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Outline

▪ Dynamic Bayesian Network
▪ Hidden Markov Models

▪ Factorial and coupled HMMs

▪ Markov Random Fields
▪ Unary, binary and clique potentials

▪ Factor graph representation

▪ Multimodal Machine Learning
▪ Core Challenges: Representation, Alignment, Fusion, 

Translation and Co-Learning

▪ Discriminative Graphical Models
▪ Logistic classifier 

▪ Conditional random fields

▪ L1 and L2 regularization

▪ Evaluation methods and error measures
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▪ Thursday, April 4th 4:30pm-6pm

▪ Midterm presentations

▪ Sunday, April 7th at 11:59pm

▪ Midterm report deadline

▪ Thursday, May 2nd 4:30pm-6pm

▪ Final presentations

▪ Tuesday, May 7th at 11:30pm

▪ Final report deadline

*** No reading assignments for Weeks 12 and 13 ***

Upcoming Deadlines and Course Schedule



Midterm Reports – Sunday April 7th 11:59pm ET

Main report sections:

▪ Background and Motivation (1/3 to 1/2 page)

▪ Literature Review (1/2 to 1 page)

▪ Data Description and New Annotations (about 1 page)

▪ Problem Conceptualization (about 1 page)

▪ Statistical Analysis (1 to 2 pages)

▪ Next Steps about (1/2 page)

▪ Appendix: Team Collaboration (about 1/2 page)

Maximum report length: 7 pages



Midterm Presentations – Thursday April 4th

Main presentation sections:

▪ Motivation, research problem and dataset

▪ New annotations 

▪ Problem conceptualization

▪ Statistical analysis

Presentation instructions:

▪ Maximum length: 8 minutes

▪ All teammates should participate

▪ Followed by questions and feedback forms



Upcoming Lectures

Classes Tuesday Thursday

Week 10

3/19 & 3/21

*midterm 

homework*

Probabilistic predictive modeling

• Probabilistic graphical models

• Bayesian networks and Naïve Bayes classifier

• Dynamic Bayesian networks and HMMs

Discussion (probabilistic)

• Vaibhav

• Vasu Sharma

Week 11

3/26 & 3/28

Discriminative predictive modeling

• Markov random fields

• Factor graph representation

• Discriminative graphical models

Discussion (discriminative)

• Vaibhav

• Vasu Sharma

Week 12

4/02 & 4/04

*midterm report*

Multimodal deep representations

• Multimodal joint representations

• Coordinated representations

• Temporal representations 

Midterm presentations

Week 13

4/09 & 4/11

Multimodal alignment and fusion

• Attention and modality alignment

• Temporal and multimodal fusion

NO CLASS

Week 14

4/16 & 4/18

Multimodal Behavior Generation

• Guest lecture: Prof. Nakano

• Generation based on user’s attitude

• Robot and virtual humans 

Discussion (medical)

• Jiang Liu

• Mahmoud Al Ismail

Week 15 

4/23 & 4/25

Multimodal applications

• Assessment in the clinical process

• Biomarkers and behavioral indicators

• Validation in the medical sciences 

Discussion (educational)

• Mingtong Zhang

• Ankit Shah

Week 16

4/30 & 5/02

*final report*

Final presentations Final presentations



7

Dynamic 

Bayesian Networks
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▪ Bayesian network with time-series to represent temporal 

dependencies.

▪ Dynamically changing or evolving over time.

▪ Directed graphical model of stochastic processes.

▪ Especially aiming at time series modeling.

▪ Satisfying the Markovian condition:

The state of a system at time t depends only on its immediate 

past state at time t-1.

