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Outline

= Basic concepts of machine learning
= Definitions and types of algorithms
= Linear regression and classification
= Joint probability distribution
= Probabilistic graphical models
* [Independence and Conditional independence
= Example: modeling affect during learning
= Bayesian networks
= Conditional probability distribution
= Dynamic Bayesian Network
= Naive Bayes classifier
= Evaluation methods and error measures
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Upcoming Deadlines and Course Schedule

= Thursday, April 4t 4:30pm-6pm
= Midterm presentations
= Sunday, April 7th at 11:59pm
= Midterm report deadline
= Tuesday April 30th — NO CLASS
= Preparation for final report and presentation
= Thursday, May 2"9 4:30pm-6pm
= Final presentations

= Tuesday, May 7™ at 11:30pm
= Final report deadline

3
Language Technologies Institute



Basic Concepts of
Machine Learning
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What is Machine Learning?

“A computer program is said to learn from experience
E with respect to some class of tasks T and
performance measure P If its performance at tasks in
T, as measured by P, improves with experience E.”

- Tom Mitchell

Machine learning algorithms originate from many

flelds:

= Statistics, mathematics, theoretical computer
science, physics, neuroscience, etc
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When are ML algorithms NOT needed?

= When the relationships between all
system variables (input, output, and
hidden) is completely understood!

= Thisis NOT the case for almost any real
system!
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Types of Learning Algorithms

= Supervised learning: classification is seen as
supervised learning from examples.

= Supervision: The data (observations,
measurements, etc.) are labeled with pre-defined
classes. It is like that a “teacher” gives the classes
(supervision).

= Unsupervised learning (clustering)
» (Class labels of the data are unknown

= (Given a set of data, the task is to establish the
existence of classes or clusters/groupings in the
data

= Reinforcement learning
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Variables Involved in Supervised Learning

* |nput: evidences, independent variables,
observations

= Qutput: labels, outcome variables,
dependent variable, non-observed

= Hidden: latent variables, intermediate
representations
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Types of Supervised Learning Algorithms

= Classification: categorize an example
= Binary - {depressed, non-depressed}
= Multi-class — {happy, sad, angry, neutral}
= Recall nominal data from last week
= Regression:
= Predict the intensity — how depressed a person is
= Recall interval and ordinal data from last week
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Supervised Learning with Sequential Data

= Prediction with summary features _
= |nput x; represents the whole sequence L
= Qutput y; summarizes the sequence ]
= Seguential Labeling suinlm
= Input X; = {x4,x, ..., x;} represent a t ot ot
sequence i of length k T*_*T
= QutputY; = {y, v, ..., Vi } represents the

labels for the sequence

= Sequence Prediction =

= Input X; = {x1,x, ..., X} represent a
sequence i of length k

=  Qutput y; summarizes the sequence

Language Technologies Institute

:

-
-
L]



The Supervised Learn Problem

= Glven

* D ={(x1,y1) .. (X, yn)}
= a training set of samples of input variables x and
output variables y

= | earn
= y=f(x; W)

= a function parametrized by W that predicts the
output class (y = ¢ ) from the input variables
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Main Ingredients of most Supervised Learning Algorithms

1. Score function: y = f(x; W)
= Perform inference using current parameters W

2. Loss function: L(W; D)

= Goal: How to assign only one number representing
how “unhappy” we are about these scores?

3. Optimization

= Adjust the model parameters W to best minimize
the loss function on the training data D
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Optimization
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Linear Regression Model (from previous lectures)

= Score?
" f(xpw) =wy+wix; +¢
" Loss?
= Absolute Error: ); |y; — [ (xi; w)|
= Squared Error: ¥;(y; — f(x;; w))2
= Optimization?
= Least square (close form solution)

What if the relationship between x and y is non-linear?
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Generalized Linear Regression Model

= Score? W
= flxpw)=2;w

ioj(x;) + €
= where ¢;(x;) Is a non-linear function of x; <

= Loss?
= Absolute Error ); |y; — f (xi; w)|

= Squared Error Zi(yi — f(x;; W))z

(‘

= Optimization?
= Gradient descent
= Ordinary least square

.

