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Outline

▪ Basic concepts of machine learning
▪ Definitions and types of algorithms

▪ Linear regression and classification

▪ Joint probability distribution

▪ Probabilistic graphical models
▪ Independence and Conditional independence

▪ Example: modeling affect during learning

▪ Bayesian networks
▪ Conditional probability distribution

▪ Dynamic Bayesian Network

▪ Naïve Bayes classifier

▪ Evaluation methods and error measures
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▪ Thursday, April 4th 4:30pm-6pm

▪ Midterm presentations

▪ Sunday, April 7th at 11:59pm

▪ Midterm report deadline

▪ Tuesday April 30th – NO CLASS

▪ Preparation for final report and presentation

▪ Thursday, May 2nd 4:30pm-6pm

▪ Final presentations

▪ Tuesday, May 7th at 11:30pm

▪ Final report deadline

Upcoming Deadlines and Course Schedule
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Basic Concepts of 

Machine Learning



What is Machine Learning?

“A computer program is said to learn from experience

E with respect to some class of tasks T and

performance measure P if its performance at tasks in

T, as measured by P, improves with experience E.”

- Tom Mitchell

Machine learning algorithms originate from many 

fields:

▪ Statistics, mathematics, theoretical computer 

science, physics, neuroscience, etc



When are ML algorithms NOT needed?

▪ When the relationships between all 

system variables (input, output, and 

hidden) is completely understood!

▪ This is NOT the case for almost any real 

system!



Types of Learning Algorithms

▪ Supervised learning: classification is seen as 
supervised learning from examples.

▪ Supervision: The data (observations, 
measurements, etc.) are labeled with pre-defined 
classes. It is like that a “teacher” gives the classes 
(supervision).  

▪ Unsupervised learning (clustering)

▪ Class labels of the data are unknown

▪ Given a set of data, the task is to establish the 
existence of classes or clusters/groupings in the 
data

▪ Reinforcement learning



Variables Involved in Supervised Learning

▪ Input: evidences, independent variables, 

observations

▪ Output: labels, outcome variables, 

dependent variable, non-observed

▪ Hidden: latent variables, intermediate 

representations



Types of Supervised Learning Algorithms

▪ Classification: categorize an example
▪ Binary - {depressed, non-depressed}

▪ Multi-class – {happy, sad, angry,  neutral}

▪ Recall nominal data from last week

▪ Regression:
▪ Predict the intensity – how depressed a person is

▪ Recall interval and ordinal data from last week



Supervised Learning with Sequential Data

▪ Prediction with summary features
▪ Input 𝒙𝒊 represents the whole sequence

▪ Output 𝑦𝑖 summarizes the sequence

▪ Sequential Labeling
▪ Input 𝑿𝒊 = {𝒙1, 𝒙2… , 𝒙𝑘} represent a 

sequence 𝑖 of length k

▪ Output 𝒀𝒊 = {𝑦1, 𝑦2… , 𝑦𝑘} represents the 

labels for the sequence

▪ Sequence Prediction
▪ Input 𝑿𝒊 = {𝒙1, 𝒙2… , 𝒙𝑘} represent a 

sequence 𝑖 of length k

▪ Output 𝑦𝑖 summarizes the sequence



The Supervised Learn Problem

▪ Given

▪ 𝐷 = { 𝒙1, 𝑦1 …(𝒙𝑛, 𝑦𝑛)}

▪ a training set of samples of input variables 𝒙 and 

output variables 𝑦

▪ Learn

▪ ො𝑦 = 𝑓 𝒙;𝑾

▪ a function parametrized by 𝑾 that predicts the 

output class (𝑦 = 𝑐 ) from the input variables



Main Ingredients of most Supervised Learning Algorithms

1. Score function: ෝ𝒚 = 𝑓 𝒙;𝑾

▪ Perform inference using current parameters 𝑾

2. Loss function: 𝑳(𝑾;𝑫)

▪ Goal: How to assign only one number representing 

how “unhappy” we are about these scores?

3. Optimization

▪ Adjust the model parameters 𝑾 to best minimize 

the loss function on the training data 𝑫



Optimization
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▪ Score? 

▪ 𝑓 𝒙𝒊; 𝒘 = 𝑤0 +𝒘𝟏𝒙𝒊 + 𝜀

▪ Loss?