Dynamic Bayesian Network (DBN)



Dynamic Bayesian Network (DBN)



Hidden Markov Models

hidden

states

observations

h0 h1 h2 h3 h4

x1 x2 x3 x4

Time

“the” “yellow” “house” “closed”



Hidden Markov Models

hidden

states

observations

h0 h1 h2 h3 h4

x1 x2 x3 x4

𝜋 𝑖 = 𝑃(ℎ0 = 𝑖)

Time

Initial state distribution 𝝅

“the” “yellow” “house” “closed”



Hidden Markov Models

hidden

states

observations

Time

h0 h1 h2 h3 h4

x1 x2 x3 x4

𝜋 𝑖 = 𝑃(ℎ0 = 𝑖)Initial state distribution

Transition probabilities a 𝑖, 𝑗 = 𝑃(ℎ𝑡 = 𝑖|ℎ𝑡−1 = 𝑗)𝑨
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Hidden Markov Models

hidden

states

observations

h0 h1 h2 h3 h4

x1 x2 x3 x4

Emission Probabilities 𝑏𝑡 𝑖 = 𝑃(𝒙𝑡|ℎ𝑡 = 𝑖)

Time

𝜋 𝑖 = 𝑃(ℎ0 = 𝑖)

Transition probabilities a 𝑖, 𝑗 = 𝑃(ℎ𝑡 = 𝑖|ℎ𝑡−1 = 𝑗)𝑨

𝑩

Initial state distribution 𝝅

“the” “yellow” “house” “closed”



Factorial HMM

• Factorial HMM:

– ht and vt represent two different types of background information, 

each with its own history

– Observations xt depend on both hidden processes

• Model parameters:

– p(vt+1|vt), p(ht+1|ht), p(xt|ht,vt)

h1

x1 x2

ht ht+1

x3

hT-1

x4

hT

x5x1 xt xt+1 xT-1 xT

v1 vt vt+1 vT-1 vT

… …



The Boltzmann Zipper

• Both streams have a “memory” (ht and vt)

• Model parameters:

– p(ht+1|ht), p(xt|ht)

– p(vt+1|vt,ht+1), p(yt|ht)

h1

x1 x2

ht+1 hT

x5

…
x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

…



• Advantage over Boltzmann Zipper: More flexible, because 

neither vision nor sound is “privileged” over the other.

– p(ht+1|vt,ht), p(xt|ht)

– p(vt+1|vt,ht), p(yt|ht)

h1

x1 x2

ht+1 hT

x5x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

The Coupled HMM



Learning (Dynamic) Bayesian Networks

▪ Multiple techniques exist to learn the model 
parameters based on data

▪ Maximum likelihood estimator

▪ Bayesian estimator, which allows to include 
prior information

▪ Python libraries: 

▪ http://pgmpy.org/

▪ http://www.bayespy.org

▪ https://pomegranate.readthedocs.io/en/latest/

http://pgmpy.org/
http://www.bayespy.org/
https://pomegranate.readthedocs.io/en/latest/
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Markov 

Random Field



Two Main Types of Graphical Models

Bayesian networks (last week) Markov Models

▪ Directed acyclic graph

▪ Conditional dependencies

▪ Undirected graphical model

▪ Cyclic dependencies



20

Markov Random Fields

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

➢ Set of random variables 𝐻 having a Markov 

property described by undirected graph

Φ 𝒉; 𝜃 =ෑ

𝑘

𝜙𝑘(𝒉; 𝜃𝑘)

𝑝 𝐻 = 𝒉; 𝜃 =
Φ(𝒉; 𝜃)

σ𝒉′Φ(𝒉
′; 𝜃)

Potential 

functions

𝜙𝑘 𝒉; 𝜃 > 0

Potential of this variable 

assignment 𝒉

Potential of all possible 

variable assignments 𝒉′



21

Markov Random Fields – Graphical Model

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝐻 = 𝒉; 𝜃 =
Φ(𝒉; 𝜃)

σ𝒉′Φ(𝒉
′; 𝜃)

Φ 𝒉; 𝜃 =

𝜙16 ℎ1, ℎ6; 𝜃16 ×

𝜙26 ℎ2, ℎ6; 𝜃26 ×

𝜙25 ℎ2, ℎ5; 𝜃25 ×

𝜙45 ℎ4, ℎ5; 𝜃45 ×

𝜙34 ℎ3, ℎ4; 𝜃34

𝜙12 ℎ1, ℎ2; 𝜃12 ×
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Markov Random Fields: Factor Graphs

