

Language Technologies Institute

Multimodal Affective Computing

Lecture 9: Probabilistic Predictive Modeling

Louis-Philippe Morency Jeffrey Girard

Originally developed with help from Stefan Scherer and Tadas Baltrušaitis

Outline

- Basic concepts of machine learning
 - Definitions and types of algorithms
 - Linear regression and classification
- Joint probability distribution
- Probabilistic graphical models
 - Independence and Conditional independence
 - Example: modeling affect during learning
- Bayesian networks
 - Conditional probability distribution
 - Dynamic Bayesian Network
 - Naïve Bayes classifier
- Evaluation methods and error measures

Upcoming Deadlines and Course Schedule

Thursday, April 4th 4:30pm-6pm

- Midterm presentations
- Sunday, April 7th at 11:59pm
 - Midterm report deadline

Tuesday April 30th – NO CLASS

Preparation for final report and presentation

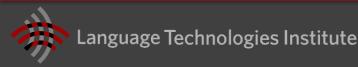
Thursday, May 2nd 4:30pm-6pm

Final presentations

Tuesday, May 7th at 11:30pm

Final report deadline

Basic Concepts of Machine Learning



Language Technologies Institute

"A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P **if** its performance at tasks in T, as measured by P, improves with experience E." - Tom Mitchell

Machine learning algorithms originate from many fields:

 Statistics, mathematics, theoretical computer science, physics, neuroscience, etc

When are ML algorithms NOT needed?

When the relationships between all system variables (input, output, and hidden) is completely understood!

This is NOT the case for almost any real system!

Types of Learning Algorithms

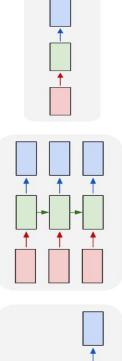
- Supervised learning: classification is seen as supervised learning from examples.
 - Supervision: The data (observations, measurements, etc.) are labeled with pre-defined classes. It is like that a "teacher" gives the classes (supervision).
- Unsupervised learning (clustering)
 - Class labels of the data are unknown
 - Given a set of data, the task is to establish the existence of classes or clusters/groupings in the data
- Reinforcement learning

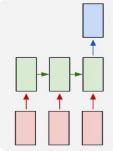
Variables Involved in Supervised Learning

- Input: evidences, independent variables, observations
- Output: labels, outcome variables, dependent variable, non-observed
- Hidden: latent variables, intermediate representations

Types of Supervised Learning Algorithms

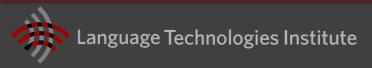
Classification: categorize an example


- Binary {depressed, non-depressed}
- Multi-class {happy, sad, angry, neutral}
- Recall nominal data from last week
- Regression:
 - Predict the intensity how depressed a person is
 - Recall interval and ordinal data from last week



Supervised Learning with Sequential Data

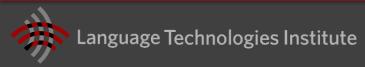
- Prediction with summary features
 - Input x_i represents the whole sequence
 - Output y_i summarizes the sequence
- Sequential Labeling
 - Input $X_i = \{x_1, x_2 \dots, x_k\}$ represent a sequence *i* of length *k*
 - Output $Y_i = \{y_1, y_2 \dots, y_k\}$ represents the labels for the sequence
- Sequence Prediction
 - Input X_i = {x₁, x₂ ..., x_k} represent a sequence i of length k
 - Output y_i summarizes the sequence



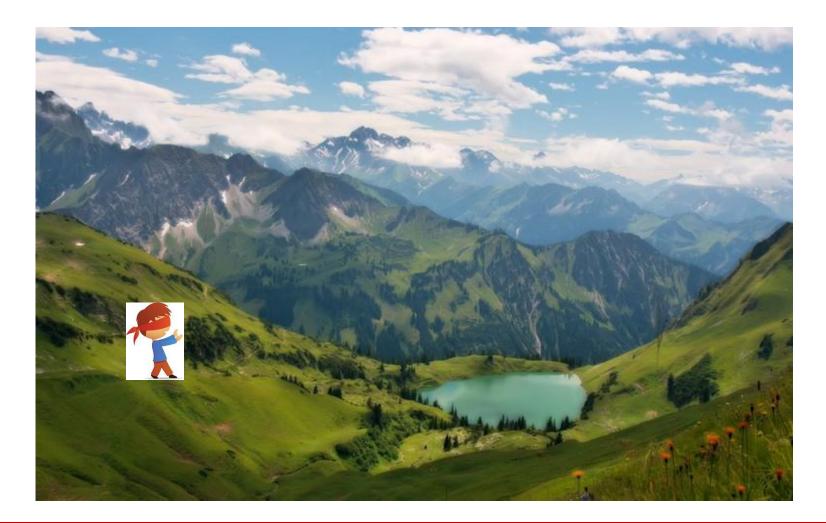
The Supervised Learn Problem

Given

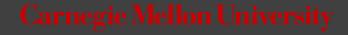
- $D = \{(x_1, y_1) \dots (x_n, y_n)\}$
- a training set of samples of input variables x and output variables y
- Learn
 - $\hat{y} = f(\boldsymbol{x}; \boldsymbol{W})$
 - a function parametrized by W that predicts the output class (y = c) from the input variables



Main Ingredients of most Supervised Learning Algorithms


- **1.** Score function: $\hat{y} = f(x; W)$
 - Perform inference using current parameters W
- **2.** Loss function: *L*(*W*; *D*)
 - Goal: How to assign only one number representing how "unhappy" we are about these scores?

3. Optimization


 Adjust the model parameters W to best minimize the loss function on the training data D

Optimization

Linear Regression Model (from previous lectures)

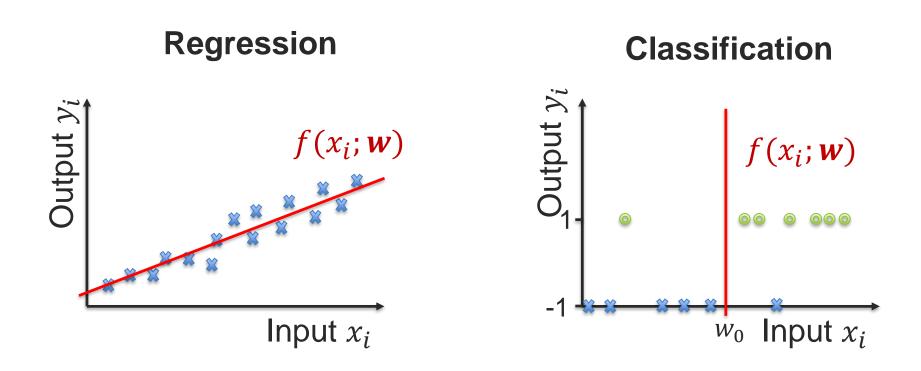
- Score?
 - $f(\mathbf{x_i}; \mathbf{w}) = w_0 + \mathbf{w_1}\mathbf{x_i} + \varepsilon$
- Loss?
 - Absolute Error: $\sum_i |y_i f(x_i; w)|$
 - Squared Error: $\sum_{i} (y_i f(x_i; w))^2$
- Optimization?
 - Least square (close form solution)

What if the relationship between x and y is non-linear?