Basis functions

Polynomial:
<Pj(x) = xk
Gaussian:
(x —uj)
QUJ(X) — 20_]2
Logs:

@j(x) =log(x + 1)

But what If the output y; Is binary or discrete?
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Classification vs Regression — 1D Visualization

Regression Classification
N =
3 f(xi; w) 2 f(x;w)
"5' >
o O

] Atm———— ;
wo Input x;
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Classification — 2D Visualization
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Linear Classifier

= Score?
= f(xpw) =wy + wqx;
= | 0SS?

Nonlinearity!
¢ L) = (R W)

= Optimization?

Loss L

Score f
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Logistic Regression — A Linear Classifier

= Score?
= flxpw) =wy +wix;
= Loss? .
= Logistic function () =17

e Lw) = 3 (i — o(fCesw))
= Optimization?

= Gradient descent

» Very similar formulation for )
perceptron and linear SVM Score f
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Logistic Regression — Probabilistic Interpretation

= Score?

= fxw) =wy+wix;
= | 0SS?

" p(y; = lxgw) = o(f(x5;w))

= Negative log likelihood
= Optimization?

= Gradient descent

o-—-—————— - -

Score f
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Joint Probability
Distribution
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Random Variables

Definition: A variable whose possible values are
numerical outcomes of a random phenomenon.

O Discrete random variable is one which may take on only a
countable number of distinct values such as 0,1,2,3,4,...

d Continuous random variable i1s one which takes an infinite
number of possible values.

Examples of random variables:

« Someone’s age Discrete or
« Someone’s height continuous?
 Someone’s weight Correlated?
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Probability Distributions

= Probability Distribution:
= p(Weather=Sunny) = 0.5
= p(Weather=Rain)= 0.2
= p(Weather=Cloud)= 0.2
= p(Weather=Snow)= 0.1

0.5

=  Distribution sums to 1.

S RCS
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Joint Probability Distribution

= Completely specifies all beliefs in a problem
domain.

= Joint probabillity distribution is an n-dimensional

table with a probabillity in each cell of that state
occurring.

= Written as P(X{, X,, X5 ..., X))
= When instantiated as P(x,X, ..., X;)
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Example - Joint Probability Distribution

= Domain with 2
variables each of

which can take P(Toothache, Cavity)
on 2 states.

Toothache - Toothache

Cavity 0.04 0.06
-Cavity 0.01 0.89
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Background: Rules of Probability

(integrating, marginalizing)

Sum rule: P(X) = z P(X,Y)
Y

Product rule: PX,Y) =PX|Y)P(Y)

(chain rule)
N N k-1
P Xk —_ P Xk Xk
k=1 k=1 j=1
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Inference for Known Joint Probability Distribution

When we know the joint probability distribution :

If A, B C, D and E are discrete
P(A,B,C,D,E) mm) < Vvariables, then P(A,B,C,D, E)

will be a 5-D tensor (matrix)

Two main forms of inference:

@ Joint probability for a particular assignment

P(A=1,B ="'car',C = 2,D ='banana’,E = 10)

mm) A specific entry in the 5-D tensor
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Inference for Known Joint Probability Distribution

Probability of a subset of variables (query) given
@ known assignments of other variables (evidences)
. Use the product rule to marginalize
P(A'ch o 3) - the other variables B and E

P(A,D|C = 3) = z P(A,D,b,e|C = 3)

VbeEB,e€EE

=) Use the inverse of product rule P(X|Y) = P(X,Y)/P(Y)

P(A,D|C = 3) = 2 P(A,D,b,e|C = 3)

VbEB,e€EE
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Inference for Known Joint Probability Distribution

Probability of a subset of variables (query) given
@ known assignments of other variables (evidences)

P(xly) =a ) P(x,y,7)

YzeZ

where x is the subset of query variables
y IS the subset of evidence assignments

Z Is the set of all other variables (not in x or y)
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Models with Multiple Outcome and Latent Variables

Neuroticism

Irritable Insecure Emotional

How can we model the joint probability distribution of this model?

