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Abstract—We present a novel probabilistic framework that fuses information coming from the audio and video modality to perform

speaker diarization. The proposed framework is a Dynamic Bayesian Network (DBN) that is an extension of a factorial Hidden Markov

Model (fHMM) and models the people appearing in an audiovisual recording as multimodal entities that generate observations in the

audio stream, the video stream, and the joint audiovisual space. The framework is very robust to different contexts, makes no

assumptions about the location of the recording equipment, and does not require labeled training data as it acquires the model

parameters using the Expectation Maximization (EM) algorithm. We apply the proposed model to two meeting videos and a news

broadcast video, all of which come from publicly available data sets. The results acquired in speaker diarization are in favor of the

proposed multimodal framework, which outperforms the single modality analysis results and improves over the state-of-the-art audio-

based speaker diarization.

Index Terms—Speaker diarization, dynamic Bayesian networks, audiovisual fusion.
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1 INTRODUCTION

SPEAKER diarization corresponds to the task of segmenting a
digital recording in speaker homogeneous parts and

assigning each part to the corresponding speaker [1]. The
output of speaker diarization is useful for Automatic Speech
Recognition (ASR) and automatic transcription. In ASR, a
generic model of speech is adapted to each speaker. Speaker
diarization can provide speaker-specific data for this adapta-
tion in a multispeaker setting. In automatic transcription, the
output of speaker diarization can organize the transcript in
terms of the speaker’s identity. Such a transcript is more
readable by humans and is more useful for machines [2].

In speaker diarization, all the available information can
be used to identify the speaker at each part of the recording,
e.g., models of voices or silence, information from the rest of
the recording, the location of the recording equipment,
temporal information, and so on. Consequently, speaker
diarization involves elements of signal processing, compu-
ter vision, and machine learning.

Previous research, which is described in detail in Section 2,
focused on subaspects of this problem. A first line of research
performs speaker diarization using only the audio stream [3],
[4], [5], [6], [7], [8], [9], [10], [11]. In this case, the stream is first
segmented at the speaker change positions. Then, assuming
a single speaker per segment, the segments are clustered
until each cluster corresponds to a single speaker. Such
approaches are robust to different contexts, but suboptimal
since they do not use the available video information. A
second line of research performs speaker diarization through
synchrony detection, i.e., they detect the image region in the
video frames which is most synchronized to the audio stream

and assume it corresponds to the speaker [12], [13], [14], [15],
[16], [17], [18]. This is an intuitive assumption, but it often
does not hold in practice, e.g., in a recording containing
silence, the most synchronized part of the video modality
does not correspond to the speaker. Finally, there are
approaches which treat speaker diarization as an audio-
visual tracking task [19], [20], [21], [22], [23]. The source of the
audio is tracked through the difference in phase and
amplitude between measurements of different microphones.
Potential speakers are tracked in the video modality, and the
one closer to the source of the audio is detected as the
speaker. Such an approach is based on solid principles, but it
is not applicable to the vast majority of available recordings,
for which no microphone arrays are used and the speakers
are often not visible.

This paper focuses on speaker diarization in audiovisual
recordings containing a single audio track and one or more
synchronized video streams. This choice of input modalities
makes the proposed framework applicable to most of the
digital recordings existing today, from web-camera videos
to movies and smart meeting room sessions.

We propose a Dynamic Bayesian Network (DBN) that
can incorporate information coming from the audio mod-
ality, the video modality, and the joint audiovisual space as
well as the dynamics appearing in the temporal dimension
of an audiovisual stream. The proposed model makes no
assumptions about the location of the audiovisual recording
equipment, does not assume a single speaker per segment,
and acquires the person-specific parameters online, without
need for training data.

The remainder of this paper is organized as follows:
Section 2 describes the related work which is most relevant
to the proposed framework. Section 3 presents the prob-
abilistic formulation of the task of speaker diarization.
Section 4 describes how the people of a recording are
represented as processes which produce cues in the audio,
video, and joint audiovisual space. Section 5 explains how
to deal with data association problems arising under the
proposed formulation, while Section 6 presents inference
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and learning under the current model. Finally, Section 8
describes the experiments carried out for this work.

2 RELATED WORK

The relevant research can be categorized into three
categories, namely, approaches using the audio input
(space A), approaches using synchrony (space J), and
approaches performing audiovisual tracking (spaces A and
V ). The possible input modalities are illustrated in Fig. 1.
The A space corresponds to the audio input, where, for
example, the voice of the speaker can be identified. The
V space corresponds to the video information, e.g., the
location of a potential speaker. The J space corresponds to
information coming from the joint audiovisual observa-
tions, e.g., whether the motion of a person’s lips is in
agreement with the phonemes of the audio space.

Using the audio modality alone is the most common
choice in the literature, see, for example [3], [4], [5], [6], [7],
[8], [9], [10], and led the National Institute of Standards and
Technology (NIST) to organize the Rich Transcription (RT)
evaluation in which speaker diarization is an independent
task. In the RT benchmark of 2007 [2], the method of
Wooters and Huijbregts performed best [11] and is still
considered the state of the art. It will be used as a baseline
for the results of this paper.

Speaker diarization systems based on synchrony perform
synchrony detection in the J space, i.e., they locate the part
of the video modality that appears most synchronized to the
audio modality. Assuming that this part of the video
modality corresponds to the speaker, the output of
synchrony detection can be directly mapped to speaker
diarization. Previous approaches on synchrony detection
can be divided into two categories. The first category
processes the audio and video signals extensively in order
to extract features, such as the detection of sudden changes
in the audio stream or the acceleration of distinctive visual
features. A matching algorithm is used on these changes to
locate the parts of the video stream that appear most
correlated to the audio stream [12], [13]. The second
category involves the estimation of the Mutual Information
(MI) between the audio and video signals [14]. The parts of
the video stream that are most informative of the audio
stream are then selected. Synchrony detection based on MI
has been very influential [15], [16], [17], [18]; it was
extensively evaluated in recordings containing speech and
it will be the choice of this work.

Speaker diarization based on localization performs
independent tracking in the audio and video modality. In
the audio modality, the source of the audio is located using
the difference in the phase and amplitude between
measurements of different microphones. In the video
modality, the different people are detected and the person

closest to the source of the audio stream is located as the
speaker. There are multiple speaker diarization frameworks
proposed in the literature in which the two modalities are
treated independently for tracking [19], [20], [21], [22]. In
contrast, audiovisual tracking which models both modal-
ities jointly is rare [23].