Generalized Linear Regression Model

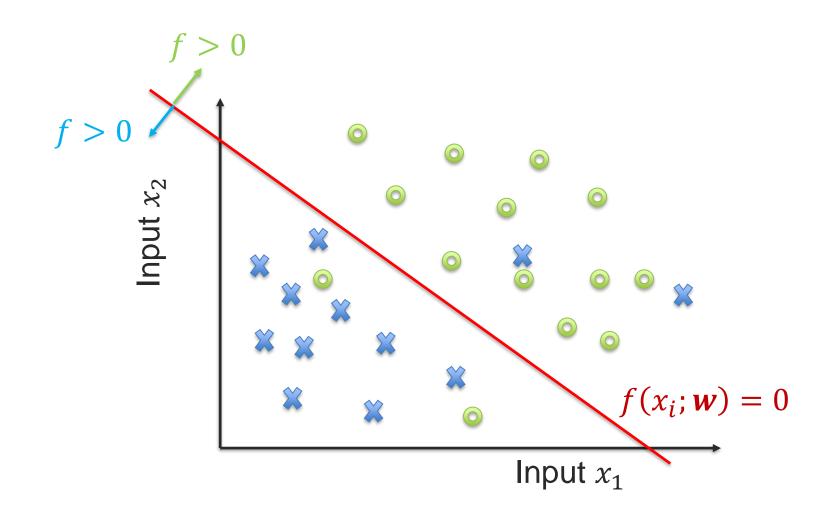
Score?

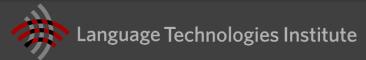
Still linear with respect to w

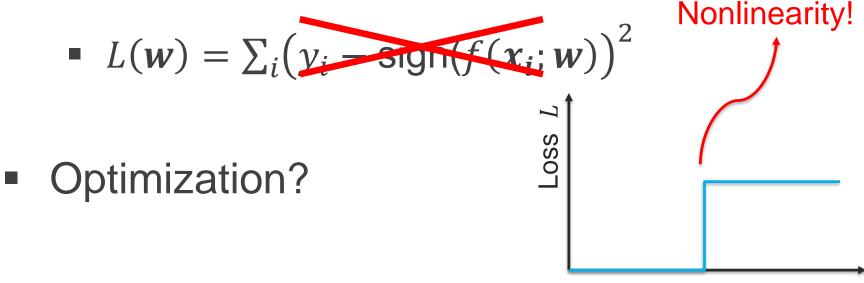

- $f(\mathbf{x}_i; \mathbf{w}) = \sum_j \mathbf{w}_j \varphi_j(\mathbf{x}_i) + \varepsilon$
- where $\varphi_j(x_i)$ is a non-linear function of x_i
- Loss?
 - Absolute Error $\sum_i |y_i f(\mathbf{x_i}; \mathbf{w})|$
 - Squared Error $\sum_{i} (y_i f(x_i; w))^2$
- Optimization?
 - Gradient descent
 - Ordinary least square

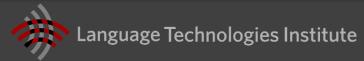
Basis functions Polynomial: $\varphi_j(x) = x^k$ Gaussian: $\varphi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$ Logs: $\varphi_j(x) = \log(x + 1)$

But what if the output y_i is binary or discrete?




Classification vs Regression – 1D Visualization

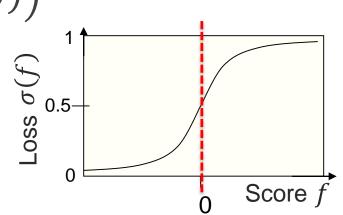

Classification – 2D Visualization



Linear Classifier

- Score?
 - $f(\mathbf{x}_i; \mathbf{w}) = w_0 + \mathbf{w}_1 \mathbf{x}_i$
- Loss?

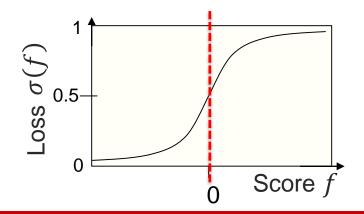
Score f



Logistic Regression – A Linear Classifier

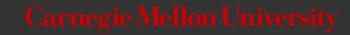
- Score?
 - $f(x_i; w) = w_0 + w_1 x_i$
- Loss?
 - Logistic function $\sigma(f) = \frac{1}{1 + e^{-f}}$

•
$$L(w) = \sum_{i} (y_i - \sigma(f(\boldsymbol{x}_i; \boldsymbol{w})))$$


- Optimization?
 - Gradient descent
 - Very similar formulation for perceptron and linear SVM

Logistic Regression – Probabilistic Interpretation

- Score?
 - $f(x_i; w) = w_0 + w_1 x_i$
- Loss?
 - $p(y_i = 1 | \mathbf{x}_i; \mathbf{w}) = \sigma(f(\mathbf{x}_i; \mathbf{w}))$
 - Negative log likelihood
- Optimization?
 - Gradient descent



Joint Probability Distribution

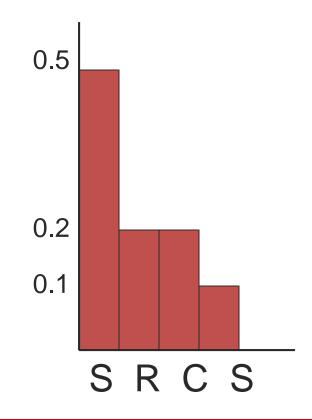
Language Technologies Institute

Definition: A variable whose possible values are numerical outcomes of a random phenomenon.

- □ **Discrete** random variable is one which may take on only a countable number of distinct values such as 0,1,2,3,4,...
- Continuous random variable is one which takes an infinite number of possible values.

Examples of random variables:

- Someone's age
- Someone's height
- Someone's weight


Discrete or continuous?

Correlated?

Probability Distributions

- Probability Distribution:
 - p(Weather=Sunny) = 0.5
 - p(Weather=Rain)= 0.2
 - p(Weather=Cloud)= 0.2
 - p(Weather=Snow)= 0.1
- Distribution sums to 1.

Joint Probability Distribution

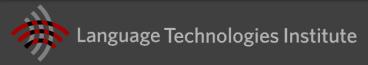
- Completely specifies all beliefs in a problem domain.
- Joint probability distribution is an n-dimensional table with a probability in each cell of that state occurring.
- Written as $P(X_1, X_2, X_3 ..., X_n)$
- When instantiated as $P(x_1, x_2, ..., x_n)$

Example - Joint Probability Distribution

 Domain with 2 variables each of which can take on 2 states.