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝐻 = 𝒉; 𝜃 =
Φ(𝒉; 𝜃)

σ𝒉′Φ(𝒉
′; 𝜃)

𝜙12

𝜙16
𝜙26

𝜙25

𝜙45

𝜙34

Φ 𝒉; 𝜃 = 𝜙12 ℎ1, ℎ2; 𝜃12 ×

𝜙16 ℎ1, ℎ6; 𝜃16 ×

𝜙26 ℎ2, ℎ6; 𝜃26 ×

𝜙25 ℎ2, ℎ5; 𝜃25 ×

𝜙45 ℎ4, ℎ5; 𝜃45 ×

𝜙34 ℎ3, ℎ4; 𝜃34



23

Markov Random Fields (Factor Graphs)

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝐻 = 𝒉, 𝒙; 𝜃 =
Φ(𝒉, 𝒙; 𝜃)

σ𝒉′Φ(𝒉
′, 𝒙; 𝜃)

𝜙12

𝜙16
𝜙26

𝜙25

𝜙45

𝜙34

Φ 𝒉; 𝜃 = 𝜙12 ℎ1, ℎ2; 𝜃12 ×

𝜙16 ℎ1, ℎ6; 𝜃16 ×

𝜙26 ℎ2, ℎ6; 𝜃26 ×

𝜙25 ℎ2, ℎ5; 𝜃25 ×

𝜙45 ℎ4, ℎ5; 𝜃45 ×

𝜙34 ℎ3, ℎ4; 𝜃34 ×

𝜓5

𝜓1

𝜓1 ℎ1, 𝒙; 𝜃1 × 𝜓5 ℎ5, 𝒙; 𝜃5

pairwise 

potentials

Unary

potentials

𝜙345
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Markov Random Fields (Factor Graphs)

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝐻 = 𝒉, 𝒙; 𝜃 =
Φ(𝒉, 𝒙; 𝜃)

σ𝒉′Φ(𝒉
′, 𝒙; 𝜃)

𝜙12

𝜙16
𝜙26

𝜙25

𝜙45

𝜙34

Φ 𝒉; 𝜃 = 𝜙12 ℎ1, ℎ2; 𝜃12 ×

𝜙16 ℎ1, ℎ6; 𝜃16 ×

𝜙26 ℎ2, ℎ6; 𝜃26 ×

𝜙25 ℎ2, ℎ5; 𝜃25 ×

𝜙45 ℎ4, ℎ5; 𝜃45 ×

𝜙34 ℎ3, ℎ4; 𝜃34 ×

𝜓5

𝜓1

𝜓1 ℎ1; 𝜃1 × 𝜓5 ℎ5; 𝜃5

pairwise 

potentials

Unary

potentials

𝜙345

× 𝜙345 ℎ3, ℎ4, ℎ5; 𝜃345
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Markov Random Fields – Clique Factorization

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝐻 = 𝒉, 𝒙; 𝜃 =
Φ(𝒉, 𝒙; 𝜃)

σ𝒉′Φ(𝒉
′, 𝒙; 𝜃)

𝜙12

𝜙16
𝜙26

𝜙25

𝜙45

𝜙34

Φ 𝒉; 𝜃 = 𝜙12 ℎ1, ℎ2; 𝜃12 ×

𝜙16 ℎ1, ℎ6; 𝜃16 ×

𝜙26 ℎ2, ℎ6; 𝜃26 ×

𝜙25 ℎ2, ℎ5; 𝜃25 ×

𝜙45 ℎ4, ℎ5; 𝜃45 ×

𝜙34 ℎ3, ℎ4; 𝜃34 ×

𝜓5

𝜓1

𝜓1 ℎ1; 𝜃1 × 𝜓5 ℎ5; 𝜃5

pairwise 

potentials

Unary

potentials

𝜙345

× 𝜙345 ℎ3, ℎ4, ℎ5; 𝜃345

Clique factorization
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Chain Markov Random Fields (Factor Graphs)

𝑝 𝐻 = 𝒉, 𝒙; 𝜃 =
Φ(𝒉, 𝒙; 𝜃)