3 MODEL FORMULATION

This paper presents a DBN which manages to capture
patterns appearing not only in a single modality, but also
across multiple modalities, as well as in the temporal
dimension of the multimodal streams. The proposed DBN
is constructed as follows:

1. The temporal patterns are treated by a factorized
transition model.

2. The state of different speakers is represented by the
hidden nodes.

3. The model parameters capture the way persons
affect the audiovisual stream.

4. Performing speaker diarization maps to infer the
state of the hidden variables.

3.1 Transition Model and Hidden System State

The proposed DBN has a time slice duration equal to the
frame duration of the audiovisual recording and takes into
consideration the system state in the previous time slice
under a factorized transition model. Factorized transition
models were first introduced in the factorial Hidden
Markov Model (fHMM) [24], which is a constrained version
of the Hidden Markov Model (HMM) [25].

In a first order HMM, as shown in the graphical model of
Fig. 2a, the hidden system state at time t, Xt, is discrete1 and
only depends on the previous system state Xt�1. In an
fHMM, the hidden state is divided into subsets of hidden
variables, as shown in Fig. 2b. Consequently, the transition
probability of the system state factorizes into a product of
terms, each one of which depends on a subset of the
variables of Xt and Xt�1. In probabilistic terms, this
corresponds to

p XtjXt�1ð Þ ¼
Y
i

p XtðiÞjXt�1ðiÞð Þ; ð1Þ

where Xt ¼ ðXtð1Þ;Xtð2Þ . . . XtðnÞÞ. This factorization leads
to a drastic decrease in the number of free parameters for
the transition probabilities.

In the proposed system, the hidden system state Xt

represents the identity of the speaker(s) and the visible
person(s) at time t. In case of N people, each realization xt is
a binary vector of length 2N , where elements ½1 . . .N � are 1
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Fig. 1. The different inputs used for speaker diarization. A stands for the audio modality, V for the video modality, and J for the joint audiovisual
space.

1. In this paper, capital letters denote random variables and lowercase
letters denote instantiations. Bold symbols denote vectors.



if the corresponding person is visible and 0 otherwise, and
elements ½N þ 1 . . . 2N� are 1 if the corresponding person
speaks and 0 otherwise. The first N elements are denoted
with XV

t and correspond to the video part. The second
N elements are denoted with XA

t and correspond to the
audio part. Note here that we assume a known number of
speakers—we compare models with different number of
speakers to automatically select the correct number in
Section 8.2. The transition probability is factorized in terms
of these variables as

p XtjXt�1ð Þ ¼
Y
n

p
�
XA
t ðnÞjXA

t�1ðnÞ
�
p
�
XV
t ðnÞjXV

t�1ðnÞ
�
; ð2Þ

which implies that the transition probability for the state of
each person is independent of the state of the other persons.
For example, the fact that a person becomes visible on a
specific frame is independent of whether he starts to speak.

The binary representation of the hidden system state
creates a total of 22N possible system states. The transition
matrix of a DBN which explicitly defines pðXtjXt�1Þ would
contain 24N parameters. Factorizing the system state in
independent person states decreases the number of free
parameters for the transition matrix. In particular, XA

t ðnÞ
and XV

t ðnÞ are binary and we need two parameters for
each factor.2 Thus, the factorized transition matrix is
defined by just 4N parameters in total.

3.2 Observations and Observation Model

The visible nodes at time t, denoted with Yt, depend on the
system state of time t. In the proposed model, the
observation Yt ¼ ðAt;Vt; N

f
t ;JtÞ represents the features

extracted from the multiple modalities, namely, the audio
stream (At), the video stream (Vt; N

f
t ), and the joint

audiovisual space (Jt) at the corresponding time t.
In an HMM, the observation model consists of the

conditional probability pðytjxtÞ. In an fHMM, this distribu-
tion cannot be factorized in a general way. In the proposed
DBN, however, pðytjxtÞ is factorized into one observation
model per person, called person model. The size and type of a
realization of the observations yt and the type of the person
models are dependent on our choice of features, but any

kind of feature can be incorporated under the proposed
framework. The feature choices of this work can be found in
Section 4, while the specific factorization for the observation
model is presented in Section 6.

3.3 Parameterization

The proposed model is defined by the priors � for each state,
the transition matrix A, and the observation model. The
parameter �ðxÞ represents the probability of the system
being in state X1 ¼ x at time step t ¼ 1. The transition matrix
is factorized using person-specific factors AnAij ¼ pðxAt ðnÞ ¼
jjxAt�1ðnÞ ¼ iÞ and AnVij ¼ pðxVt ðnÞ ¼ jjxVt�1ðnÞ ¼ iÞ. Element
Aij denotes the probability of transition from state Xt ¼ i to
Xtþ1 ¼ j.

The graphical model representation of the proposed
framework is depicted in Fig. 3. In this model, the individual
person models are independent and their transition prob-
abilities factorize. However, the observation at time t

depends on all the person states at that point in time, and
therefore the hidden states of t are not conditionally
independent of each other given the observations y1:T . Note
here that the simple model in Fig. 2b is not directly
applicable to the extracted features. This proposed network
structure, depicted in Fig. 3, is necessary for the solid
probabilistic treatment of multiple persons—explained in
Section 5.

3.4 Inference

Given a new audiovisual stream of T time slices, the
problem, in probabilistic terms, translates to estimating the
state sequence x1:T that best “explains” the observation
sequence y1:T extracted from that stream [25]. This will
return the identity of the speaker and the visible people at
each point of the stream. Inference is described in Section 6.

4 PERSON MODELS

People generate features in the video and audio streams, as
well as in the joint audiovisual space. Let the parameters of
the person model of the nth participant be ����n, consisting of
three parts: ����n ¼ ð����Vn ; ����An ; ����JnÞ. ����Vn denotes the Video modality
part, ����An the Audio modality part, and ����Jn the part
concerning the Joint audiovisual space. For example, the
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Fig. 2. The graphical models of a Hidden Markov Model and a factorial Hidden Markov Model.