P(Toothache, Cavity)

	Toothache	¬Toothache
Cavity	0.04	0.06
¬Cavity	0.01	0.89


Background: Rules of Probability

$$P(X) = \sum_{Y} P(X, Y)$$

Product rule: (chain rule)

$$P(X,Y) = P(X|Y)P(Y)$$

$$P\left(\bigcap_{k=1}^{N} X_{k}\right) = \prod_{k=1}^{N} P\left(X_{k} \left| \bigcap_{j=1}^{k-1} X_{k} \right. \right)$$

Inference for Known Joint Probability Distribution

When we know the joint probability distribution :

$$P(A, B, C, D, E) \implies$$

If A, B C, D and E are discrete variables, then P(A,B,C,D, E) will be a 5-D tensor (matrix)

Two main forms of inference:

Joint probability for a particular assignment

$$P(A = 1, B = 'car', C = 2, D = 'banana', E = 10)$$

A specific entry in the 5-D tensor

Inference for Known Joint Probability Distribution

2

Probability of a subset of variables (query) given known assignments of other variables (evidences)

$$P(A, D | C = 3) \longrightarrow \text{the}$$

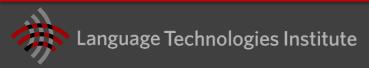
Use the product rule to *marginalize* the other variables B and E

$$P(A,D|C=3) = \sum_{\forall b \in B, e \in E} P(A,D,b,e|C=3)$$

Use the inverse of product rule P(X|Y) = P(X,Y)/P(Y)

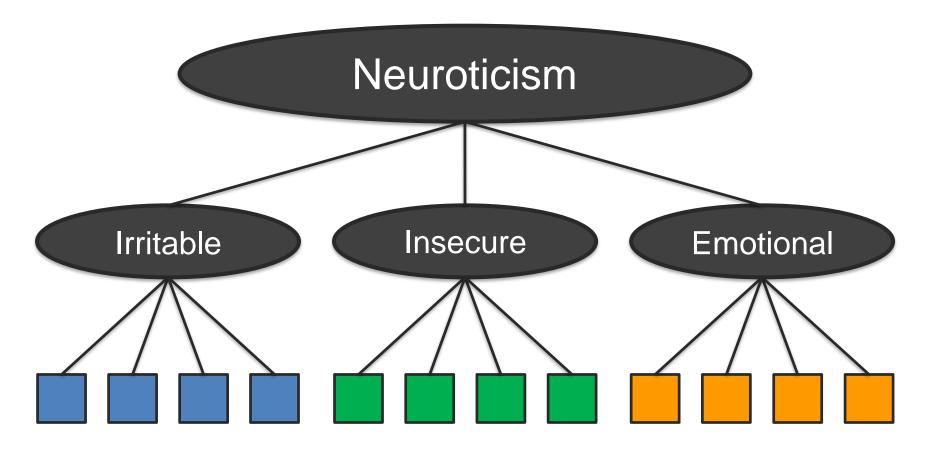
$$P(A, D | C = 3) = \frac{1}{P(C)} \sum_{\forall b \in B, e \in E} P(A, D, b, e | C = 3)$$

Inference for Known Joint Probability Distribution



Probability of a subset of variables (query) given known assignments of other variables (evidences)

$$P(x|y) = \alpha \sum_{\forall z \in Z} P(x, y, z)$$


where *x* is the subset of query variables

- y is the subset of evidence assignments
- Z is the set of all other variables (not in x or y)

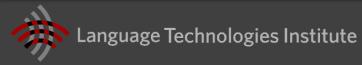
Models with Multiple Outcome and Latent Variables

How can we model the joint probability distribution of this model?

Probabilistic Graphical Models

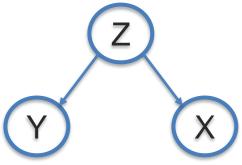
Language Technologies Institute

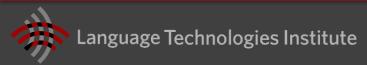
Definition: A probabilistic graphical model (PGM) is a graph formalism for compactly modeling joint probability distributions and dependence structures over a set of random variables.


- Random variables: X₁,...,X_n
- P is a joint distribution over X₁,...,X_n

Can we represent P more compactly?Key: Exploit independence properties

Independent Random Variables

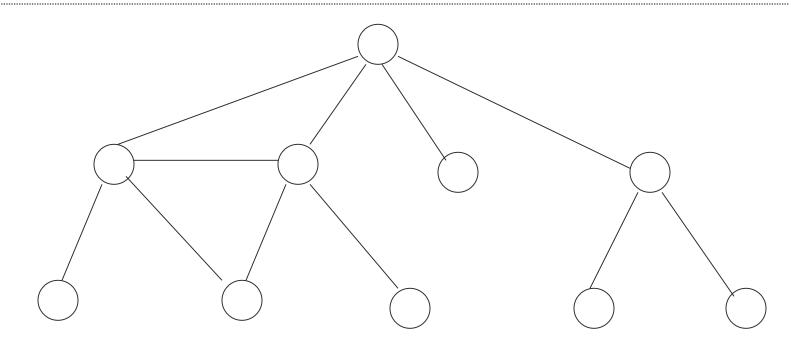

- Two variables X and Y are independent if
 - P(X=x|Y=y) = P(X=x) for all values x,y
 - Equivalently, knowing Y does not change predictions of X
- If X and Y are independent then:
 - P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)
- X Y
- If X₁,...,X_n are independent then:
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$



Conditional Independence

X and Y are conditionally independent given Z if

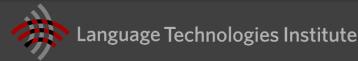
- P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z
- Equivalently, if we know Z, then knowing Y does not change predictions of X



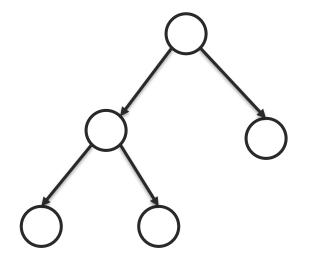
- A tool that visually illustrate <u>conditional</u> <u>independence</u> among variables in a given problem.
- Consisting of nodes (Random variables or States) and edges (Connecting two nodes, directed or undirected).
- The lack of edge represents conditional independence between variables.

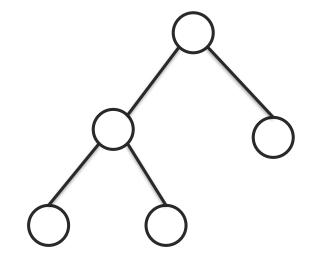
Graphical Model

Different types of graphical models:


 Chain, Path, Cycle, Directed Acyclic Graph (DAG), Parents and Children

Uncertain Reasoning – Latent Variables

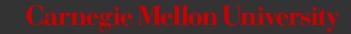

- Some aspects of the domain are often unobservable and must be estimated indirectly through other observations.
- The relationships among domain events are often uncertain, particularly the relationship between the observables and non-observables.