▪ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟: σ𝑖 |𝑦𝑖 − 𝑓 𝒙𝒊;𝒘 |

▪ 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟: σ𝒊 𝑦𝑖 − 𝑓 𝒙𝒊;𝒘
𝟐

▪ Optimization? 

▪ Least square (close form solution)

What if the relationship between 𝑥 and 𝑦 is non-linear?

Linear Regression Model (from previous lectures)



16

▪ Score? 

▪ 𝑓 𝒙𝒊; 𝒘 = σ𝑗𝒘𝒋𝜑𝑗(𝒙𝒊) + 𝜀

▪ where 𝜑𝑗(𝒙𝒊) is a non-linear function of 𝒙𝒊

▪ Loss?
▪ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 σ𝑖 |𝑦𝑖 − 𝑓 𝒙𝒊; 𝒘 |

▪ 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 σ𝒊 𝑦𝑖 − 𝑓 𝒙𝒊; 𝒘
𝟐

▪ Optimization? 
▪ Gradient descent 

▪ Ordinary least square

But what if the output 𝑦𝑖 is binary or discrete?

Generalized Linear Regression Model

Still linear with 

respect to 𝑤 Basis functions

Polynomial:

𝜑𝑗 𝑥 = 𝑥𝑘

Gaussian:

𝜑𝑗 𝑥 =
(𝑥 − 𝜇𝑗)

2𝜎𝑗
2

Logs:

𝜑𝑗 𝑥 = log(𝑥 + 1)



Classification vs Regression – 1D Visualization

Input 𝑥𝑖
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Classification – 2D Visualization

Input 𝑥1
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u
t 
𝑥
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𝑓 𝑥𝑖; 𝒘 = 0

𝑓 > 0

𝑓 > 0



Linear Classifier

▪ Score?

▪ 𝑓 𝒙𝒊; 𝒘 = 𝑤0 +𝒘𝟏𝒙𝒊

▪ Loss?

▪ 𝐿 𝒘 = σ𝑖 𝑦𝑖 − sign(𝑓 𝒙𝒊; 𝒘
2

▪ Optimization?

𝑓Score
L

o
s
s
  
𝐿

Nonlinearity!



Logistic Regression – A Linear Classifier

▪ Score?

▪ 𝑓 𝒙𝒊; 𝒘 = 𝑤0 +𝒘𝟏𝒙𝒊
▪ Loss?

▪ Logistic function

▪ 𝐿 𝑤 = σ𝑖 𝑦𝑖 − 𝜎 𝑓 𝒙𝒊; 𝒘
2

▪ Optimization?

▪ Gradient descent 0.5

0

0

1

𝜎
𝑓

𝑓Score
L

o
s
s

𝜎 𝑓 =
1

1 + 𝑒−𝑓

➢ Very similar formulation for 

perceptron and linear SVM



Logistic Regression – Probabilistic Interpretation

▪ Score?

▪ 𝑓 𝒙𝒊; 𝒘 = 𝑤0 +𝒘𝟏𝒙𝒊

▪ Loss?

▪ 𝑝 𝑦𝑖 = 1 𝒙𝒊; 𝒘) = 𝜎(𝑓 𝒙𝒊; 𝒘 )

▪ Negative log likelihood

▪ Optimization?

▪ Gradient descent 0.5

0

0

1

𝜎
𝑓

𝑓Score
L

o
s
s
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Joint Probability 

Distribution



Random Variables

Examples of random variables:

Definition: A variable whose possible values are 

numerical outcomes of a random phenomenon. 

❑ Discrete random variable is one which may take on only a 

countable number of distinct values such as 0,1,2,3,4,…

❑ Continuous random variable is one which takes an infinite 

number of possible values.

• Someone’s age

• Someone’s height

• Someone’s weight

Discrete or 

continuous?

Correlated?



Probability Distributions

▪ Probability Distribution:

▪ p(Weather=Sunny) = 0.5

▪ p(Weather=Rain)= 0.2

▪ p(Weather=Cloud)= 0.2

▪ p(Weather=Snow)= 0.1

▪ Distribution sums to 1.

24
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▪ Completely specifies all beliefs in a problem 

domain.

▪ Joint probability distribution is an n-dimensional 

table with a probability in each cell of that state 

occurring.

▪ Written as P(X1, X2, X3 …, Xn)

▪ When instantiated as P(x1,x2 …, xn) 

Joint Probability Distribution



Example - Joint Probability Distribution

▪ Domain with 2 

variables each of 

which can take 

on 2 states.

