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Outline

= Dynamic Bayesian Network

= Hidden Markov Models

= Factorial and coupled HMMs
Markov Random Fields

= Unary, binary and clique potentials

= Factor graph representation
Multimodal Machine Learning

= Core Challenges: Representation, Alignment, Fusion,
Translation and Co-Learning

Discriminative Graphical Models
= Logistic classifier
= Conditional random fields
= L1 and L2 regularization
Evaluation methods and error measures
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Upcoming Deadlines and Course Schedule

= Thursday, April 4t 4:30pm-6pm
= Midterm presentations

= Sunday, April 7th at 11:59pm
= Midterm report deadline

= Thursday, May 2"9 4:30pm-6pm
= Final presentations

= Tuesday, May 7™ at 11:30pm
= Final report deadline

*** No reading assignments for Weeks 12 and 13 ***
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Midterm Reports — Sunday April 7t" 11:59pm ET

Main report sections:

= Background and Motivation (1/3 to 1/2 page)

= Literature Review (1/2 to 1 page)

= Data Description and New Annotations (about 1 page)
= Problem Conceptualization (about 1 page)

= Statistical Analysis (1 to 2 pages)

= Next Steps about (1/2 page)

=  Appendix: Team Collaboration (about 1/2 page)

Maximum report length: 7 pages
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Midterm Presentations — Thursday April 4t

Main presentation sections:

= Motivation, research problem and dataset
= New annotations

= Problem conceptualization

=  Statistical analysis

Presentation instructions:

* Maximum length: 8 minutes

= All teammates should participate

* Followed by questions and feedback forms
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Upcoming Lectures

Thursday

Week 10 Probabilistic predictive modeling Discussion (probabilistic)
3/19 & 3/21 o Probabilistic graphical models o Vaibhav

*midterm o Bayesian networks and Naive Bayes classifier o Vasu Sharma
homework* o Dynamic Bayesian networks and HMMs

Discriminative predictive modeling Discussion (discriminative)
o Markov random fields o Vaibhav

3/26 & 3/28 o Factor graph representation o Vasu Sharma

o Discriminative graphical models

Week 12 Multimodal deep representations Midterm presentations
4/02 & 4/04 o Multimodal joint representations

*midterm report* |8 Coordinated representations

o Temporal representations

Week 13 Multimodal alignment and fusion NO CLASS
4/09 & 4/11 o Attention and modality alignment
o Temporal and multimodal fusion

Week 14 Multimodal Behavior Generation Discussion (medical)
4/16 & 4/18 o Guest lecture: Prof. Nakano o Jiang Liu

o Generation based on user’s attitude o Mahmoud Al Ismail
o Robot and virtual humans

Week 15 Multimodal applications Discussion (educational)
4/23 & 4/25 o Assessment in the clinical process o Mingtong Zhang

o Biomarkers and behavioral indicators o Ankit Shah

o Validation in the medical sciences

Week 16 Final presentations Final presentations
4/30 & 5/02
*final report*
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Dynamic
Bayesian Networks
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Dynamic Bayesian Network (DBN)

Bayesian network with time-series to represent temporal
dependencies.

Dynamically changing or evolving over time.
Directed graphical model of stochastic processes.
Especially aiming at time series modeling.

Satisfying the Markovian condition:

The state of a system at time t depends only on its immediate
past state at time t-1.
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Dynamic Bayesian Network (DBN)
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Hidden Markov Models

hidden
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Hidden Markov Models

———O—@ =
@ @ @ @ observations
“the”

“yellow” “house” “closed”
Time
Initial state distribution 77  w(i) = P(hy = i) ‘
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Hidden Markov Models

hidden

BD—D—O—O—O -
® ® @ @ e
“the”

“yellow” “house” “closed”
Time
‘ Initial state distribution 77  w(i) = P(hy = i) ‘

‘ Transition probabilities 4  a(i,j) = P(hy = i|hi—q1 =) ‘
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Hidden Markov Models

hidden

D—D—O—O—O
® © @ @

“‘yellow” “‘house” “closed”
Time
‘ Initial state distribution 77  w(i) = P(hy = i) ‘

‘ Transition probabilities 4  a(i,j) = P(hy = i|hi—q1 =) ‘

‘ Emission Probabilities p be(i) = P(x¢|hy = 0) ‘
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Factorial HMM

 Factorial HMM:

— h,and v, represent two different types of background information,
each with its own history

— Observations x, depend on both hidden processes
 Model parameters:
= P(Ver1[V)s P(Dieg|Dy), pOX NV
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The Boltzmann Zipper

Y Video observations
Viseme states
Audio phoneme states
Xa1 Audio spectral observations

» Both streams have a "memory” (h, and v,)

 Model parameters:

— p(hyqlhy), p(x/hy)
— P(VrIVihier), PN
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The Coupled HMM

Y1 Yi Yir1 yr | Video observations
@ @.@ Viseme states
@ m @ Audio phoneme states
1 X Xis1 x; | Audio spectral observations

« Advantage over Boltzmann Zipper: More flexible, because
neither vision nor sound is “privileged” over the other.
— p(hyalvihy, pxdhy)
— P(VeralVishy), p(yihy)
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Learning (Dynamic) Bayesian Networks