2. In order to parameterize pðXtðnÞjXt�1ðnÞÞ and pðXtðnÞj:Xt�1ðnÞÞ.



probability that observation vt was generated in the video

modality, given that person 2 was visible, is

p
�
vtjxVt ð2Þ ¼ 1

�
¼ p
�
vt; ����

V
2

�
: ð3Þ

These parameters represent the realization of a gen-

erative distribution in the feature space of each modality

and correspond to the probability that an observation yt is

generated by the corresponding person. Thus, the family of

the distribution depends on the type of the extracted

features and is fixed beforehand, while the parameters of

the distribution are learned from the data.

4.1 Video Space

In the video modality, the regions of interest are faces, which

are detected using the Viola-Jones face detector [26]. The

face descriptors are extracted using the Bag of Keypoints

method [27] which, in short, works as follows: Scale
Invariant Feature Transforms (SIFTs) appearing in these
regions are extracted, and vector quantization in the SIFT
space is performed. The chosen number of clusters, often
described as “visual words” [27], is set manually.3 In this
work, 100 visual words were used. Each face region, based
on the output of the region-of-interest detection, will return
a different number of SIFT descriptors. Each descriptor is
assigned to the closest cluster, and the final observation
extracted from the video modality of the stream (denoted
with Vt) is a binary vector of length 100, with each element
denoting the existence (value 1) or absence (value 0) of the
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Fig. 3. The dynamic Bayesian network used for audiovisual fusion for speaker diarization. Shaded nodes represent observed variables, while
unshaded nodes represent latent variables. The person states in both modalities are dependent in the observation model and independent during
transition. The nodes Nf and Ns denote the number of detected people and the number of speakers, respectively, and allow us to model the video
and audio modality in a generative fashion. Note that we estimate the distribution over Ns during inference, and therefore the node variable is latent,
while the distribution over Nf is estimated in a preprocessing step, and therefore it is denoted as an observable variable.

3. Unless extreme values are set, there is no significant change in the
accuracy of our framework.



corresponding visual word in the face region—there is one
such vector per detected face in each frame.

The video modality part of the person model is modeled
by a set of Bernoulli distributions, representing the prob-
ability that a specific visual word is present in the face region
given the person’s identity. That is, ����Vn ¼ ðbn1 ; bn2 . . . bn100Þ

>. We
assume independence among the appearance of visual
words so that:

p
�
vt; ����

V
n

�
¼
Y
i

p
�
vtðiÞ; bni

�
¼
Y
i

��
bni
�vtðiÞ�1� bni �1�vtðiÞ�: ð4Þ

4.2 Audio Space

In the audio modality, the stream is divided in 16-ms windows
with a 6-ms overlap. The time slice of the model has frame
duration (40 ms) and therefore four audio descriptors are
extracted, denoted as atðmÞwith m 2 f1 . . . 4g, in each audio
observation at. These descriptors contain the first 13 Mel
Frequency Cepstral Coefficients (MFCCs) from the audio
stream along with their first and second order differences.
The audio part of a person model (����An ) is a 15-component
Gaussian Mixture Model (GMM), with means ����i and full
covariance matrices �i. The probability of observing an
audio feature vector generated by a specific person maps to
the corresponding probability density function at that point,
pðatðmÞ; ����An Þ ¼

P
c �cNðatðmÞ;����nc ;�n

c Þ. We assume that con-
secutive windows are conditionally independent of each
other given the person’s audio model, and get

p
�
at; ����

A
n

�
¼
Y
m

p
�
at mð Þ; ����An

�
¼
Y
m

X
c

�c N
�
at mð Þ;����nc ;�n

c

�
;

ð5Þ

where NðatðmÞ;����nc ;�n
c Þ is the evaluation of a multivariate

Gaussian distribution with mean ����nc and covariance matrix
�n
c at atðmÞ.

4.3 Audiovisual Space

Finally, the correlations of the joint audiovisual space are
modeled through the estimate of the MI between the two
streams as first introduced in the work of Hershey and
Movellan [14]. The MI between two variables, A and V,
measures the information of variable A that is shared with
variable V and it is defined as

MIðA;VÞ ¼
Z

a2A

Z
v2V

p a;vð Þ log
p a;vð Þ
p að Þp vð Þdadv: ð6Þ

Consider now a set of audio and video (A and V )
samples over a number of time slices. Assuming that the

samples of each modality come from a multivariate
Gaussian distribution, with variances �A and �V , respec-
tively, and joint variance �AV , the MI estimate becomes [14]

MIðA;VÞ ¼ � 1

2
log

�Aj j �Vj j
�AVj j : ð7Þ

In the audio, our samples are measures of the average
acoustic energy of the stream and in the video a single
pixel’s value variation in gray scale. We estimate the
variances using 16 samples around the middle frame,
which was also the choice used in [14]. At the resolution of
our data, a face contains more than 1.000 pixels while the
whole frame contains more than 200.000. They thus produce
a very high-dimensional MI descriptor which is called the
Mutual Information Image (MII)—see Fig. 4. Since this
descriptor is extremely high-dimensional, it is commonly
processed further, estimating averages or optimal sets of
pixels [14], [28]. In our approach, a two-dimensional binary
vector is extracted as follows:

. The value of the first feature depends on the output of
the comparison between the average MI of the pixels
in the upper half of the face region to that of the pixels
in the lower half of the face region—see Fig. 4b. The
intuition is that in the case of random movements or
head nods, both the upper and lower parts of the face
appear synchronized to the stream; on the contrary, in
the case of speech, the moving lower half appears
more synchronized than the still upper half.

. The second feature reflects the output of the comparison
between the average MI of the pixels in the detected
face region to the average MI of the pixels in the whole
frame—see Fig. 4c. The intuition behind this feature is
that it detects when the face is “meaningfully”
synchronized with the audio, i.e., when it is more
synchronized than the random background.

Both comparisons result in a binary output, and the
feature vector Jt associated to the detected face is

Jt ¼
eval MI upperfaceð Þ > MI lowerfaceð Þð Þ

eval MI face regionð Þ > MI whole frameð Þð Þ

� �
; ð8Þ

where the function eval evaluates the comparison of the
average MI of the pixels of two specified regions into a
binary value.

The audiovisual part of a person model is therefore
composed of two generative sets, each consisting of two
Bernoulli distributions. The first set models the way the
values of Jt are generated when the person is visible and
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Fig. 4. (a) The frame of the clip and (b)-(c) the Mutual Information Image. Green rectangles denote the upper and lower halves of the detected face
(b). Red rectangles denote the face and the whole frame regions (c).



speaking (����Jn1), while the second set models how they are
generated when the person is visible but silent (����Jn0).
Similarly to (4),

p
�
jt; ����

J
n

�
¼
Y
i

p
�
jtðiÞ; bni

�
¼
Y
i

��
bni
�jtðiÞ�1� bni �1�jtðiÞ�; ð9Þ

where if xAt ðnÞ ¼ 0 then ����Jn0 is used, while if xAt ðnÞ ¼ 1 then
����Jn1 is used.