σ𝒉′Φ(𝒉
′, 𝒙; 𝜃)

Φ 𝒉; 𝜃 = 𝜙12 ℎ1, ℎ2; 𝜃12 ×

𝜙23 ℎ2, ℎ3; 𝜃23 ×

𝜙34 ℎ3, ℎ4; 𝜃34 ×

𝜓1 ℎ1; 𝜃1 ×

pairwise 

potentials

Unary

potentials

𝜙12
ℎ1 ℎ2 ℎ3 ℎ4

𝜙23 𝜙34

𝜓2 ℎ2; 𝜃2 ×

𝜓3 ℎ3; 𝜃3 ×

𝜓4 ℎ4; 𝜃4

𝜓1 𝜓2 𝜓3 𝜓4

𝒙



Example: Markov Random Field – Graphical Model
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[Sabourin et al., 2011]



Example: Markov Random Field – Factor Graph
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How many unary 

and pairwise 

potentials?

How to improve 

the factor graph?
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Multimodal Machine 

Learning: Core 

Technical Challenges
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Core Challenges in “Deep” Multimodal ML

Tadas Baltrusaitis, Chaitanya Ahuja, 
and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

These challenges are non-exclusive.

https://arxiv.org/abs/1705.09406
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Core Challenge 1: Representation

Modality 1 Modality 2

Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Joint representations:A
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Joint Multimodal Representation

“I like it!” Joyful tone

Tensed voice

“Wow!”

Joint Representation
(Multimodal Space)
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Joint Multimodal Representations
D

ep
th

V
erb

alD
ep

th
V

id
e

o
D

ep
th

M
u

lt
im

o
d

alAudio-visual speech recognition

• Bimodal Deep Belief Network

Image captioning

• Multimodal Deep Boltzmann Machine

[Ngiam et al., ICML 2011]

[Srivastava and Salahutdinov, NIPS 2012]

Audio-visual emotion recognition

• Deep Boltzmann Machine

[Kim et al., ICASSP 2013]

VerbalVisual

Multimodal Representation
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Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B



38

Coordinated Representation: Deep CCA

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

𝑿
𝒀

𝒖
𝒗

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

Learn linear projections that are maximally correlated:

Andrew et al., ICML 2013
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Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or 
more different modalities.

t1

t2

t3

tn

Modality 2Modality 1

t4

t5

tn

Fa
n

cy
 a

lg
o

ri
th

m

Explicit Alignment

The goal is to directly find correspondences 

between elements of different modalities

Implicit Alignment

Uses internally latent alignment of modalities in 

order to better solve a different problem

A

B



Temporal sequence alignment

Applications:

- Re-aligning asynchronous 

data

- Finding similar data across 

modalities (we can estimate 

the aligned cost)

- Event reconstruction from 

multiple sources



Alignment examples (multimodal)
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Implicit Alignment

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, 

https://arxiv.org/pdf/1406.5679.pdf
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a 
prediction task.

Model-Agnostic ApproachesA

Classifier

Modality 1

Modality 2

Classifier

Classifier

Modality 1

Modality 2

1) Early Fusion 2) Late Fusion
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a 
prediction task.

Model-Based (Intermediate) ApproachesB

1) Deep neural networks

2) Kernel-based methods

3) Graphical models 𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

y

Multiple kernel learning

Multi-View Hidden CRF
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Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the 
translation relationship can often be open-ended or subjective.

Example-basedA Model-drivenB



Core Challenge 4 – Translation

Transcriptions

+

Audio streams

Visual gestures
(both speaker and 

listener gestures)

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics

Symposium on Computer Animation, 2013
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Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their 
representations and predictive models.