31
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Probabilistic
Graphical Models

Language Technologies Institute



Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM)
IS a graph formalism for compactly modeling joint
probabillity distributions and dependence structures
over a set of random variables.

= Random variables: X,,..., X,
= P is a joint distribution over X,,...,X,

Can we represent P more compactly?
= Key: Exploit independence properties
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Independent Random Variables

= Two variables X and Y are independent if
= P(X=x|Y=y) = P(X=x) for all values x.,y

= Equivalently, knowing Y does not change
predictions of X

= [f Xand Y are independent then:

= P(X,Y) = P(X|Y)P(Y) = P(X)P(Y) @ @

= |f X,,...,X, are independent then:
= P(X4,..., X)) = P(Xy)...P(X))
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Conditional Independence

= X and Y are conditionally independent given Z if
= P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z

= Equivalently, if we know Z, then knowing Y does not
change predictions of X
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Graphical Model

= Atool that visually illustrate conditional
Independence among variables in a given
problem.

= Consisting of nodes (Random variables or
States) and edges (Connecting two nodes,
directed or undirected).

= The lack of edge represents conditional
Independence between variables.
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Graphical Model

Different types of graphical models:

= Chain, Path, Cycle, Directed Acyclic Graph
(DAG), Parents and Children
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Uncertain Reasoning — Latent Variables

= Some aspects of the domain are often
unobservable and must be estimated
iIndirectly through other observations.

= The relationships among domain events
are often uncertain, particularly the
relationship between the observables
and non-observables.
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Two Main Types of Graphical Models

Bayesian networks Markov Models (next week)

= Directed acyclic graph = Undirected graphical model
= Conditional dependencies *® Cyclic dependencies
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Creating a
Graphical Model

Language Technologies Institute



Example: Inferring Emotion from Interaction Logs

Student

r

\L

Student
Traits

\

Emotion?
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Example: Bayesian Network Representation

[Sabourin et al., 2011]

Emotion

Outcome
(non-observable)

————————————————————————————————————————————————————————————————————————————————————————————
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Example: Naive Bayes Approach

[Sabourin et al., 2011]
Emotion

Outcome
(non-observable)

________________________________________________________________________________

# book vietvs J ( # corre S Ope ness astery
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Appraisal Theory of Emotion

.;;:;f-f Metal State |/}
17/:\5{;_; (beliefs, goals) |

o -

Argues for importance of If we know two of these
three interrelated concepts variables, we can make
 \World events prEdiCtionS about the third
- Mental state Body
« Emotional Response _ Response= f(Env., Mind)
Expression

Action tendency

_Physiological response |
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Example: Bayesian Network Approach

[Sabourin et al., 2011]
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Example: Dynamic Bayesian Network Approach

Learning Performance Focus

Outcome
(non-observable)

C# boc/k views ) C# cor DN astery >
C# no[es taken ) (#1i mcq rrect ans.) ! | (Agrewableness) a'M0| ?nce |

! N astery 5
@ poster wews) C Total goals ) ; CConsmentlous) approach )

Observable environment variables  Survey-based personality variables
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Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

! sl
(Dynamlc Observable Dynamic Observable

Environment Variables | Environment Variables

Static Survey-Based
Personality Variables
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Example: Inferring Emotion from Interaction Logs

Emotion Valence

Accuracy Accuracy
Baseline 22.4% 54.5%
Naive Bayes 18.1% 51.2%
Bayes Net 25.5% 66.8%
Dynamic BN 32.6% 72.6%
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Bayesian Networks
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Bayesian networks

= Asimple, graphical notation for conditional
iIndependence assertions and hence for compact
specification of full joint distributions