4.4 Context Modeling

The audiovisual stream is not affected only by the people
but also by the context of the recording. For example, when
nobody speaks, the audio stream corresponds to the
nonspeech environmental sounds. These environmental
sounds are modeled indirectly through a distribution over
the number of speakers—described in Section 5. Finally,
sometimes the face detection falsely detects faces in the
background. The distribution of the video features in such a
window is modeled by averaging over all the face models.
In effect, this enables us to detect windows that are not a
face of any of the people.4

5 PROBABILISTIC TREATMENT OF MULTIPLE

PEOPLE

The person models described in Section 4 are used to
evaluate the probability that an observation was generated
by a specific person. Using these models, it is straightfor-
ward to compare multiple person models in order to select
the one that most probably generated an observation.
However, when dealing with multiperson recordings, it is
unfeasible to directly compare all possible system states.

For example, consider a stream with two people with
corresponding person models ����1 and ����2. The system state
space is a four-dimensional binary vector, where the
first element indicates if the first person is visible, the second
element indicates if the second person is visible, the third
element indicates if the first person is speaking, and the fourth
one indicates if the second person is speaking.

In principle, the probability of each possible state (xt) in
the presence of our observation (yt) is evaluated using
Bayes’ rule [29]:

p xtjytð Þ ¼ p ytjxtð Þp xtð Þ
p ytð Þ

¼ p ytjxtð Þp xtð ÞP
xt
p ytjxtð Þp xtð Þ

; ð10Þ

unfortunately, pðytjxtÞ is not straightforward to compute
for all different states.

In the video modality, for instance, imagine that only one
face window is detected, from which we extract the
corresponding observation vt. In that case, it is easy to
compare pðvtjxtÞ for system states with one visible person
(e.g., for xt ¼ ð1001ÞT or xt ¼ ð0101ÞT ): It corresponds to
comparing pðvt; ����V1 Þ with pðvt; ����V2 Þ. In contrast, it is not clear
what to do for states with two or no visible people, such as
xt ¼ ð1101ÞT or xt ¼ ð0001ÞT : There is no strict observation-
to-parameters correspondence.

In order to solve this, the number of detected faces is
added as an observation and, based on this number, the
model accounts for false detection (that is, one detected
region, but no visible speakers) or nondetected faces (one
detected region but two visible speakers). The details of this
solution are presented in Section 6.

In the audio modality, the same issue appears. It is easy
to compare pðatðiÞ; ����A1 Þ with pðatðiÞ; ����A2 Þ to decide which of
the two people is most likely the speaker (i.e., states like
xt ¼ ð1110ÞT or xt ¼ ð1101ÞT ). However, it is not straightfor-
ward how to compare single-speaker states to states
indicating no one speaking, or to two people speaking
simultaneously, because we use person-specific (in contrast
to state-specific) voice models.

A possible solution would be to model each possible
combination (for instance, both of the people speaking) with
a different person model. This is clearly not realistic since
the number of states is exponential to the number of
participants and therefore, even for a small number of
people in our stream, a lot of data would be needed to
obtain a good estimate for the model parameters.

Alternatively, we make a (naive, but reasonable) as-
sumption that each person’s state is independent of the
other persons’ states. We obtain the following factorization:

p xtjAtðmÞð Þ ¼
Y
j

p xt jð ÞjAtðmÞð Þ

¼
Y
j

p AtðmÞjxt jð Þð Þp xt jð Þð Þ
p AtðmÞð Þ ; ð11Þ

for which, using Bayes’ Rule, we get

p At mð Þjxtð Þ ¼
Y
j

p At mð Þjxt jð Þð Þ; ð12Þ

where one is left with the difficult task of estimating
pðatðmÞjxtðjÞÞ for xtðjÞ ¼ 0, that is, model the way people
affect the audio modality when silent.

The proposed framework avoids this problem with one
extra variable, Ns

t , representing the number of speakers at
each time slice. A GMM is trained on independent labeled
data from news broadcast videos containing 1 to N speak-
ers,5 acquiring a generative distribution pðAtðmÞjNs

t Þ, for
Ns
t 2 ð0; 1 . . .NÞ. Note that the original training data contains

a single speaker, but audio segments containing different
speakers can be combined to create training data for an
arbitrary number of speakers. We use the resulting GMM to
evaluate the probability that an audio descriptor was
generated whenNS people were speaking, and the graphical
representation of this step can be seen in Fig. 3. pðNs

t jAtðmÞÞ
is acquired as

p
�
Ns
t jAtðmÞ

�
¼

p
�
AtðmÞjNs

t

�
p
�
Ns
t

�
P

Ns
t
p
�
AtðmÞjNs

t

�
p
�
Ns
t

�
¼

p
�
AtðmÞjNs

t

�
P

Ns
t
p
�
AtðmÞjNs

t

� ; ð13Þ

where a uniform prior over Ns
t is assumed and this quantity

is used during inference in order to avoid estimating
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4. An alternative solution is to estimate the average over the frames of
the stream. Experimental evaluation indicates that using the whole frame is
computationally much more expensive and does not improve the results.

5. In contrast to the person voice models, which are learned from the test
data.



pðAtðiÞjxtðjÞÞ for xtðjÞ ¼ 0. The details of this procedure can
be found below, in Section 6.

6 INFERENCE

The goal of inference is to acquire the system state sequence
(x�1:T ) which is the most likely given the extracted observa-
tion sequence, that is, x�1:T ¼ arg maxx1:T

pðx1:T jy1:T Þ. Under
the Markov assumption, the target distribution can be
factorized as

p x1:T ;y1:Tð Þ ¼
YT
t¼0

p xtjxt�1ð Þp ytjxtð Þ; ð14Þ

where pðx1 ¼ xjx0Þ is the prior probability of the system
being in state x at the first time slice. The transition
probabilities pðxtjxt�1Þ are taken from the factorized
transition matrix A, while pðytjxtÞ is the observation model.