Modality 1

Prediction

Modality 2

Help during 
training
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Core Challenge 5: Co-Learning

ParallelA Non-ParallelB HybridC



49Input Modalities Language Visual
Acoustic

Big dog
on the 
beach

Prediction

1 2

𝑡2

𝑡3

𝑡𝑛

𝑡4

𝑡5

𝑡6

𝑡2

𝑡3

𝑡𝑛

𝑡1



Taxonomy of Multimodal Research

Representation
▪ Joint

o Neural networks

o Graphical models

o Sequential

▪ Coordinated

o Similarity

o Structured

Translation
▪ Example-based

o Retrieval

o Combination

▪ Model-based

o Grammar-based

o Encoder-decoder

o Online prediction

Alignment

▪ Explicit

o Unsupervised

o Supervised

▪ Implicit

o Graphical models

o Neural networks

Fusion

▪ Model agnostic

o Early fusion

o Late fusion

o Hybrid fusion

▪ Model-based

o Kernel-based

o Graphical models

o Neural networks

Co-learning

▪ Parallel data

o Co-training

o Transfer learning

▪ Non-parallel data

▪ Zero-shot learning

▪ Concept grounding

▪ Transfer learning

▪ Hybrid data

▪ Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406


Real world tasks tackled by MMML

▪ Affect recognition

▪ Emotion

▪ Persuasion

▪ Personality traits

▪ Media description

▪ Image captioning

▪ Video captioning

▪ Visual Question Answering

▪ Event recognition

▪ Action recognition

▪ Segmentation

▪ Multimedia information retrieval

▪ Content based/Cross-media



Multimodal Applications

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406
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Discriminative 

Graphical Models



Generative versus Discriminative

𝜙12
ℎ1 ℎ2 ℎ3 ℎ4

𝜙23 𝜙34

𝜓1 𝜓2 𝜓3 𝜓4

𝒙𝟏

Generative or 

Discriminative?

Answer: It depends on 

the loss function!

Generative loss function:

Discriminative loss function: 𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒉(𝑗) 𝑿(𝑗); 𝜃

𝐿 𝜃 =

𝑗=1

𝑁

𝑃(𝒉 𝑗 , 𝑿 𝑗 ; 𝜃)
(joint probability)

(conditional probability)

𝒙𝟐 𝒙𝟑 𝒙𝟒



Discriminative Model: Logistic classifier 

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

Label : {0:Dominant, 1:Not-dominant}

𝑃 𝑦𝑡 = 1 𝒙𝑡 =
1

1 + exp(−𝜽𝒙𝒕)
Binary form

𝑃 𝑦𝑡 = 𝑐 𝒙𝑡 =
exp(𝜽𝑐𝒙𝒕)

σ𝑘=1
𝐾 exp(𝜽𝑘𝒙𝒕)

Multinomial form

Score function:



Comparing Linear and Logistic Models

0

1

Linear Model

Logistic Model



Discriminative Model: Logistic classifier 

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

General form

𝑃 𝑦𝑡 = 𝑐 𝒙𝑡 =
exp(𝜽𝑐𝒙𝒕)

σ𝑘=1
𝐾 𝜽𝑐𝒙𝒕

Familiar multinomial form

Score function:



Discriminative Model: Logistic classifier

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

Partition

function
Feature

functions

Weights

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

=
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜙𝑘(𝑦𝑡, 𝒙𝑡; 𝜃𝑘)



Feature Functions

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

𝑓0 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡0, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

3

K = 6

𝑓1 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡0, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓2 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡1, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓3 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡1, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓4 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡2, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓5 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡2, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Label : {0:Dominant, 1:Not-dominant}

𝜃0 𝜃1

𝜃2 𝜃3

𝜃4 𝜃5

yt=0 yt=1

xt0

xt1

xt2



Partition Function: Normalizing Constant

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

𝒵 𝒙𝒕 = 

𝑦′=0

𝑌

exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦′, 𝒙𝒕
So that 𝑃 𝑦𝑡 𝒙𝑡 stays 

between 0 and 1.



