calculate the average based on the remaining 6 scores (i.e., 19–29). 
The result is Mtr = 23.00, which as expected is less than the sample mean, 
M = 35.40.

When one Winsorizes the scores for the same trimming proportion 
(.20), the two lowest scores in the original distribution (15, 16) are each 
replaced by the next highest score (19), and the two highest scores (90, 95) 
are each replaced by the next lowest score (29). The 20% Winsorized scores 
are listed next:

19 19 19 20 22 24 24 29 29 29

The Winsorized mean is MWin = 23.40. The total sum of squared deviations 
of the Winsorized scores from the Winsorized mean is SSWin = 166.40, and 
the degrees of freedom are 10 – 1, or 9. These results imply that the 20% 
Winsorized variance for this example is s2

Win = 166.40/9, or 18.49. The vari-
ance of the original scores is greater (923.60), again as expected.

Robust Interval Estimation

The Tukey–McLaughlin method (Tukey & McLaughlin, 1963) to 
calculate robust confidence intervals for µtr based on trimmed means and 
Winsorized variances is described next. The standard error of Mtr is estimated 
in this method as

s
s

p n
tm

Win

tr

2.29=
−( )

( )
1 2

For the example where

n p s M= = = = =10 20 18 49 4 30 231 2, . , . . , .tr Win trand 000
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sampling and estimation           61

the standard error of the trimmed mean (23.00) is

stm 2 266=
− ( )[ ]

=4 30

1 2 20 10

.

.
.

The general form of a robust 100 (1 – a)% confidence interval for µtr in this 
method is

M s t ntr tm 2-tail, tr – 1 2.30± ( )[ ]α ( )

where ntr is the number of scores that remain after trimming. For the example 
where n = 10 and ptr = .20, the number of deleted scores is 4, so ntr = 6. The 
degrees of freedom are thus 6 – 1 = 5. The value of t2-tail, .05 (5) is 2.571, so the 
robust 95% confidence interval for µtr is

23.00 2.266 2.571± ( )

which defines the interval [17.17, 28.83]. It is not surprising that this robust 
interval is narrower than the conventional 95% confidence interval for µ 
calculated with the original scores, which is [13.66, 57.14]. (You should verify 
this result.)

A robust estimator of the standard error for the difference between inde-
pendent trimmed means when not assuming homoscedasticity is part of the 
Yuen–Welch procedure (e.g., Yuen, 1974). Error variance of each trimmed 
mean is estimated as

w
s n
n n

i
ii

i i

=
−( )
−( )

Win

tr tr
2.31

2 1
1

( )

where s2
Wini

, ni, and ntri
 are, respectively, the Winsorized variance, original group 

size, and effective group size after trimming in the ith group. The Yuen–Welch 
estimate for the standard error of Mtr may be somewhat more accurate than 
the estimate in the Tukey–McLaughlin method (Equation 2.29), but the two 
methods usually give similar values (Wilcox, 2012).

The Yuen–Welch standard error of Mtr1 – Mtr2 is

s w wYW 2.32= −1 2 ( )

and the adjusted degrees of freedom in a central t distribution are estimated as

df
w w

w
n

w
n

YW

tr1 tr2

2.33= +

−
+

−

( )
( )1 2

2

1
2

2
2

1 1
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62           beyond significance testing

The general form of a 100 (1 – s)% confidence interval for µtr1 – µtr2 in this 
method is

M – M s t dftr1 tr2 YW 2-tail, YW 2.34± ( )[ ]α ( )

Listed in Table 2.4 are raw scores with outliers and descriptive statis-
tics for two groups where n = 10. The trimming proportion is ptr = .20, so 
ntr = 6 in each group. Outliers in both groups inflate variances relative to 
their robust counterparts (e.g., s2

2 = 503.78, s2
Win2  = 9.07). Extreme scores in 

group 2 (2, 3, 82) fall in both tails of the distribution, so nonrobust versus 
robust estimates of central tendency are more similar (M2 = 21.00, Mtr2 = 
17.00) than in group 1. Exercise 5 asks you to verify the robust estimators 
for group 2 in Table 2.4.

Summarized next are robust descriptive statistics for the data in Table 2.4:

M s M str1 Win1 tr2 Win2= 23.00, =18.489 and =17.00,2 22 = 9.067

– =6.00tr1 tr2M M

The standard error of the trimmed mean contrast is estimated in the Yuen–
Welch method as

Table 2.4
Raw Scores With Outliers and Descriptive Statistics for Two Groups

Group

1 2

15 3
16 2
19 21
20 18
22 16
24 16
24 13
28 19
90 20
95 82

M 35.40 21.00
Mtr 23.00 17.00
MWin 23.40 16.80
s2 923.600 503.778
s2

Win 18.489 9.067

Note.  The trimming proportion is ptr = .20.
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w w1 25 547 and 2= = = =18 489 9
6 5

9 067 9
6 5

. ( )
( )

.
. ( )

( )
..