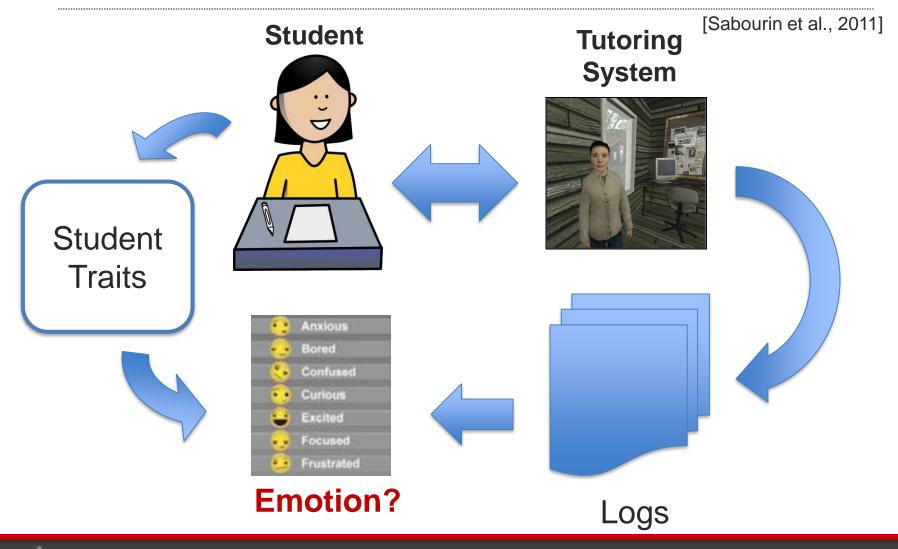


Two Main Types of Graphical Models

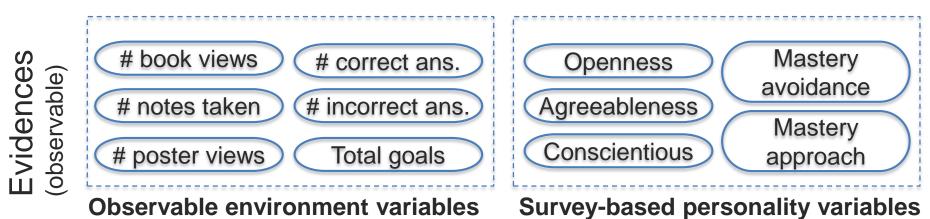
Bayesian networks

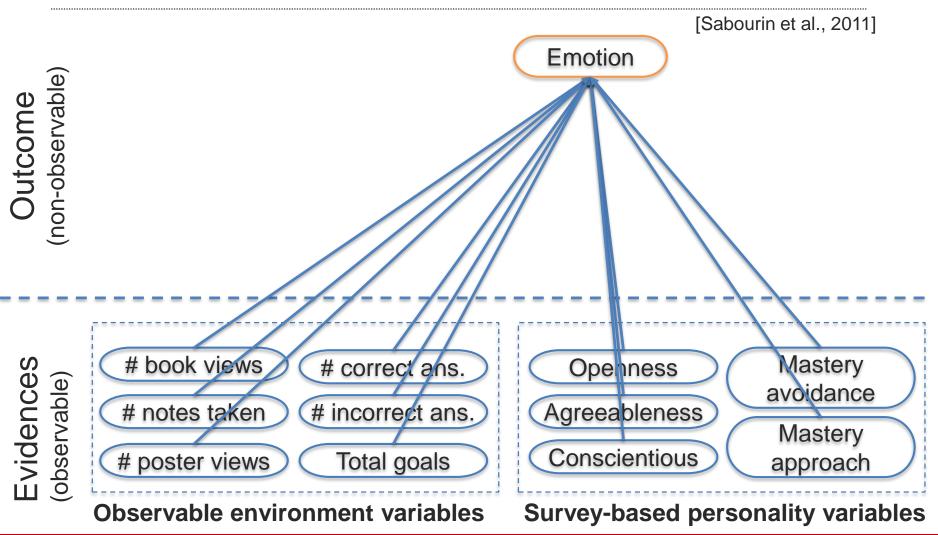
Markov Models (next week)


- Directed acyclic graph
- Conditional dependencies
- Undirected graphical model
- Cyclic dependencies