The observation model is factorized using the person
models which represent generative distributions. The ob-
servation yt consists of the face descriptors acquired (Vt), the
number of detected faces on that frame (Nf

t ), the audio
descriptors for that slice (At), and a discrete measure of
correlation between each face and the audio stream (Jt).
These features are independent given the system state, that is,

p ytjxtð Þ ¼ p
�
vt; n

f
t ; jt; atjxt

�
¼

¼ pðvtjxtÞ
�
nft jxt

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Video Modality

pðjtjxtÞ|fflfflfflffl{zfflfflfflffl}
Joint Space

pðatjxtÞ|fflfflfflffl{zfflfflfflffl}
Audio Modality

; ð15Þ

where the three different modalities where information
comes from are indicated.

6.1 Video Modality

In the Video Modality, the observation is factorized into the
number of detected faces, nft , and the features extracted
from the detected faces, vt. The probability of perfect face
detection is set empirically to 0.9.6 Thus,

p
�
nft jxt

�
¼

0:9; if
PN

i¼1 xtðiÞ ¼ n
f
t ;

0:1

N � 1
; otherwise;

8<
: ð16Þ

where nft is the number of detections returned from the face
detector for frame t.

When we detect multiple faces, we need to find which
face belongs to which person; all permutations are possible.
A dummy variable, Wt, is used locally and corresponds to
all the possible permutations in the correspondence
between person models and detected faces. That is,

p vtjxtð Þ ¼
X

wt2W

p vt;wtjxtð Þ ¼
X
wt

p wtð Þ
Y
i

p
�
vtðiÞ; ����VwtðiÞ

�
;

ð17Þ

where a uniform prior distribution for Wt is used in
practice.

Finally, the face detection procedure might not be
flawless. In case

PN
i¼1 xtðiÞ > nf , the state xt represents a

state with more people than the number of detected faces.
In that case, we set the probability that a person appears in
the frame but is not detected by the face detector to the
probability of that person being visible over the whole
stream. In case of

PN
i¼1 xtðiÞ < nf , the remaining windows

are evaluated as background, as described in Section 4.4.

6.2 Joint Space

In the joint audiovisual space, the MI feature vector is
extracted from each detected face. Similarly to the video
modality, nondetected people do not produce a joint space
observation and we need to find which person produced
each observation.

Thus, the joint space observations are evaluated in
parallel to the video modality observations, and the same
wt settings are used:

p jtjxtð Þp vtjxtð Þ ¼
X

wt2W

p vt;wtjxtð Þp jt;wtjxtð Þ ð18Þ

¼
X
wt

pðwtÞ
Y
i

pðvtðiÞ; ����VwtðiÞÞ
Y
i

pðjtðiÞ; ����JwtðiÞ
�
; ð19Þ

where ����JwtðiÞ corresponds to the model of person wtðiÞ.
Recall that each person model is defined in the joint

audiovisual space through two sets of parameters. If
xAt ðwtðiÞÞ ¼ 1, i.e., the system state implies that the person
is speaking, then ����JwtðiÞ1 is used; otherwise, ����JwtðiÞ0—see (9) in
Section 4.3.

6.3 Audio Modality

In the audio modality, the observation model is pðatjxtÞ,
which, since there is more than one audio descriptor per
time slice, becomes

Q
m pðatðmÞjxtÞ. It is challenging to

compare the probabilities of the audio descriptors when the
number of speakers is different and, in particular, when this
number is zero.

Introducing the random variable Ns
t , pðxtjatðiÞÞ, we can

avoid computing pðatðiÞjxtðjÞÞ for xtðjÞ ¼ 0 in (11) using the
following factorization [32]:

pðxtjatðmÞÞ ¼ p Ns xtð Þjat mð Þð ÞQ
j:x jð Þ¼1 p

�
at mð Þ; ����Aj

�
P

x:nst xð Þ¼nst

Q
j:xt jð Þ¼1 p

�
at mð Þj����Aj

� : ð20Þ

Note that pðnjxtÞ is 1 for n, equal to the number of active
speakers implied by xt (denoted by NsðxtÞ) and 0 otherwise.
Intuitively, the first decision involves what partition of the
whole probability mass can be assigned to the groups of
system states with the same number of speakers. Then, this
mass is divided over the members of the group. The latter
can be performed without explicitly modeling the gen-
erative distributions of nonspeaking participants.

6.4 Viterbi Decoding

The factorizations presented in (17), (19), and (20) combined
with the factorized transition matrix A and the probability
vector � are adequate to evaluate pðy1:T jx1:T Þ. From this, we
could acquire pðx1:T jy1:T Þ using Bayes Rule, but this is
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6. The accuracy of face detection is more dependent on the quality of the
video and the viewing angle of the people’s faces rather than the detection
method. The 0.9 is an empirical observation of our previous research [30],
[31]. As we will see in the results of Sections 8.4 and 8.5, even when this
empirical estimate is inaccurate, it does not deteriorate the speaker
diarization results.



intractable because the number of x1:T grows exponentially to
the length of the stream. However, thanks to the Markovian
assumption we made, the single state sequence x�1:T that
maximizes the likelihood of the observation sequence y1:T can
be acquired in linear time with the Viterbi algorithm [25].

7 LEARNING

In our approach, we assume no labeled data or prior
knowledge of person models. Instead, the person models
are acquired using the Expectation Maximization (EM)
algorithm on the feature vectors extracted from the multi-
modal stream. In a nutshell, in the E-step, we compute the
expectation over the variables Xt which represents the
probability that each person is responsible for each of
the observations in the audio, video, and joint audiovisual
space. In the M-step, we assume that these expectations
correspond to the actual state of the hidden variables and
thus do not require any labeled data. Using the observations
which are automatically extracted from the stream, we can
then set the parameters of the each person model to the
values that maximize the complete data log likelihood.7

This allows us to segment the audiovisual sequence
automatically in person-specific segments and learn the
parameters of the corresponding person models. Crucially,
the joint audiovisual space prevents us from having
diverging audio and video models and from assigning the
wrong audio model to a person’s video model.

8 EXPERIMENTS

The experiments were set up to test two hypotheses:

. The proposed framework incorporates video infor-
mation efficiently and improves over the state-of-
the-art audio-based speaker diarization.

. The framework does not require any prior knowl-
edge and successfully incorporates the video stream
in widely different scenarios.