. . .

72

2 875YW

0

5 547 2 720s = + =

and the degrees of freedom are calculated as

dfYW 8 953= +( )
+

=5 547 2 720
5 547

5
2 720

5

2

2 2

. .
. .

.

The value of t2-tail, .05 (8.953) is 2.264. The robust 95% confidence interval for 
µtr1 – µtr2 is

6.00 2.875 2.264± ( )

which defines the interval [-.51, 12.51]. Thus, µtr1 – µtr2 could be as low as 
-.51 or it could be as high as 12.51, with 95% confidence and not assuming 
homoscedasticity. Wilcox (2012) described a robust version of the Welch 
procedure that is an alternative to the Yuen–Welch method, and Keselman, 
Algina, Lix, Wilcox, and Deering (2008) outlined robust methods for depen-
dent samples.

A modern alternative in robust estimation to relying on formulas to esti-
mate standard errors and degrees of freedom in central test distributions that 
assume normality is bootstrapping. There are methods to construct robust non-
parametric bootstrapped confidence intervals that protect against repeated 
selection of outliers in the same generated sample (Salibián-Barrera & Zamar,  
2002). Otherwise, bootstrapping is applied in basically the same way as described 
in the previous section but to generate empirical sampling distributions for 
robust estimators.

Standard computer programs for general statistical analyses, such as SPSS 
and SAS/STAT, have limited capabilities for robust estimation. Wilcox (2012) 
described add-on modules (packages) for conducting robust estimation in R, a 
free, open source computing environment for statistical analyses, data mining, 
and graphics.10 It runs on Unix, Microsoft Windows, and Apple Macintosh fam-
ilies of operating systems. A basic R installation has about the same capabilities 
as some commercial statistical programs, but there are now over 2,000 packages 
that further extend its capabilities. Wilcox’s (2012) WRS package has routines 
for robust estimation, outlier detection, comparisons, and confidence interval 

10http://www.r-project.org/
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construction in a variety of univariate or multivariate designs.11 Additional  
R packages for robust estimation are available from the Institut universitaire de 
médecine sociale et préventive (IUMSP).12 See Erceg-Hurn and Mirosevich 
(2008) for more information about robust estimation.

Conclusion

The basic logic of sampling and estimation was described in this chap-
ter. Confidence intervals based on statistics with simple distributions rely on 
central test statistics, but statistics with complex distributions may follow 
noncentral distributions. Special software tools are typically needed for non-
centrality interval estimation. The lower and upper bounds of a confidence 
interval set reasonable limits for the value of the corresponding parameter, 
but there is no guarantee that a specific confidence interval contains the 
parameter. Literal interpretation of the percentages associated with a confi-
dence interval assumes random sampling and that all other sources of impre-
cision besides sampling error are nil. Interval estimates are better than point 
estimates because they are, as the astronomer Carl Sagan (1996, pp. 27–28) 
described them, “a quiet but insistent reminder that no knowledge is com-
plete or perfect.” Methods for robust interval estimation based on trimmed 
means and Winsorized variances were introduced. The next chapter deals 
with the logic and illogic of significance testing.

Learn More

Cumming (2012) gives clear introductions to interval estimation, effect 
size estimation, and meta-analysis. Chernick (2008) describes bootstrapping 
methods for estimation, forecasting, and simulation. The accessible book by 
Wilcox (2003) gives more detail about robust statistics.

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers 
(2nd ed.). Hoboken, NJ: Wiley.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, 
and meta-analysis. New York, NY: Routledge.

Wilcox, R. R. (2003). Applying contemporary statistical techniques. New York, NY: 
Academic Press.

11http://dornsife.usc.edu/labs/rwilcox/software/
12http://www.iumsp.ch/Unites/us/Alfio/msp_programmes.htm
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Exercises

1.	Explain the difference between the standard deviation s and 
the standard error sM.

2.	Interpret s = 60.00 and sM = 6.00 for the same data set. What is 
the sample size?

3.	 For M = 100.00, s = 9.00, and N = 25, show that the 99% confi-
dence interval for µ is wider than the corresponding 95% interval.

4.	For the data in Table 2.2, calculate the 95% confidence interval 
for µD and the 95% confidence interval for µ1 - µ2.

5.	For the data in Table 2.4, verify the values of the robust estima-
tors for group 2.

6.	What is the relation between Mtr and MWin in the Tukey–
McLaughlin method?
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