Training and Loss Function

xt

yt

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

Observation vector: [speech-energy, gaze, turn-taking]

𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒚(𝑗) 𝑿(𝑗); 𝜃

Loss function: Conditional log likelihood

− 𝑅 𝜃



▪ L-2 Norm (Gaussian prior):

▪ L-1 Norm (Laplacian prior):

Regularization

𝑅(𝜃) = 𝜆 𝜃 2

𝑅(𝜃) = 𝜆 𝜃 1

2


1


)(L

)(L

𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒚(𝑗) 𝑿(𝑗); 𝜃 − 𝑅 𝜃



Sparse Feature Ranking

Regularization Penalty (λ)

0

0

0

0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0

0  0.27

0  0

0  0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0       0.20

0  0.27  0.35

0  0       0

0  0       0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0       0.20  0.40

0  0.27  0.35  0.55 

0  0       0       0.33

0  0       0      0.18



LASSO and ElasticNet

xt

yt Label : {0:Dominant, 1:Not-dominant}

Observation vector: [speech-energy, gaze, turn-taking]

𝐿 𝜃 =

𝑗=1

𝑁

𝑦𝑗 − 𝑓 𝒙𝒋; 𝜃
𝟐

Lasso loss function: squared loss with L1 regularization

−𝜆 𝜃 1

𝐿 𝜃 =

𝑗=1

𝑁

𝑦𝑗 − 𝑓 𝒙𝒋; 𝜃
𝟐

ElasticNet: squared loss with L1 and L2 regularization

−𝜆 𝜃 1 −𝜆 𝜃 2



Conditional Random Fields (CRFs)

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn

[McCallum 2001]

𝑃 𝒚 𝑿 =
1

𝒵 𝑿
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕 +

𝑙=1

𝐿

𝜆𝑙𝑔𝑙 𝑦𝑡 , 𝑦𝑡−1



69

Hidden Conditional Random Field

Sentiment

We saw the yellow dog

x5x4x3x2x1

y

h5h4h3h2h1

for example,𝓨: {positive, negative} 

Sequence label:

𝑦 ∈ 𝒴

𝑝 𝑦 𝒙; 𝜽) =

𝒉

𝑝 𝑦, 𝒉 𝒙; 𝜽

𝑝 𝑦, 𝒉 𝐱; 𝜽) =
1

𝒵(𝒙; 𝜽)
exp 

𝑡

𝜽𝑥 ⋅ 𝑓𝑥 ℎ𝑡 , 𝐱𝒕 +

𝑡

𝜽𝑒 ⋅ 𝑓𝑒 ℎ𝑡 , ℎ𝑡−1, 𝑦 +

𝑡

𝜽𝑦 ⋅ 𝑓𝑦 𝑦, 𝒉𝒕

𝒉 = {ℎ1, ℎ2, ℎ3, … , ℎ𝑡}

Latent variables with shared hidden states:

where ℎ𝑡 ∈ ℋ

Different edge potentials
for  each label 𝒚

Shared hidden states
• Inference is tractable: 𝑶 𝒀𝑯𝟐𝑻

• Linear in sequence length T !

• Parameter learning (𝜽𝒙, 𝜽𝒆, 𝜽𝒚):
• Gradient descent or L-BFGS

𝜃𝑒
𝜃𝑥

𝜃𝑦
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Learning Multimodal Structure

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

We saw the yellowdog

Sentiment

y
Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony
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Multi-view Latent Variable Discriminative Models 

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

We saw the yellowdog

Sentiment

y

➢ Approximate inference using loopy-belief

Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony

𝑝 𝑦 𝒙𝑨, 𝒙𝑉; 𝜽) = 

𝒉𝑨,𝒉𝑽

𝑝 𝑦, 𝒉𝑨, 𝒉𝑽 𝒙𝑨, 𝒙𝑽; 𝜽



Recap of generative vs discriminative
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Machine Learning: 

Evaluation Methods



Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the 

model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Evaluation methods

▪ Holdout set: The available data set D is divided into two 
disjoint subsets, 
▪ the training set Dtrain (for learning a model)

▪ the test set Dtest (for testing the model)

▪ Important: training set should not be used in testing and 
the test set should not be used in learning. 
▪ Unseen test set provides a unbiased estimate of accuracy. 

▪ The test set is also called the holdout set. (the 
examples in the original data set D are all labeled with 
classes.) 

▪ This method is mainly used when the data set D is large.