Toothache ¬Toothache

Cavity 0.04 0.06

¬Cavity 0.01 0.89

P(Toothache, Cavity)



Background: Rules of Probability

Sum rule:

Product rule:

𝑃 𝑋 =෍

𝑌

𝑃(𝑋, 𝑌)

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝑃(𝑌)

(integrating, marginalizing)

(chain rule)

𝑃 ሩ

𝑘=1

𝑁

𝑋𝑘 =ෑ

𝑘=1

𝑁

𝑃 𝑋𝑘 ቮሩ

𝑗=1

𝑘−1

𝑋𝑘



Inference for Known Joint Probability Distribution

1 Joint probability for a particular assignment

When we know the joint probability distribution :

𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸)
If A, B C, D and E are discrete 

variables, then P(A,B,C,D, E) 

will be a 5-D tensor (matrix)

𝑃(𝐴 = 1, 𝐵 = ′𝑐𝑎𝑟′, 𝐶 = 2,𝐷 = ′𝑏𝑎𝑛𝑎𝑛𝑎′, 𝐸 = 10)

A specific entry in the 5-D tensor

Two main forms of inference:



Inference for Known Joint Probability Distribution

2
Probability of a subset of variables (query) given 

known assignments of other variables (evidences)

𝑃 𝐴,𝐷 𝐶 = 3)
Use the product rule to marginalize 

the other variables B and E

𝑃 𝐴,𝐷 𝐶 = 3) = ෍

∀𝑏∈𝐵,𝑒∈𝐸

𝑃 𝐴,𝐷, 𝑏, 𝑒 𝐶 = 3)

Use the inverse of product rule

𝑃 𝐴,𝐷 𝐶 = 3) =
1

𝑃(𝐶)
෍

∀𝑏∈𝐵,𝑒∈𝐸

𝑃 𝐴,𝐷, 𝑏, 𝑒 𝐶 = 3)

𝑃 𝑋 𝑌 = 𝑃 𝑋, 𝑌 /𝑃(𝑌)



Inference for Known Joint Probability Distribution

2
Probability of a subset of variables (query) given 

known assignments of other variables (evidences)

𝑃 𝑥 𝑦) = 𝛼 ෍

∀𝑧∈𝑍

𝑃(𝑥, 𝑦, 𝑧)

where 𝑥 is the subset of query variables

𝑦 is the subset of evidence assignments

𝑍 is the set of all other variables (not in 𝑥 or 𝑦)
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Models with Multiple Outcome and Latent Variables

Neuroticism

Irritable Insecure Emotional

How can we model the joint probability distribution of this model?
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Probabilistic 

Graphical Models



Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM) 

is a graph formalism for compactly modeling joint 

probability distributions and dependence structures 

over a set of random variables.

▪ Random variables: X1,…,Xn

▪ P is a joint distribution over X1,…,Xn

Can we represent P more compactly?

◼ Key: Exploit independence properties



Independent Random Variables 

▪ Two variables X and Y are independent if

▪ P(X=x|Y=y) = P(X=x) for all values x,y

▪ Equivalently, knowing Y does not change 

predictions of X

▪ If X and Y are independent then:

▪ P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)

▪ If X1,…,Xn are independent then:

▪ P(X1,…,Xn) = P(X1)…P(Xn)

X Y



Conditional Independence

▪ X and Y are conditionally independent given Z if

▪ P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z

▪ Equivalently, if we know Z, then knowing Y does not 

change predictions of X

XY

Z



Graphical Model

▪ A tool that visually illustrate conditional 

independence among variables in a given 

problem.

▪ Consisting of nodes (Random variables or 

States) and edges (Connecting two nodes, 

directed or undirected).

▪ The lack of edge represents conditional 

independence between variables.



Graphical Model

Different types of graphical models: 

▪ Chain, Path, Cycle, Directed Acyclic Graph 

(DAG), Parents and Children



Uncertain Reasoning – Latent Variables

▪ Some aspects of the domain are often 

unobservable and must be estimated 

indirectly through other observations.

▪ The relationships among domain events 

are often uncertain, particularly the 

relationship between the observables 

and non-observables.



Two Main Types of Graphical Models

Bayesian networks Markov Models (next week)

▪ Directed acyclic graph

▪ Conditional dependencies

▪ Undirected graphical model

▪ Cyclic dependencies
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Creating a 

Graphical Model



Example: Inferring Emotion from Interaction Logs

Student Tutoring

System

Logs

Student 

Traits

Emotion?