In order to test these hypotheses, three experiments were
performed, each experiment run on three different record-
ings. The first experiment evaluates the performance in
speaker diarization on all the recordings using only the
audio part of the proposed framework and compares it to
the state-of-the-art audio-based speaker diarization system
of Wooters and Huijbregts [11]. The results of this
experiment will define the difficulty of each recording
and serve as the baseline to measure the relative improve-
ment by adding multimodal information.

The second experiment analyzes the video and joint
audiovisual modality of the streams. The potential quality
of the different video streams is explored to evaluate how
much information can be extracted in each case—the better
the analysis of the video stream, the higher its potential for
speaker diarization. Moreover, we assess the quality of the
observations in the joint audiovisual space which have been
proposed directly for speaker diarization, e.g., [15].

The third experiment evaluates speaker diarization
using the multimodal approach. This experiment investi-
gates the improvement achieved using multiple modalities

compared to 1) using only the audio part of the proposed
model or 2) using the state-of-the-art audio-based analysis.

8.1 Data Sets and Performance Measure

Three different recordings are used to assess the applic-
ability of the model in different scenarios and draw a more
definite conclusion for the speaker diarization improvement
when adding multimodal information. Two meeting re-
cordings come from smart meeting rooms and they were
part of the Augmented Multimodal Interaction (AMI) data
set [34]. They were used in the NIST RT evaluation 2007.
The third recording comes from a news broadcast and it
was used in the TRECVID contest data (http://www-
nlpir.nist.gov/projects/trecvid/). More specifically:

1. The first meeting recording comes from the IDIAP
smart meeting room [35], which lasts approximately
30 minutes. There are four participants, seen from
seven different cameras. In our experiments, two
different sets of cameras were considered, and a
diagram is available in Fig. 5. In set A, there is one
camera for each of the participants. Frames recorded
in this setting are shown in the top row of Fig. 6. In
set B, seen in the bottom row of Fig. 6, there are two
cameras, with two participants visible on each. In
this case, each face is visible at a lower resolution.

2. The second meeting recording comes from the
University of Edinburgh smart meeting room. The
meeting lasts approximately 20 minutes and the four
participants are visible from four cameras, which
resembles the A setting of Fig. 6.

3. The third recording comes from a news broadcast
video. Five people appear in the stream, but only
three of them ever speak. Seven cameras were used
for this recording, and each frame either corre-
sponds to a single camera or to a combination of two
cameras’ parts—see Fig. 7.
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Fig. 5. The IDIAP meeting room diagram illustrates the position of the
speakers S1-S4, the position of the cameras for the first setting A1-A4
and the second camera setting B1-B2. The diagram does not give an
exact mapping of the equipment but approximately indicates the relative
position of the different elements.

7. For the equations used in the M-step, see [33].



All the recordings have high frame rate (25 fps) and well-
aligned audio and video streams. The ground truth has
been annotated manually with frame precision. The output
of the model is a label for each frame corresponding to the
identity of the speaking person(s). The speaker diarization
is measured as the accuracy of this labeling:

Overall Accuracy ¼ Frames labeled correctly

Total number of frames
; ð21Þ

Accuracy for Speaker X

¼ Frames labeled correctly as speakerX

Ground truth frames of speaker X
:

ð22Þ

Most audio-based approaches, including Wooters and
Huijbregts [11], perform nonspeech detection and exclude
the detected frames from classification. In our framework,
nonspeech is one of the system states where the audio state
for all the participants is 0.

8.2 Defining the Number of Speakers

The proposed framework assumes that the number of
speakers is known, in contrast to the audio-based approaches

submitted to RT evaluations. The methods that automatically
detect the number of speakers are usually based on the
Bayesian Information Criterion (BIC), defined as

BICðY1:T; ����Þ ¼ log pðY1:T; ����Þ � 1

2
j����j logðnÞ; ð23Þ

where Y1:T is all our observations, ���� all the model
parameters, j����j is the number of free parameters of the
model, and n the total number of observations. Sometimes,
the weight of the penalization term 1

2 j����j logðnÞ is adjusted by
a parameter � to control the significance of the parameter-
related error term [7]. Selecting � to perform well on a
particular data set, however, is a form of overfitting.

The state-of-the-art audio-based speaker diarization meth-
od of Wooters and Huijbregts uses the �BIC criterion to
define the final number of speakers. This criterion evaluates
whether two speakers are actually the same person, i.e., if two
clusters should be merged, by comparing the BIC score of
both cases. In order to avoid setting the arbitrary�parameter,
the merged cluster is allowed to use twice as many free
parameters as the original clusters, and, in this way, the
second terms on the right-hand side of 23 cancel out.
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Fig. 7. The news broadcast diagram illustrates the seven different cameras used. The rectangles next to each camera represent a timeline where
black represents no signal, white means that the recording corresponds to the camera’s view, and gray menas that the recording contains a part of
the camera’s view. In the example frames, we see, from left to right, CAM4, CAM4+CAM6, CAM6, and CAM1+CAM4.

Fig. 6. The upper line shows frames from setting A of the recording, while the bottom line frames from setting B.



In the proposed framework, we cannot apply this
simplification since a different number of person models
will lead to a different number of parameters. Keeping the
number of parameters fixed is against the principal
objective of the BIC, which is to select the model with the
correct complexity.

In our implementation, we choose the number of
speakers that results in the highest BIC score. This is done
after running each model on the whole data sequence, in
contrast to �BIC, which is computed for consecutive
segments. Table 1 lists the final number of people detected
using 1) the �BIC criterion and the approach of Wooters
and Huijbregts, 2) the BIC criterion on the audio part of our
model, and 3) the BIC on the full proposed model.

8.2.1 Conclusions

Wooters and Huijbregts report that their method works
well when the minimum duration of a single-speaker
window is set to a large value [11]. This, indirectly, gives
a smaller penalty to BIC since there is a smaller number of
total points (n) to be evaluated.8 Indeed, in our frame-
precision discretization, the �BIC criterion leads to two
speakers recognized from each of the meetings and a single
speaker from the news video.

In the audio part of the proposed model, we face similar
difficulties. BIC penalizes the high number of parameters
required for each person model and leads to a final choice that
underestimates the total number of speakers. When we add
the information of the visual and joint audiovisual space, the
results improve, detecting the correct number of visible
persons and speakers in three out of the four recordings.

In the multimodal case, the BIC score is dominated by
the video modality because the video modality produces
very confident classification for each person appearing—see
Section 8.4. In the Edinburgh recording, a part of the
background is repeatedly detected as a face, and therefore
the BIC score indicates that an extra person is beneficial
since it explains all the misdetected windows.