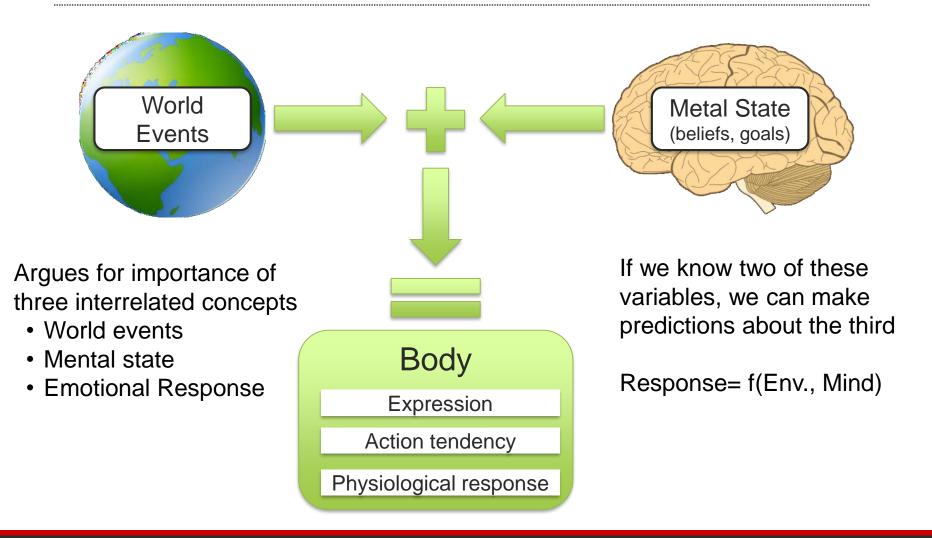

Creating a Graphical Model

Language Technologies Institute

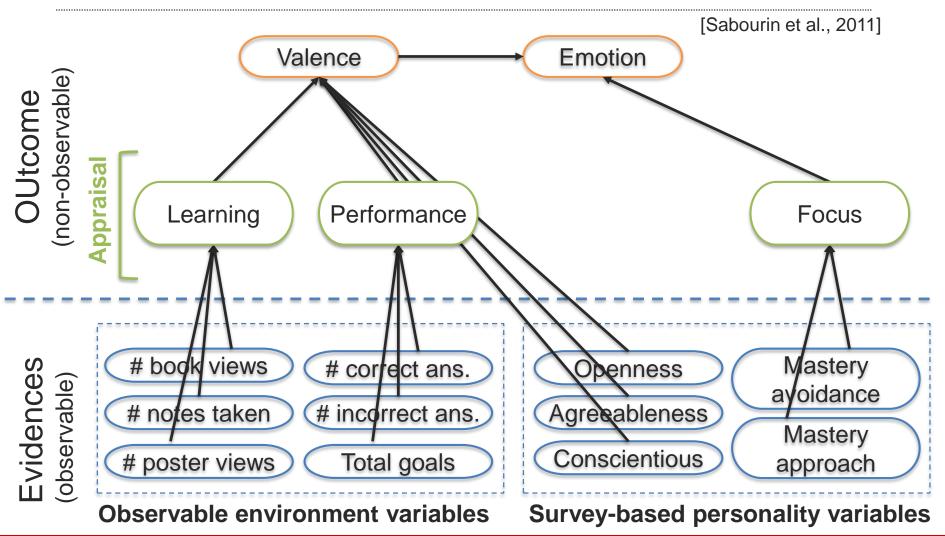

Example: Inferring Emotion from Interaction Logs



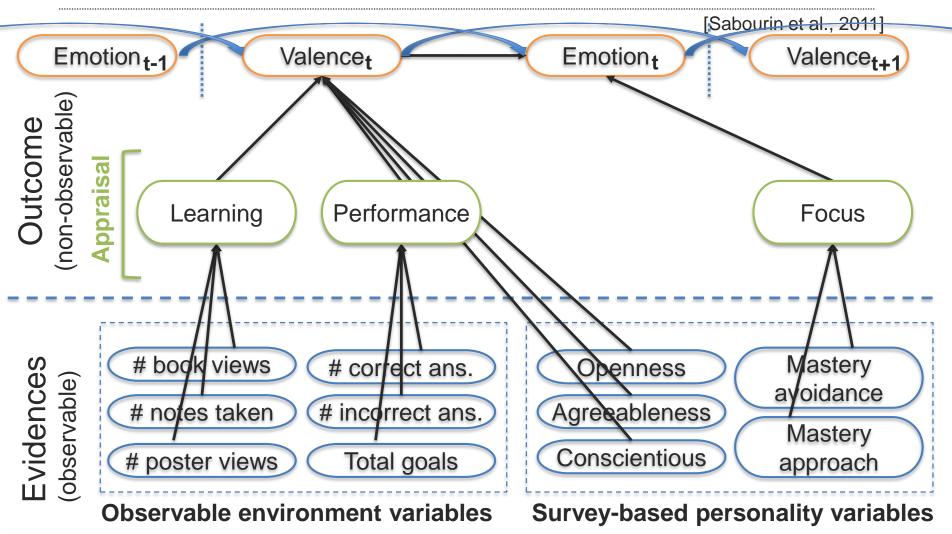
Example: Bayesian Network Representation



Example: Naïve Bayes Approach

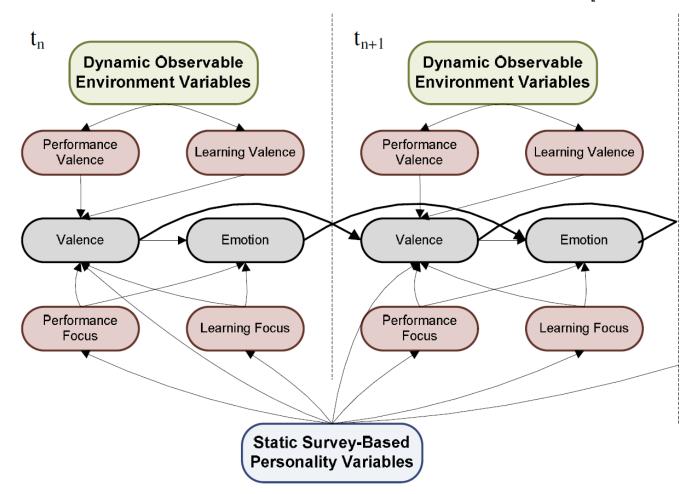

Language Technologies Institute

Appraisal Theory of Emotion



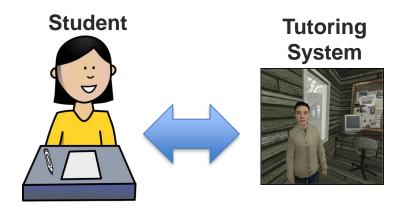
Example: Bayesian Network Approach

Language Technologies Institute


Example: Dynamic Bayesian Network Approach

Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

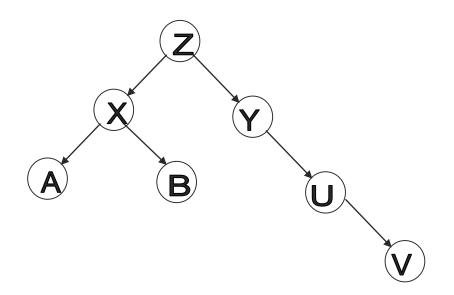


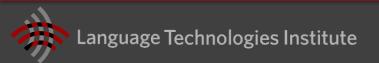
Example: Inferring Emotion from Interaction Logs

[Sabourin et al., 2011]

	Emotion Accuracy	Valence Accuracy
Baseline	22.4%	54.5%
Naïve Bayes	18.1%	51.2%
Bayes Net	25.5%	66.8%
Dynamic BN	32.6%	72.6%

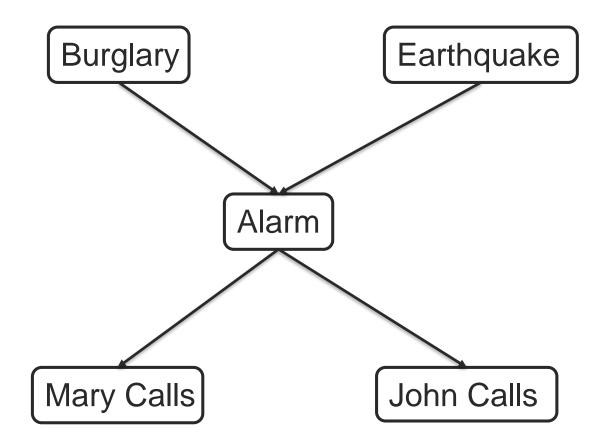
Bayesian Networks

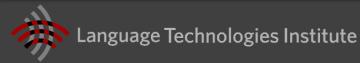

Language Technologies Institute


Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))
- In the simplest case, conditional distribution represented as a conditional probability distribution (CPD) giving the distribution over X_i for each combination of parent values

 A specific type of graphical model that is represented as a Directed Acyclic Graph.


Example


"I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?"

- Variables?
 - Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- "Causal" knowledge?
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example – Network Topology

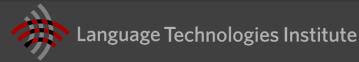
Joint Probability in Graphical Models

With chain-rule, the joint probability can be restated:

P(A, B, C, D, E) = P(A|B, C, D, E)P(B, C, D, E)

= P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)

= P(A|B,C,D,E)P(B|C,D,E)P(C,D,E)

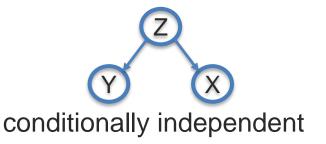

= P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D, E)

= P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D|E)P(E)

The order in applying the chain-rule is arbitrary.

How can we simplify the joint probability even more, given the graphical model?

Joint Probability in Graphical Models


With chain-rule, the joint probability can be reshaped:

P(A, B, C, D, E) = P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D|E)P(E)

Remember these concepts:

In a Bayesian network, each conditional probability for a specific variable X only depends on its parents:

P(X | all variables) = P(X | parents(X))

Conditional Probability Distribution (CPD)

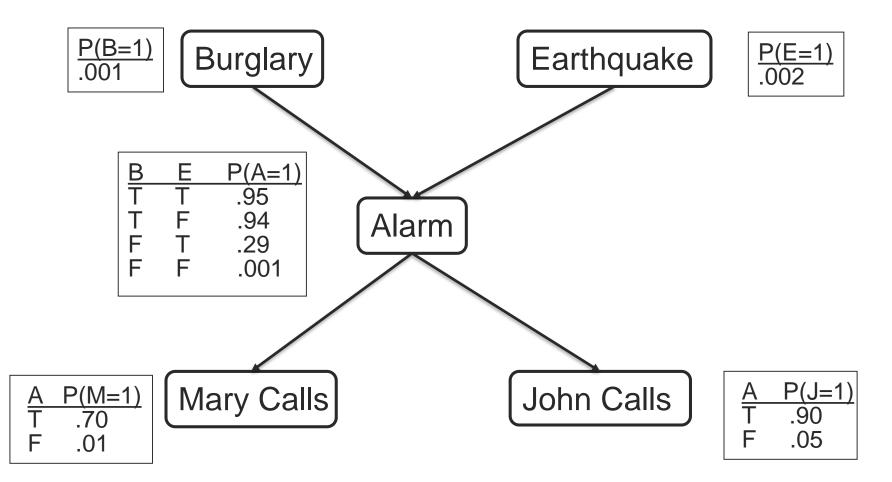
Conditional Probability Distribution (CPD)