▪ Unless building person specific models the training 
and test sets should not contain the same person



Evaluation methods (cont…)

▪ n-fold cross-validation: The available data is partitioned 

into n equal-size disjoint subsets. 

▪ Use each subset as the test set and combine the rest n-1 

subsets as the training set to learn a classifier. 

▪ The procedure is run n times, which give n accuracies. 

▪ The final estimated accuracy of learning is the average of 

the n accuracies. 

▪ 10-fold and 5-fold cross-validations are commonly used. 

▪ This method is used when the available data is not large.



Evaluation methods (cont…)

▪ Leave-one-out cross-validation: This method is 

used when the data set is very small. 

▪ It is a special case of cross-validation

▪ Each fold of the cross validation has only a 

single test example and all the rest of the data 

is used in training. 

▪ If the original data has m examples, this is m-

fold cross-validation



78

▪ How do we determine 𝐶 or 𝛾 for SVM training?

▪ Parameters that we do not learn through 
optimization are called hyper-parameters

▪ Need a way to find optimal values for our task
▪ For some approaches rules of thumb exist

▪ Need an analytical way to do it

▪ Common ways
▪ Grid search

▪ Random search (not as bad as it sounds)

Hyperparameters



Training and Validation

▪ Data: labeled instances, e.g. emails marked spam/ham
▪ Training set

▪ Validation set

▪ Test set

▪ Training
▪ Estimate parameters on training set

▪ Tune hyperparameters on validation/development set 

▪ Report results on test set

▪ Anything short of this yields over-optimistic claims

▪ Evaluation
▪ Many different metrics

▪ Ideally, the criteria used to train the classifier should be closely 
related to those used to evaluate the classifier

▪ Statistical issues
▪ Want a classifier which does well on test data

▪ Overfitting: fitting the training data very closely, but not 
generalizing well

▪ Error bars: want realistic (conservative) estimates of accuracy

Training

Data

Validation

Data

Test

Data
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Take home

▪ 1. Never touch test data during 

training/validation

▪ 2. Never touch test data during 

training/validation

▪ 3. Never touch test data during 

training/validation
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Machine Learning: 

Measuring Error



Measuring Error

▪ Error rate = # of errors / # of instances = (FN+FP) / N

▪ Recall = # of found positives / # of positives 

= TP / (TP+FN) = sensitivity = hit rate

▪ Precision = # of found positives / # of found

= TP / (TP+FP)

▪ Specificity = TN / (TN+FP)

▪ False alarm rate = FP / (FP+TN) = 1 - Specificity



F1-value (also called F1-score)

▪ It is hard to compare two classifiers using two measures. F1 score 

combines precision and recall into one measure

▪ 𝐹1 =
2⋅𝑝⋅𝑟

𝑝+𝑟

▪ 𝐹1 - score is the harmonic mean of precision and recall

▪ 𝐹1 =
2

1

𝑝
+
1

𝑟

▪ The harmonic mean of two numbers tends to be closer to the 

smaller of the two

▪ Preferred over accuracy when data is unbalanced

▪ Why?
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Evaluation of regression

▪ Root Mean Square Error 

▪ σ𝑖 𝑦𝑖 − 𝑥𝑖
2

▪ Not easily interpretable

▪ Correlation – trend prediction in a way
▪ Nice interpretation: 0 – no relationship, 1 – perfect relationship

▪ 𝜌 =
σ𝑖 𝑥𝑖− ҧ𝑥 (𝑦

𝑖
−ത𝑦)

𝑛−1 𝜎𝑥𝜎𝑦

▪ Concordance Correlation Coefficient (CCC)
▪ A method to combine both

▪ 𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2+ 𝜇𝑥−𝜇𝑦
2, 𝜌 – correlation coefficient

▪ Has nice interpretability as well



Take home

▪ Error measure selection is not straightforward

▪ Pick the right one for your problem

▪ F1, AUC, Accuracy, RMSE, CCC

▪ Make sure the same measure is used for 

validation and testing

▪ Otherwise you might be learning 

suboptimal models

▪ Wrong error measure can hide both bad 

and good results