[Sabourin et al., 2011]



Example: Bayesian Network Representation
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Example: Naïve Bayes Approach
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Appraisal Theory of Emotion

Metal State
(beliefs, goals)

World 

Events

Argues for importance of 

three interrelated concepts 

• World events 

• Mental state 

• Emotional Response 
Body

Expression

Action tendency

Physiological response

If we know two of these 

variables, we can make 

predictions about the third 

Response= f(Env., Mind) 



Example: Bayesian Network Approach
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[Sabourin et al., 2011]

Example: Dynamic Bayesian Network Approach
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Example: Dynamic Bayesian Network Approach
[Sabourin et al., 2011]



Example: Inferring Emotion from Interaction Logs

Student Tutoring

System

[Sabourin et al., 2011]



49

Bayesian Networks



Bayesian networks

▪ A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

▪ Syntax:
▪ a set of nodes, one per variable

▪ a directed, acyclic graph (link ≈ "directly influences")

▪ a conditional distribution for each node given its parents:
P (Xi | Parents (Xi))

▪ In the simplest case, conditional distribution 
represented as a conditional probability distribution
(CPD) giving the distribution over Xi for each 
combination of parent values



Bayesian Network (BN)

▪ A specific type of graphical model that is 

represented as a Directed Acyclic Graph.



Example

“I'm at work, neighbor John calls to say my alarm is 
ringing, but neighbor Mary doesn't call. Sometimes it's set 
off by minor earthquakes. Is there a burglar?”

▪ Variables? 

▪ Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

▪ “Causal" knowledge?

▪ A burglar can set the alarm off

▪ An earthquake can set the alarm off

▪ The alarm can cause Mary to call

▪ The alarm can cause John to call
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Example – Network Topology

Alarm

Mary Calls John Calls

Burglary Earthquake
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Joint Probability in Graphical Models

With chain-rule, the joint probability can be restated:

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃(𝐶, 𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃(𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃 𝐷 𝐸 𝑃(𝐸)

The order in applying the chain-rule is arbitrary.

How can we simplify the joint probability even more, 

given the graphical model?

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃(𝐵, 𝐶, 𝐷, 𝐸)
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Joint Probability in Graphical Models

With chain-rule, the joint probability can be reshaped:

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃 𝐷 𝐸 𝑃(𝐸)

X Y XY

Z
Remember these concepts:

Independent variables conditionally independent

In a Bayesian network, each conditional probability for a 

specific variable X only depends on its parents:

𝑃 𝑋| 𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑃 𝑋 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋)

Conditional Probability Distribution (CPD)
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▪ For example, multivariate normal density function or 
Gaussian linear regression (used by Bayes RegressionLinear
Model)

Conditional Probability Distribution (CPD)

X

YZGiven a variable X and its parents (Y and Z):

Definition: probability distribution of X when the assignment of it 

parents is known (Y and Z) 

𝑃 𝑋 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑋 = 𝑃(𝑋|𝑌, 𝑍)

❑ For categorical variable: expressed as a conditional probability table

❑ For continuous variable: expressed as a conditional density function

Y=0 Y=1

P(X=0|Y) 4/6 1/3

P(X=1|Y) 2/6 2/3



Example – Conditional Probability Distributions

Alarm

Mary Calls John Calls

Burglary EarthquakeP(B=1) P(E=1)
.001 .002

B     E     P(A=1)
T     T       .95
T     F       .94
F     T       .29
F     F       .001

A    P(J=1)A   P(M=1)
T     .70
F     .01

T     .90
F     .05



Generative Model: Naïve Bayes Classifier

x

y

𝑃(𝑦 = 𝑎|𝒙𝒊)

Observation vector: [gaze, turn-taking,speech-energy]

Label : {0:Dominant, 1:Not-dominant}
(outcome)

(evidence)

Score function:

𝑃 𝑦|𝒙 =
𝑃 𝒙 𝑦 𝑃(𝑦)

𝑃(𝒙)

PriorLikelihood

Marginal likelihood

(partition)

Posterior
𝑃 𝒙 =෍

𝑦

𝑃 𝒙 𝑦 𝑃(𝑦)

≈  𝑃 𝒙 𝑦 𝑃(𝑦) = 𝑃(𝒙, 𝑦)Bayes’ theorem:

Chain rule



Naïve Bayes

Dom. 0.5

G ST

•Strong assumption of the conditional independence of all feature variables.