= Syntax:
= a setof nodes, one per variable
= adirected, acyclic graph (link = "directly influences")
= a conditional distribution for each node given its parents:
P (X;| Parents (X))

= Inthe simplest case, conditional distribution
represented as a conditional probability distribution
(CPD) giving the distribution over X; for each
combination of parent values
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Bayesian Network (BN)

= A specific type of graphical model that is
represented as a Directed Acyclic Graph.
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Example

“I'm at work, neighbor John calls to say my alarm is
ringing, but neighbor Mary doesn't call. Sometimes it's set

off by minor earthquakes. Is there a burglar?”

= Variables?
= Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

= “Causal" knowledge?
= A burglar can set the alarm off
= An earthquake can set the alarm off
= The alarm can cause Mary to call
= The alarm can cause John to call
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Example — Network Topology

[ Burglary] [ Earthquake ]

N

[Alarm]

N

[Mary Calls] [John Calls ]
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Joint Probability in Graphical Models

With chain-rule, the joint probability can be restated:

P(4,B,C,D,E) = P(A|B,C,D,E)P(B,C,D,E)
= P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)
= P(A|B,C,D,E)P(B|C,D,E)P(C,D,E)
= P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)P(D,E)
= P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)P(D|E)P(E)

The order in applying the chain-rule is arbitrary.

How can we simplify the joint probability even more,
given the graphical model?
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Joint Probability in Graphical Models

With chain-rule, the joint probability can be reshaped:

P(A,B,C,D,E) = P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)P(D|E)P(E)

Remember these concepts: @

Independent variables conditionally independent
In a Bayesian network, each conditional probability for a
specific variable X only depends on its parents:
P(X| all variables) = P(X|parents(X))
Conditional Probability Distribution (CPD) <:!

55
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Conditional Probability Distribution (CPD)

Given a variable X and its parents (Y and 2):
P(X|parents(X)) = P(X|Y,Z)

Definition: probability distribution of X when the assignment of it
parents is known (Y and 2)

O For categorical variable: expressed as a conditional probability table

Y=0 |Y=1
P(X=0[Y) | 4/6 | 1/3
P(X=1]Y) | 2/6 | 2/3

O For continuous variable: expressed as a conditional density function

= For example, multivariate normal density function or
Gaussian linear regression (used by Bayes RegressionLinear
Model)
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Example — Conditional Probability Distributions

001 [Burglary] [Earthquake] .
B E P(A=1)
T T 95
T F .94
E T o9 [Alarm]
F F  .001
o A P(J=1)
A_p4=1) | Mary Calls) (John Calls | | &g
— F 05
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Generative Model: Naive Bayes Classifier

Label : {O:Dominant, 1:Not-dominant}
(outcome)

Observation vector: [gaze, turn-taking,speech-energy]
(evidence)

Score function: P(y = alx;)

Likelihood._ /Pnor Chain rule
Bayes’ theorem: P(y|x) = P(xfl’}gf))(y) =~ P(x|y)P(y) =P(x,y)
Posterior I
Marginal likelihood p(x) = ZP(ny)P(y)
(partition)
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Naive Bayes

«Strong assumption of the conditional independence of all feature variables.
*Feature variables only dependent on class variable

Prior
Conditional o T
Probability P(G |dom)=0.8 P(T | dom) =0.7 P(S | dom) = 0.6
Table (CPT): | P(G|-dom)=0.1 P(T | —dom) = 0.4 P(S | —~dom) =0.7

= P(T /dom) x P(—=G | =S ndom) x P(—S m dom)

= P(T /dom) x P(—=G | dom) x P(=S | dom) x P(dom)
p
= P(dom)_lj[1 P(x, | dom)

=0.5%x0.6x0.2x0.3 =0.018
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Bayesian Linear Regression Model

Label : {O:Dominant, 1:Not-dominant}
(dependent variable, outcome variable, response variable)

@ Observation vector: [gaze, turn-taking,speech-energy]
(independent variable, predictors)

Frequentist view: ¥ = B x + €
Probabilistic view: €~N(0,a21)  ¥y~N(B"x,0°I)
“Prediction” score function would be: p(y|x, 8,0%)

But instead we are interested in the posterior
distribution for the model parameters £:

p(Blx,y,0°)
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Dynamic Bayesian Network (DBN)

Bayesian network with time-series to represent temporal
dependencies.