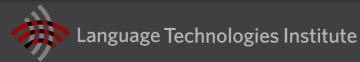
Given a variable X and its parents (Y and Z):

$$P(X|parents(X)) = P(X|Y,Z)$$

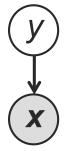
□ For **categorical variable**: expressed as a conditional probability table

Z


	Y=0	Y=1
P(X=0 Y)	4/6	1/3
P(X=1 Y)	2/6	2/3


□ For **continuous variable**: expressed as a conditional density function

 For example, multivariate normal density function or Gaussian linear regression (used by Bayes RegressionLinear Model)

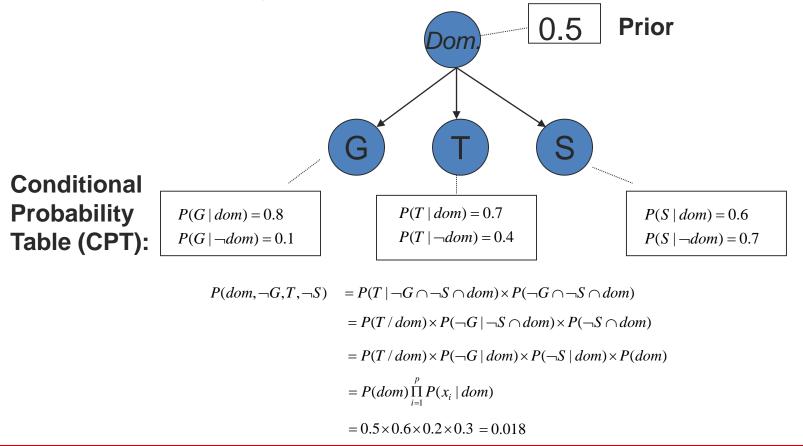


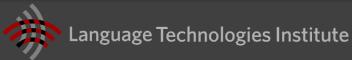
Example – Conditional Probability Distributions

Generative Model: Naïve Bayes Classifier

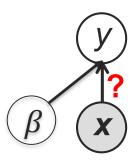
Label: {0:Dominant, 1:Not-dominant}
 (outcome)

Observation vector: [gaze, turn-taking,speech-energy] (evidence)


Score function: $P(y = a | x_i)$


Likelihood Prior Chain rule
Bayes' theorem:
$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} \approx P(x|y)P(y) = P(x,y)$$

Posterior Marginal likelihood $P(x) = \sum_{y} P(x|y)P(y)$
(partition)


Naïve Bayes

Strong assumption of the conditional independence of all feature variables.
Feature variables only dependent on class variable

Bayesian Linear Regression Model

Label: {0:Dominant, 1:Not-dominant}
(dependent variable, outcome variable, response variable)

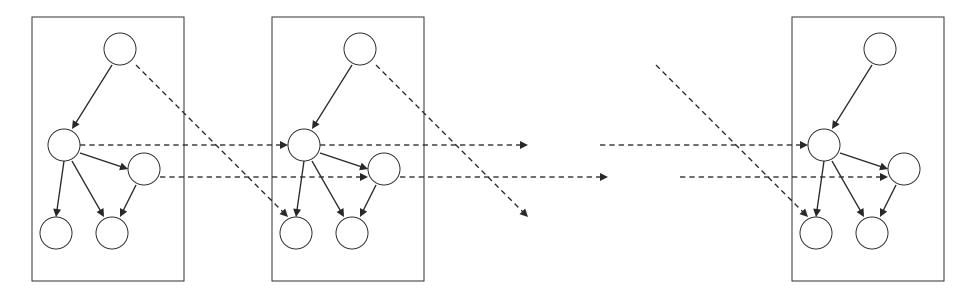
Observation vector: [gaze, turn-taking,speech-energy] (independent variable, predictors)

Frequentist view: $y = \beta^T x + \epsilon$

Probabilistic view: $\epsilon \sim N(0, \sigma^2 I)$ $y \sim N(\beta^T x, \sigma^2 I)$

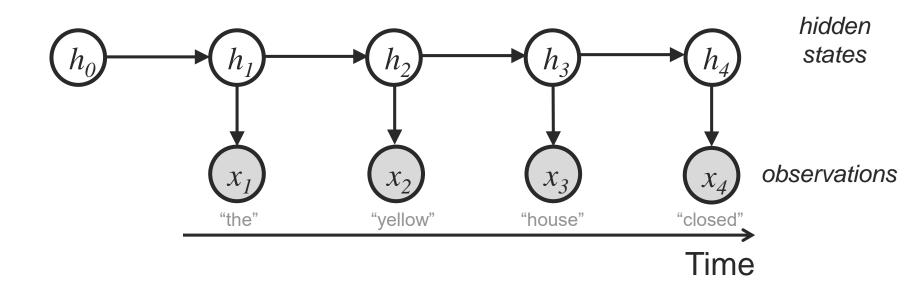
"Prediction" score function would be: $p(y|x,\beta,\sigma^2)$

But instead we are interested in the posterior distribution for the model parameters β :

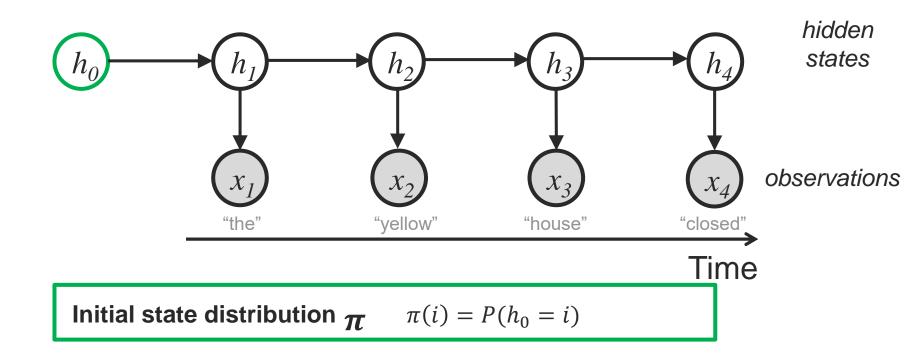

 $p(\beta|\boldsymbol{x},\boldsymbol{y},\sigma^2)$

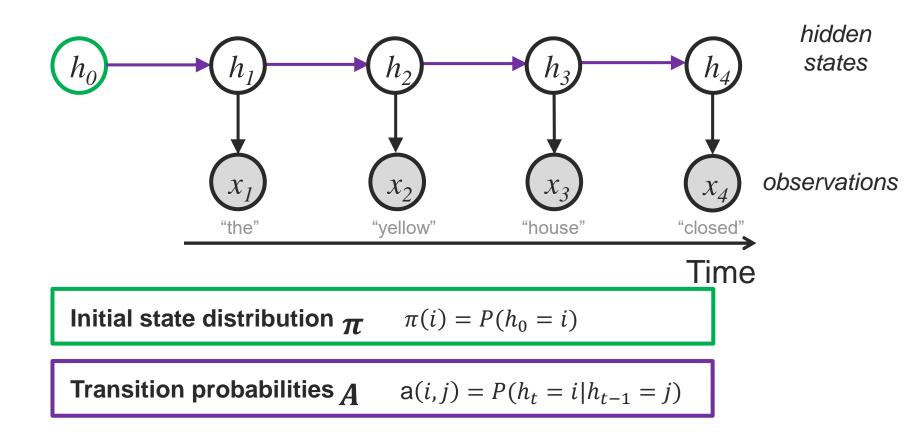

Dynamic Bayesian Network (DBN)