•Feature variables only dependent on class variable

1.0)|(

8.0)|(

=

=

domGP

domGP

4.0)|(

7.0)|(
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domTP
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)()|()|()/( domPdomSPdomGPdomTP =

)|()(
1

domxPdomP i
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i=
=

3.02.06.05.0 = 018.0=

)()|( domSGPdomSGTP =

Conditional 

Probability 

Table (CPT):

Prior



Bayesian Linear Regression Model

x

y

Observation vector: [gaze, turn-taking,speech-energy]

Label : {0:Dominant, 1:Not-dominant}
(dependent variable, outcome variable, response variable)

(independent variable, predictors)

𝑝 𝑦 𝒙, 𝛽, 𝜎2

𝛽

“Prediction” score function would be:

𝑦~𝑁(𝜷𝑇𝒙, 𝜎2𝐼)

𝑦 = 𝜷𝑇𝒙 + ϵ

ϵ~𝑁(0, 𝜎2𝐼)

𝑝 𝛽 𝒙, 𝑦, 𝜎2

But instead we are interested in the posterior 

distribution for the model parameters 𝛽:

?

Frequentist view:

Probabilistic view:
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▪ Bayesian network with time-series to represent temporal 

dependencies.

▪ Dynamically changing or evolving over time.

▪ Directed graphical model of stochastic processes.

▪ Especially aiming at time series modeling.

▪ Satisfying the Markovian condition:

The state of a system at time t depends only on its immediate 

past state at time t-1.

Dynamic Bayesian Network (DBN)



Dynamic Bayesian Network (DBN)



Hidden Markov Models
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Hidden Markov Models

hidden

states

observations

Time

h0 h1 h2 h3 h4
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Hidden Markov Models

hidden

states

observations

h0 h1 h2 h3 h4

x1 x2 x3 x4

Emission Probabilities 𝑏𝑡 𝑖 = 𝑃(𝒙𝑡|ℎ𝑡 = 𝑖)

Time

𝜋 𝑖 = 𝑃(ℎ0 = 𝑖)

Transition probabilities a 𝑖, 𝑗 = 𝑃(ℎ𝑡 = 𝑖|ℎ𝑡−1 = 𝑗)𝑨

𝑩

Initial state distribution 𝝅

“the” “yellow” “house” “closed”



Factorial HMM

• Factorial HMM:

– ht and vt represent two different types of background information, 

each with its own history

– Observations xt depend on both hidden processes

• Model parameters:

– p(vt+1|vt), p(ht+1|ht), p(xt|ht,vt)

h1

x1 x2

ht ht+1

x3

hT-1

x4

hT

x5x1 xt xt+1 xT-1 xT

v1 vt vt+1 vT-1 vT

… …



The Boltzmann Zipper

• Both streams have a “memory” (ht and vt)

• Model parameters:

– p(ht+1|ht), p(xt|ht)

– p(vt+1|vt,ht+1), p(yt|ht)

h1

x1 x2

ht+1 hT

x5

…
x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

…



• Advantage over Boltzmann Zipper: More flexible, because 

neither vision nor sound is “privileged” over the other.

– p(ht+1|vt,ht), p(xt|ht)

– p(vt+1|vt,ht), p(yt|ht)

h1

x1 x2

ht+1 hT

x5x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

The Coupled HMM



Learning (Dynamic) Bayesian Networks

▪ Multiple techniques exist to learn the model 
parameters based on data

▪ Maximum likelihood estimator

▪ Bayesian estimator, which allows to include 
prior information

▪ Python libraries: 

▪ http://pgmpy.org/

▪ http://www.bayespy.org

▪ https://pomegranate.readthedocs.io/en/latest/

http://pgmpy.org/
http://www.bayespy.org/
https://pomegranate.readthedocs.io/en/latest/
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Machine Learning: 

Evaluation Methods



Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the 

model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Evaluation methods

▪ Holdout set: The available data set D is divided into two 
disjoint subsets, 
▪ the training set Dtrain (for learning a model)

▪ the test set Dtest (for testing the model)

▪ Important: training set should not be used in testing and 
the test set should not be used in learning. 
▪ Unseen test set provides a unbiased estimate of accuracy. 

▪ The test set is also called the holdout set. (the 
examples in the original data set D are all labeled with 
classes.) 

▪ This method is mainly used when the data set D is large.