Dynamically changing or evolving over time.
Directed graphical model of stochastic processes.
Especially aiming at time series modeling.

Satisfying the Markovian condition:

The state of a system at time t depends only on its immediate
past state at time t-1.
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Dynamic Bayesian Network (DBN)
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Hidden Markov Models

hidden

O—O—D—O—0
® © © @ s

“‘yellow” “house” “closed”

Time
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Hidden Markov Models

———O—@ =
@ @ @ @ observations
“the”

“yellow” “house” “closed”
Time
Initial state distribution 77  w(i) = P(hy = i) ‘
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Hidden Markov Models

hidden

BD—D—O—O—O -
® ® @ @ e
“the”

“yellow” “house” “closed”
Time
‘ Initial state distribution 77  w(i) = P(hy = i) ‘

‘ Transition probabilities 4  a(i,j) = P(hy = i|hi—q1 =) ‘
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Hidden Markov Models

hidden

D—D—O—O—O
® © @ @

“‘yellow” “‘house” “closed”
Time
‘ Initial state distribution 77  w(i) = P(hy = i) ‘

‘ Transition probabilities 4  a(i,j) = P(hy = i|hi—q1 =) ‘

‘ Emission Probabilities p be(i) = P(x¢|hy = 0) ‘
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Factorial HMM

 Factorial HMM:

— h,and v, represent two different types of background information,
each with its own history

— Observations x, depend on both hidden processes
 Model parameters:
= P(Ver1[V)s P(Dieg|Dy), pOX NV
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The Boltzmann Zipper

Y Video observations
Viseme states
Audio phoneme states
Xa1 Audio spectral observations

» Both streams have a "memory” (h, and v,)

 Model parameters:

— p(hyqlhy), p(x/hy)
— P(VrIVihier), PN
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The Coupled HMM

Y1 Yi Yir1 yr | Video observations
@ @.@ Viseme states
@ m @ Audio phoneme states
1 X Xis1 x; | Audio spectral observations

« Advantage over Boltzmann Zipper: More flexible, because
neither vision nor sound is “privileged” over the other.
— p(hyalvihy, pxdhy)
— P(VeralVishy), p(yihy)
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Learning (Dynamic) Bayesian Networks

= Multiple techniques exist to learn the model
parameters based on data

= Maximum likelihood estimator

= Bayesian estimator, which allows to include
orior information

= Python libraries:
= http://pgmpy.org/
= http://www.bayespy.org
» https://pomegranate.readthedocs.io/en/latest/
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http://pgmpy.org/
http://www.bayespy.org/
https://pomegranate.readthedocs.io/en/latest/

Machine Learning:
Evaluation Methods
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Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the
model accuracy

Accuracy =

3

Traming
data

Number of correctclassifications

Total number of testcases

4.|

| earning
algorithm

N

Step [ Traming

Step 2: Testing
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Evaluation methods

Holdout set: The avalilable data set D is divided into two
disjoint subsets,

= the training set D,,,;, (for learning a model)

= the test set D, (for testing the model)

= |mportant: training set should not be used in testing and
the test set should not be used in learning.
= Unseen test set provides a unbiased estimate of accuracy.
= The test set is also called the holdout set. (the
examples in the original data set D are all labeled with
classes.)

= This method is mainly used when the data set D is large.

* Unless building person specific models the training
and test sets should not contain the same person
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Evaluation methods (cont...)

= n-fold cross-validation: The available data is partitioned
Into n equal-size disjoint subsets.