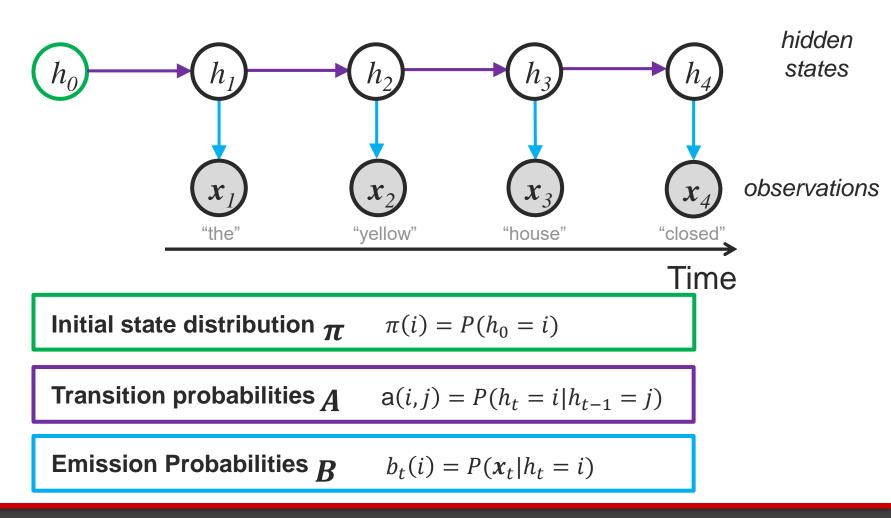
- Bayesian network with time-series to represent temporal dependencies.
- Dynamically changing or evolving over time.
- Directed graphical model of stochastic processes.
- Especially aiming at time series modeling.
- Satisfying the Markovian condition: The state of a system at time t depends only on its immediate past state at time t-1.

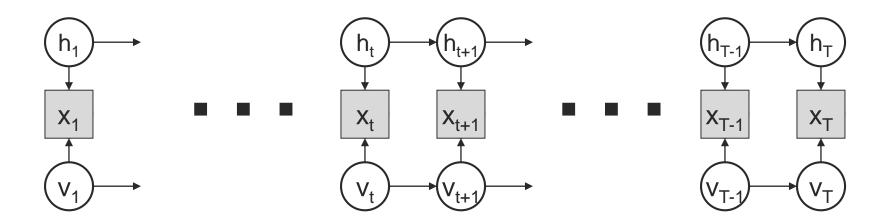


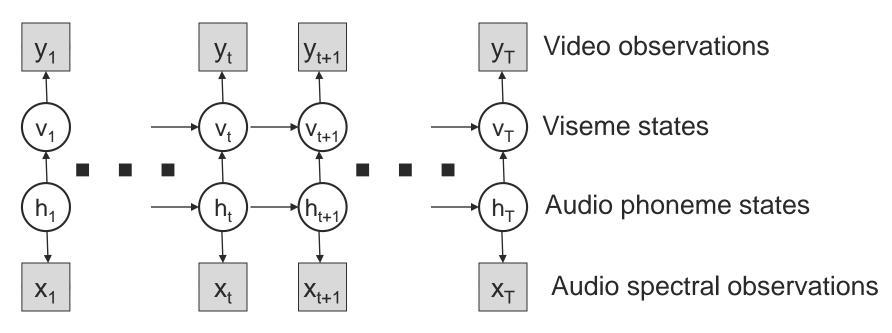

Dynamic Bayesian Network (DBN)



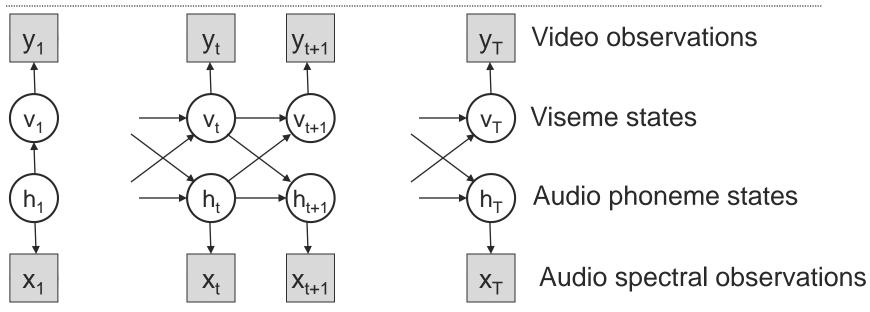


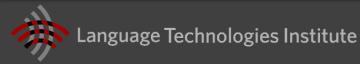





Factorial HMM

- Factorial HMM:
 - h_t and v_t represent two different types of background information, each with its own history
 - Observations x_t depend on both hidden processes
- Model parameters:
 - $p(v_{t+1}|v_t), p(h_{t+1}|h_t), p(x_t|h_t, v_t)$


The Boltzmann Zipper

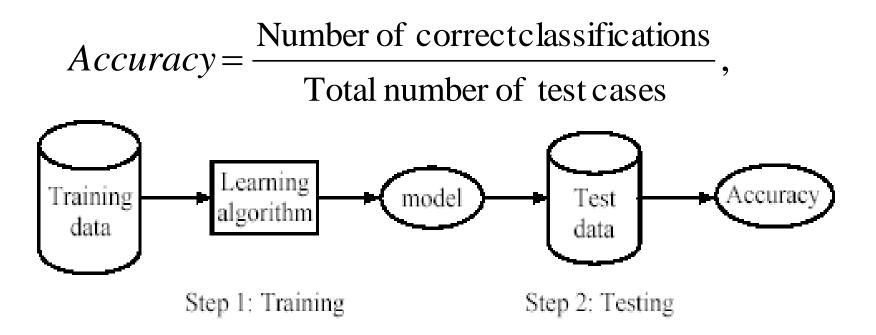

- Both streams have a "memory" (h_t and v_t)
- Model parameters:
 - $p(h_{t+1}|h_t), p(x_t|h_t)$
 - $p(v_{t+1}|v_t,h_{t+1}), p(y_t|h_t)$

The Coupled HMM

- Advantage over Boltzmann Zipper: More flexible, because neither vision nor sound is "privileged" over the other.
 - $p(h_{t+1}|v_t,h_t), p(x_t|h_t)$
 - $p(v_{t+1}|v_t,h_t), p(y_t|h_t)$

Learning (Dynamic) Bayesian Networks

- Multiple techniques exist to learn the model parameters based on data
 - Maximum likelihood estimator
 - Bayesian estimator, which allows to include prior information
- Python libraries:
 - http://pgmpy.org/
 - http://www.bayespy.org
 - https://pomegranate.readthedocs.io/en/latest/