▪ Unless building person specific models the training 
and test sets should not contain the same person



Evaluation methods (cont…)

▪ n-fold cross-validation: The available data is partitioned 

into n equal-size disjoint subsets. 

▪ Use each subset as the test set and combine the rest n-1 

subsets as the training set to learn a classifier. 

▪ The procedure is run n times, which give n accuracies. 

▪ The final estimated accuracy of learning is the average of 

the n accuracies. 

▪ 10-fold and 5-fold cross-validations are commonly used. 

▪ This method is used when the available data is not large.



Evaluation methods (cont…)

▪ Leave-one-out cross-validation: This method is 

used when the data set is very small. 

▪ It is a special case of cross-validation

▪ Each fold of the cross validation has only a 

single test example and all the rest of the data 

is used in training. 

▪ If the original data has m examples, this is m-

fold cross-validation
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▪ How do we determine 𝐶 or 𝛾 for SVM training?

▪ Parameters that we do not learn through 
optimization are called hyper-parameters

▪ Need a way to find optimal values for our task
▪ For some approaches rules of thumb exist

▪ Need an analytical way to do it

▪ Common ways
▪ Grid search

▪ Random search (not as bad as it sounds)

Hyperparameters



Training and Validation

▪ Data: labeled instances, e.g. emails marked spam/ham
▪ Training set

▪ Validation set

▪ Test set

▪ Training
▪ Estimate parameters on training set

▪ Tune hyperparameters on validation/development set 

▪ Report results on test set

▪ Anything short of this yields over-optimistic claims

▪ Evaluation
▪ Many different metrics

▪ Ideally, the criteria used to train the classifier should be closely 
related to those used to evaluate the classifier

▪ Statistical issues
▪ Want a classifier which does well on test data

▪ Overfitting: fitting the training data very closely, but not 
generalizing well

▪ Error bars: want realistic (conservative) estimates of accuracy

Training

Data

Validation

Data

Test

Data
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Take home

▪ 1. Never touch test data during 

training/validation

▪ 2. Never touch test data during 

training/validation

▪ 3. Never touch test data during 

training/validation
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Machine Learning: 

Measuring Error



Measuring Error

▪ Error rate = # of errors / # of instances = (FN+FP) / N

▪ Recall = # of found positives / # of positives 

= TP / (TP+FN) = sensitivity = hit rate

▪ Precision = # of found positives / # of found

= TP / (TP+FP)

▪ Specificity = TN / (TN+FP)

▪ False alarm rate = FP / (FP+TN) = 1 - Specificity



F1-value (also called F1-score)

▪ It is hard to compare two classifiers using two measures. F1 score 

combines precision and recall into one measure

▪ 𝐹1 =
2⋅𝑝⋅𝑟

𝑝+𝑟

▪ 𝐹1 - score is the harmonic mean of precision and recall

▪ 𝐹1 =
2

1

𝑝
+
1

𝑟

▪ The harmonic mean of two numbers tends to be closer to the 

smaller of the two

▪ Preferred over accuracy when data is unbalanced

▪ Why?



T
ru

e
 P

os
it

iv
e
 R

at
e
  
  

  
(s

e
ns

it
iv

it
y)

0%

100%

False Positive Rate (1-specificity)0% 100%

Receiver Operating Characteristic (ROC) Curve



T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

AUC = 
50%

AUC = 
90% AUC = 

65%

AUC = 100%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

AUC for ROC curves



84

Evaluation of regression

▪ Root Mean Square Error 

▪ σ𝑖 𝑦𝑖 − 𝑥𝑖
2

▪ Not easily interpretable

▪ Correlation – trend prediction in a way
▪ Nice interpretation: 0 – no relationship, 1 – perfect relationship

▪ 𝜌 =
σ𝑖 𝑥𝑖− ҧ𝑥 (𝑦

𝑖
−ത𝑦)

𝑛−1 𝜎𝑥𝜎𝑦

▪ Concordance Correlation Coefficient (CCC)
▪ A method to combine both

▪ 𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2+ 𝜇𝑥−𝜇𝑦
2, 𝜌 – correlation coefficient

▪ Has nice interpretability as well



Take home

▪ Error measure selection is not straightforward

▪ Pick the right one for your problem

▪ F1, AUC, Accuracy, RMSE, CCC

▪ Make sure the same measure is used for 

validation and testing

▪ Otherwise you might be learning 

suboptimal models

▪ Wrong error measure can hide both bad 

and good results