= Use each subset as the test set and combine the rest n-1
subsets as the training set to learn a classifier.

= The procedure is run n times, which give n accuracies.

= The final estimated accuracy of learning is the average of
the n accuracies.

= 10-fold and 5-fold cross-validations are commonly used.
= This method is used when the available data is not large.
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Evaluation methods (cont...)

= | eave-one-out cross-validation: This method is
used when the data set is very small.

= |tis a special case of cross-validation

= Each fold of the cross validation has only a
single test example and all the rest of the data
IS used In training.

= |f the original data has m examples, this is m-
fold cross-validation
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Hyperparameters

= How do we determine C or y for SVM training?

= Parameters that we do not learn through
optimization are called hyper-parameters

= Need a way to find optimal values for our task
= For some approaches rules of thumb exist

= Need an analytical way to do it

= Common ways

= Grid search
= Random search (not as bad as it sounds)
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Training and Validation

= Data: labeled instances, e.g. emails marked spam/ham
» Training set
= Validation set
= Test set

=  Training
= Estimate parameters on training set
= Tune hyperparameters on validation/development set
= Report results on test set
= Anything short of this yields over-optimistic claims

m Evaluation

= Many different metrics

= |deally, the criteria used to train the classifier should be closely SR
related to those used to evaluate the classifier Validation

Data
=  Statistical issues

» Want a classifier which does well on test data

= Overfitting: fitting the training data very closely, but not Test
generalizing well

= Error bars: want realistic (conservative) estimates of accuracy Data
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Take home

= 1. Never touch test data during
training/validation

= 2. Never touch test data during
training/validation

= 3. Never touch test data during
training/validation
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Machine Learning:
Measuring Error
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Measuring Error

Predicted class

True Class Yes No
Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative
= Error rate = # of errors / # of instances = (FN+FP) / N
=  Recall = # of found positives / # of positives

= TP / (TP+FN) = sensitivity = hit rate
= Precision = # of found positives / # of found

=TP / (TP+FP)
= Specificity = TN/ (TN+FP)
= False alarm rate = FP / (FP+TN) = 1 - Specificity
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F,-value (also called F,-score)

= |tis hard to compare two classifiers using two measures. F, score
combines precision and recall into one measure

2'pr

" h= p+r

= F; - score is the harmonic mean of precision and recall

] Flzi

1 1
_+_
DT

=  The harmonic mean of two numbers tends to be closer to the
smaller of the two

= Preferred over accuracy when data is unbalanced
=  Why?
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Receiver Operating Characteristic (ROC) Curve

100%

True Positive Rate

(sensitivity)

0%

0%  False positive Rate (1-specificity) 100%
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AUC for ROC curves

100 100
% %
o AUC = 100% g
°E g8 AUC =
e @ 5 O Q/o
O >
00/0 0 16 "o False Positive 100
% False Positive 0% % Rate 0%
Rate
100 100
% %
= AUC = g
%) 2
£ ° 8
S 3 90% E o AUC =
-F €/ 65%
0 0 _
% %
00/o False Positive é‘(’)/o 0 00/0 False Positive éoOA)

Rate
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Evaluation of regression

= Root Mean Square Error
. \/Zi(Yi — x;)*

= Not easily interpretable

= Correlation — trend prediction in a way
= Nice interpretation: 0 — no relationship, 1 — perfect relationship

2= -y)
N (n—1)oxoy

= Concordance Correlation Coefficient (CCC)
= A method to combine both
. . 2p0x0y
Pe 0'3%+0'321+(I«‘x_ﬂy
= Has nice interpretability as well

=, p — correlation coefficient
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Take home

= Error measure selection is not straightforward

= Pick the right one for your problem
= F1, AUC, Accuracy, RMSE, CCC

= Make sure the same measure Is used for
validation and testing

= Otherwise you might be learning
suboptimal models

= Wrong error measure can hide both bad
and good results
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