The method of detecting the number of people in our
framework favors the video modality of the data. Thus, we
can draw few conclusions for its generalization properties.
In a more sound approach, we can extend the proposed
framework in a straightforward manner to detect the
number of speakers automatically by including a prior
over this number using, e.g., a Dirichlet Process. For the

remainder of the experiments, all methods are provided
with the correct number of people—which in the news
recording is three for the audio-based models and five for
the multimodal one.

8.3 Audio-Based Speaker Diarization

Here, we describe the experiment where we compare the
audio part of our model to the state-of-the-art audio speaker
diarization method of Wooters and Huijbregts [11]. Their
method was originally applied in 2.4-second windows. Here,
we apply it to both frame-duration windows, denoted with
Wooters et al., and 2.4-second windows, denoted with Wooters
NIST. The former compares the two methods on the same
problem, while the latter relates the results reported here to
those of the NIST RT evaluation [2].

Table 2 contains the overall results of the two approaches
on all recordings. In short, when the high-precision, frame-
duration windows are used, Wooters and Huijbregts’
method performs slightly better in the News Broadcast
and IDIAP meeting and slightly worse in the Edinburgh
meeting. The results of the two approaches are expected to
be similar: The same features (MFCC) and parameter
assumptions (GMM) are used. The differences come from
the way silence and multispeaker parts are modeled.

8.3.1 Wooters’ Method Results

Wooters’ method performs a complex clustering of the
audio descriptors, taking measures to avoid overfitting the
data at hand. The optimization details used in our
implementation are those suggested in the paper, which
are specifically fine-tuned for the meeting videos of the
contest [11]. Note that the results reported for the
implementation of Wooters’ method in this work differ
slightly from the accuracy reported in the contest.9 This is
because of the setup of our work and the scoring system of the
NIST contest.

The setup of this paper classifies 40-ms windows rather
than the 2.4-second windows used for the contest. This is a
much harder task since there is less information in every
classification window. However, in tasks such as ASR, this
high-temporal precision segmentation is required to pro-
duce clean, speaker-specific training data.

The contest scoring system evaluated excerpts of 10-12
minutes of the meetings rather than the whole meeting,
but which excerpts were specifically chosen is not publicly
available. In our experiments, all of the IDIAP meeting and
20 minutes of the Edinburgh meeting were used. Further-
more, the NIST evaluation does not evaluate the labeling
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TABLE 1
The Number of Speakers Detected from Different Criteria

In the multimodal approach, the number in the bracket shows the total
number of detected people, even if they do not speak.

TABLE 2
The Audio-Based Speaker Diarization Results

Bold denotes the best performing method for frame-precision speaker
diarization. The Wooters NIST method is applied on 2.4-second
windows, which makes the problem easier, and it is provided as
reference.

8. Notice that the log-likelihood scales linearly with n, while the
parameter penalization scales logarithmically with it.

9. The speaker diarization accuracy for all the meeting excerpts was
reported to be 79.26 percent [11].



accuracy in a 0.25-second collar around the speaker change
points. In this way, high-precision speaker change detec-
tion and accurate labeling of short utterances is not
necessary. This substantially improves accuracy results
and it is in contrast to the evaluation carried out here,
where every cough is taken into account.

8.3.2 Confusion Matrices

Table 3 lists the confusion matrices for each one of the
recordings. Wooters’ method favors the most dominant
parts of the stream, for instance, Silence and Speaker 1
in the IDIAP meeting. In this way, the overall classification
accuracy increases at the expense of a lower classification
accuracy for persons that vocalize less. Our method
performs a slightly worse but more balanced classification.
Moreover, Wooters’ silence detection method continuously
favors classification of frames as nonspeech. In the
Edinburgh meeting, which has significantly fewer silence
parts, our audio model performs best.

8.4 Experiment 2: Video and Mutual Information
Analysis

8.4.1 Video Analysis

Table 4 concisely presents the accuracy on face detection
and detected window recognition of the each recording.
This accuracy is reported based on manually labeled
ground truth.10

Face detection is performed with the Viola-Jones face
detector [26]. The Viola-Jones face detector makes two types
of mistakes: 1) faces that are not detected (misses) and
2) nonfaces that are detected as faces (false positives). In the
recognition part, no information can be extracted from a face
that was not detected. In contrast, in the case of a false
positive, the system must be able to robustly handle the
case and classify the region as background. The recognition
accuracy corresponds to the percentage of correct detec-
tions which are assigned to the right person or the
percentage of background false detection which are
classified as background.

In the meeting videos, the percentage of frames in which
the number of faces was correctly detected is much lower
than the 90 percent assumed from the model11 (Section 6).
This is because most of the meeting is spent on presenta-
tions and the participants are often seen from the side by
the camera and they are not detected by the Viola-Jones face
detector. The detected faces, including false positives, are
classified with near-perfect accuracy. This is very important
since a misclassified face window would mislead the
multimodal speaker diarization.

The two different camera settings for the IDIAP meeting
video provide us with varying qualities of video modality.
Setting B detects fewer faces and returns many more false
positives. This is because the faces are seen from a greater
distance, and therefore the face detector needs to evaluate
lower resolution windows.
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TABLE 3
Speaker Diarization Results Using Only the Audio Modality

Rows contain ground truth, while columns contain classification labels. Labels are NonSpeech, and Speaker 1-4.

10. See the online supplemental material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.47, for detailed results and example frames.

11. This face detection accuracy is set empirically and reflects the
expected accuracy in a novel recording from unknown context.



Face detection performs best in the news video. This is
because people are looking straight in the camera, while
their face covers the largest part of the frame. The
background around them is artificially generated and does
not resemble a face.

8.4.2 Mutual Information Analysis

The observations of the joint space, Jt, have a dual role.
First, they indicate the correct face-to-voice correspon-
dence. Second, they improve the speaker diarization
performance by evaluating whether a detected face
corresponds to a speaker or not. It is hard to evaluate the
speaker diarization performance of the proposed features
alone since, in many of the frames, the corresponding
person is not visible. Moreover, without the audio stream
observations and, more specifically, the distribution over
the number of speakers at each point of the stream, the
person states xAt . This will results in the EM splitting the
observations of each person into two clusters and randomly
assigning one to speaking with xAðnÞ ¼ 1 and one to not
speaking with xAðnÞ ¼ 0.