Machine Learning: Evaluation Methods

Language Technologies Institute

Supervised learning process: two steps

Learning (training): Learn a model using the training data Testing: Test the model using unseen test data to assess the model accuracy


Evaluation methods

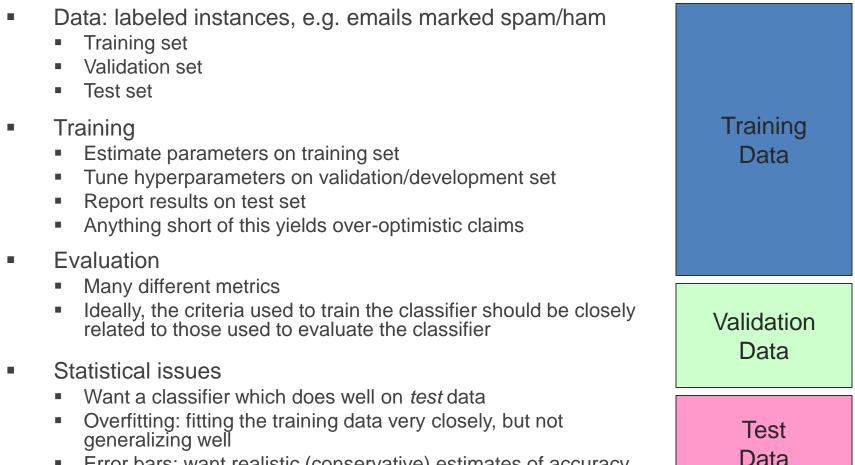
- Holdout set: The available data set D is divided into two disjoint subsets,
 - the *training set D_{train}* (for learning a model)
 - the test set D_{test} (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning.
 - Unseen test set provides a unbiased estimate of accuracy.
- The test set is also called the holdout set. (the examples in the original data set *D* are all labeled with classes.)
- This method is mainly used when the data set *D* is large.
- Unless building person specific models the training and test sets should not contain the same person

Evaluation methods (cont...)

- n-fold cross-validation: The available data is partitioned into *n* equal-size disjoint subsets.
- Use each subset as the test set and combine the rest n-1 subsets as the training set to learn a classifier.
- The procedure is run n times, which give n accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large.

Evaluation methods (cont...)

- Leave-one-out cross-validation: This method is used when the data set is very small.
- It is a special case of cross-validation
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.
- If the original data has *m* examples, this is *m*fold cross-validation


Hyperparameters

- How do we determine C or γ for SVM training?
- Parameters that we do not learn through optimization are called hyper-parameters
- Need a way to find optimal values for our task
 For some approaches rules of thumb exist
- Need an analytical way to do it
- Common ways
 - Grid search
 - Random search (not as bad as it sounds)

Language Technologies Institute

Error bars: want realistic (conservative) estimates of accuracy

Take home

- 1. Never touch test data during training/validation
- 2. Never touch test data during training/validation
- 3. Never touch test data during training/validation

Machine Learning: Measuring Error

Language Technologies Institute

Carnegie Mellon University

Measuring Error

	Predicted class	
True Class	Yes	No
Yes	TP: True Positive	FN: False Negative
No	FP: False Positive	TN: True Negative

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives

= TP / (TP+FN) = sensitivity = hit rate

- Precision = # of found positives / # of found
 - = TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

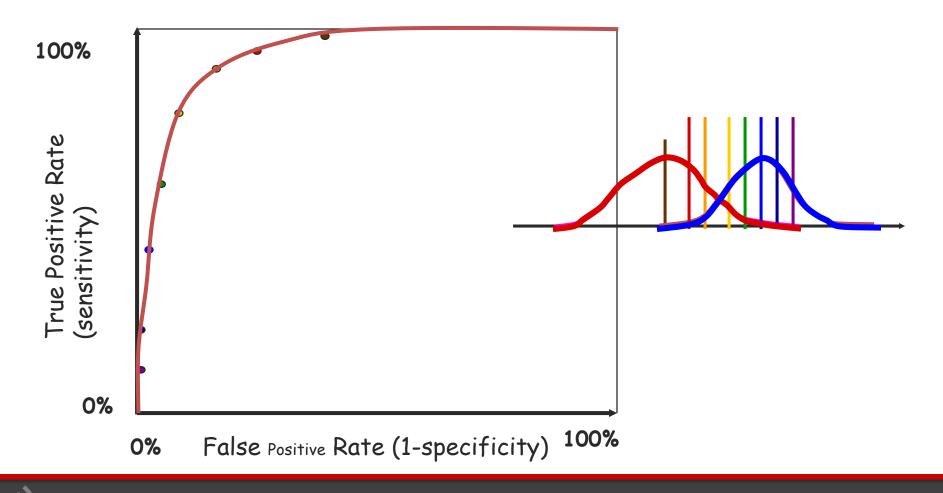
Carnegie Mellon University

F₁-value (also called **F**₁-score)

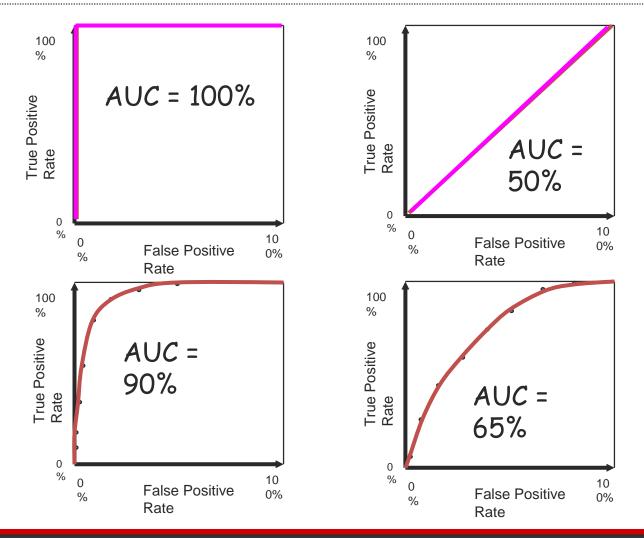
 It is hard to compare two classifiers using two measures. F₁ score combines precision and recall into one measure

•
$$F_1 = \frac{2 \cdot p \cdot r}{p + r}$$

• F_1 - score is the harmonic mean of precision and recall


$$\bullet \quad F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two
- Preferred over accuracy when data is unbalanced
 - Why?


Receiver Operating Characteristic (ROC) Curve

AUC for ROC curves

Carnegie Mellon University

Evaluation of regression

- Root Mean Square Error
 - $\sqrt{\sum_i (y_i x_i)^2}$
 - Not easily interpretable
- Correlation trend prediction in a way
 - Nice interpretation: 0 no relationship, 1 perfect relationship

•
$$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{(n-1)\sigma_x \sigma_y}$$

- Concordance Correlation Coefficient (CCC)
 - A method to combine both


•
$$\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$
, ρ – correlation coefficient

Has nice interpretability as well

Take home

- Error measure selection is not straightforward
 - Pick the right one for your problem
 - F1, AUC, Accuracy, RMSE, CCC
- Make sure the same measure is used for validation and testing
 - Otherwise you might be learning suboptimal models
- Wrong error measure can hide both bad and good results