In order to evaluate the quality of the information of the
joint audiovisual space, we can follow the approach of
Hershey and Movellan in [14]. In the two meetings with
setting A, we compute the MII of each frame and make the
naive assumption that the frame with the highest MI
corresponds to the speaker. The corresponding speaker
diarization results are presented in Table 5.

Note, in Table 5, that the naive assumption of one speaker
per window essentially ignores the nonspeaker segments.

8.4.3 Conclusions

The face detection results are dependent on the choice of
preprocessing method, i.e., here the Viola-Jones face
detector [26]. The specific detector is known to perform
very well in frontal faces and to ignore faces appearing
rotated or seen from the side. The classification accuracy of

the detected faces is nearly perfect. The few mistakes occur
in cases where a face is lost temporarily while, at the same
time, a false positive window appears in the frame. In such
cases, the transition probability favors classifying this false
positive as the missing person. Further processing of the
video modality can eliminate these false positives.

The mutual information contains information relative to
speaker diarization. Using a naive assumption, it produces
results correlated to the active speaker and, incorporated
under a sound probabilistic model, it will improve the
overall results of speaker diarization.

8.5 Experiment 3: Multimodal Speaker Diarization

The high accuracy in the visual analysis allows us to
integrate the speaker diarization information of the joint
audiovisual space efficiently. The overall speaker diariza-
tion accuracy results for the multimodal approach are
reported in Table 6, where the multimodal approach clearly
outperforms the single modality analysis.

Table 7 presents the multimodal speaker diarization
results acquired in different scenarios and camera settings.
The audio modality alone, presented in Section 8.3, does not
distinguish between different speakers very well and the
addition of the other modalities improves the results for
each speaker. Note that in the multimodal approach, no
speaker is favored specifically, but a similar accuracy is
achieved for all of them.

Multimodal analysis produces interesting results in the
multispeaker parts of the stream. In frame-precision
annotation, there are many frames where multiple people
vocalize. These frames are commonly labeled as a single
person [2]. In our work, they are treated as multispeaker
segments and they are accounted as a correct classification
only in case the correct multispeaker label is selected. In
short, the multimodal approach gets and average of

90 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

TABLE 6
The Overall Speaker Diarization Accuracy Achieved

by Different Input Modalities

TABLE 4
The Video Analysis Accuracy on Detection and Classification

TABLE 5
Speaker Diarization Results Using Only the MI of Each Frame in Setting A

Rows contain ground truth, while columns contain classification labels.



71 percent accuracy in contrast to just 28 percent for the
audio-based models.12

8.6 Significance of the Results

The multimodal approach produces higher speaker diari-
zation accuracy than the audio-based approaches. We
perform a t-test to evaluate the statistical significance of
this difference. The comparison between the proposed
approach and the results of Wooters gives a t-value of
6.0812, which means that the results are significantly
different at a confidence level of 99 percent. The results
between the proposed model and the audio part alone
produce a t-value of 4.752, which implies statistical
significance with a confidence level of 98 percent. Compar-
ison between the audio model and Wooters’ method gives a
t-value of 0.8866, which corresponds to no statistically
significant difference.

9 DISCUSSION

The multimodal approach beats the results of the method

proposed by Wooters and Fuijbregts [11] in terms of

speaker diarization in the experimental data. This was
expected since more information is used. The final results of
84 and 89 percent in the IDIAP and Edinburg recordings
beat the 79 percent state-of-the-art performance reported in
the RT benchmark [2] under a much more difficult
objective: We classify windows with 40-ms precision
instead of 2.4 seconds. This high precision speaker diariza-
tion is essential for automatic transcript generation and
more useful automatic speech recognition [36].

Furthermore, the method of Wooters and Huijbregts
assumes a single speaker per window. On one hand, since
in a recording there are windows where multiple speakers
vocalized together, these windows cannot be classified
correctly by Wooters’ method, leading to lower classifica-
tion accuracy. On the other hand, these windows are a
very small part of the stream. A model which considers
all possible speaker combinations, such as the one we
propose, has a much harder task in the remaining, major
part of the stream.

In Figs. 8 and 9, the experimental results are represented
graphically. In these plots, there is one circle for each
element of the confusion matrix with a radius proportional
to the corresponding element. A perfect classification has
large circles on the diagonal—nondiagonal circles represent
misclassification. It is clear that the proposed multimodal
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Fig. 8. A visual representation of the speaker diarization results for the IDIAP recording.

TABLE 7
Confusion Matrix for Multimodal Speaker Diarization Results

12. See supplementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2011.47, for detailed results on the multiperson parts.



approach performs equally well over all speakers, even

those that vocalize less, because it can incorporate the video

stream, where speakers and nonspeakers are equally

represented. In contrast, the audio-based analysis will

inevitably focus on cases dominant in the audio space,

which were the speaker 1 and the nonspeech segments in

the IDIAP meeting and Speaker 3 and nonspeech segments

in the Edinburgh meeting.

10 CONCLUSIONS

This paper presented a probabilistic framework that per-

forms probabilistic multimodal speaker diarization. We

have shown that:

1. The model incorporates all the available sources of
information and outperforms the current state of the
art in single modality analysis.

2. The proposed framework relaxes the assumptions
about the position of the recording equipment.
Multiple microphones can be merged into one
channel, while multiple camera views can be used
as long as the same person does not appear twice.

Moreover, improvements over previous approaches are

that:

1. The Bayesian nature of the model incorporates the
temporal information of the data and performs
parallel speaker segmentation and clustering directly
on the test recording.

2. The parts of the stream in which two or more people
speak simultaneously are treated under the same
framework. This allows both to detect the correct
speaker(s) and to avoid using such parts to learn a
single-speaker’s model.

The framework is robust and it provides high-accuracy

speaker diarization results in a variety of scenarios and

camera settings. The proposed fusion method proves very

effective since incorporating the video modality improves
the results on all the recordings. Moreover, the probabilistic
nature of the proposed approach allows straightforward
incorporation of further modalities, features, or prior
knowledge.

In terms of the features proposed here, we do not claim
optimality in speaker diarization accuracy. Different feature
choices, voice, or appearance models could improve the
results significantly. However, future developments in
high-quality features for speaker diarization, such as,
perhaps, lip-reading or motion detection features, can be
incorporated under the proposed model. The only pre-
requisite is to find a suitable probability distribution over
these features, conditioned on the identity of the speaker.
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