= Multiple techniques exist to learn the model
parameters based on data

= Maximum likelihood estimator

= Bayesian estimator, which allows to include
orior information

= Python libraries:
= http://pgmpy.org/
= http://www.bayespy.org
» https://pomegranate.readthedocs.io/en/latest/
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http://pgmpy.org/
http://www.bayespy.org/
https://pomegranate.readthedocs.io/en/latest/

Markov
Random Field
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Two Main Types of Graphical Models

Bayesian networks (last week) Markov Models

= Directed acyclic graph = Undirected graphical model
= Conditional dependencies *® Cyclic dependencies
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Markov Random Fields

Potential of this variable

D(h; 0) — assignmen
p(H = h;0) = ) e

- Zh’ CI)(h’; 0) +—— Potential of all possible
variable assignments h’

» Set of random variables H having a Markov
property described by undirected graph

Potential
functions

N
®(h; 0) = 1_[ bl 0x) 4. (ho) >0
k

Language Technologies Institute



Markov Random Fields — Graphical Model

®(h; 0)
>, O(h'; 6)

®(h; 0) = ¢p1,(hy, hy; 013) X
$P16(hy, he; O16) X
®26(h3, hg; O26) X

@ @ ®25(hy, hs; O55) X
@ Gas5(hy, hs; O45) X
@ ¢34(h3, h4; 934)

p(H=h;0) =
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Markov Random Fields: Factor Graphs

d(h; 6)
>, O(h'; 6)

®(h; 0) = ¢p12(hq, hy;012) X
$16(hy, he; B16) X
$26(hz, he; O26) X
¢25(hy, hs; B25) X

Gas5(hy, hs; O45) X
¢34(h3, h4; 934)
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Markov Random Fields (Factor Graphs)

d(h,x;0)
2 P(h, x; 0)

p(H =h,x;0) =

®d(h;0) = ¢p1,(hy, hy; 015) X
P1¢(hy, hg; B16) X
P26(h2, he; O26) X > pairwise

G5 (hy, hs; 055) X potentials

Gas5(hy, hs; O45) X
B34 (N3, hy; O34) X p

lpl (hl' X, 91) X lpS(hS' X, 65)
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Markov Random Fields (Factor Graphs)

d(h,x;0)
2 P(h, x; 0)

p(H =h,x;0) =

O(h; 0) = ¢12(hy, hy; 012) X
P16(hy, hg; O16) X
P26 (h2, he; O26) X > pairwise
¢d,c(hy, hs; O55) X potentials
P4 (hy, he; O4c) X
P34(hs3, hy; O34) X y
1(hy; 61) X Ps(hs; O5)
X ¢345 (hg, h4, hS; 9345)
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Markov Random Fields — Clique Factorization

p(H=hx;0) = :
Zh’ CI)(h , X, 9)
Clique factorization \’CI)(h' H) _ ¢12(h1 hz' 012) o ~
lps\ $16(hq, he; O16) X
e D,6(hy, he; O56) X pairwise
) > potentials

¢25(hy, hs; O25) X
Pas(hy, hs; O45) X
¢34 (h3, hy; O34) X p
Y1(hy;01) X Ps(hs; Os)
X 345 (N3, Ny, hs; O345)

\hs) ¢

¢15f ¢2\6“
(hj}“ u\/ \
N A\ A
4 N

nd ‘i;fz/@
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Chain Markov Random Fields (Factor Graphs)

(H = h,x: 0) = ®(h, x; 0)
pui =X, t) = Y PR, x;60)
O(h;0) = pra(hy hy;O) x |
P23(hy, hs; 073) X Egltrev:*/\ﬁgls
$34(h3, hy; 034) X

Y1(hy; 01) X
Yo (hy; 0;) X
P3(hs; 03) X
Py (hy; 0,4)
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Example: Markov Random Field — Graphical Model

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
Valence Emotion
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Multimodal Machine
Learning: Core
Technical Challenges



Core Challenges in “Deep” Multimodal ML

Representation Multimodal Machine Learning:
_ A Survey and Taxonomy

Alignment |

By Tadas Baltrusaitis, Chaitanya Ahuja,

. and Louis-Philippe Morency
Fusion
https://arxiv.org/abs/1705.09406
Translation 15 core challenges
] V137 taxonomic classes

Co-Learnin g 253 referenced citations

These challenges are non-exclusive.

HiIVivgiGo fliolitulilc



https://arxiv.org/abs/1705.09406

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations:

Representation

Modality 1 Modality 2
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Joint Multimodal Representation

_ _ Tensed voice
Joint Representation

(Multimodal Space)
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Joint Multimodal Representations

Audio-visual speech recognition
[Ngiam et al., ICML 2011]

« Bimodal Deep Belief Network

Image captioning
[Srivastava and Salahutdinov, NIPS 2012]

« Multimodal Deep Boltzmann Machine

Audio-visual emotion recognition
[Kim et al., ICASSP 2013]

» Deep Boltzmann Machine

Language Technologies Institute
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Multimodal Vector Space Arithmetic

Nearest images

- blue + red =

- blue + yellow = IREEREEE =

- yellow + red =

%)
K

- white + red =
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 =P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2

Language Technologies Institute




Coordinated Representation: Deep CCA

Learn linear projections that are maximally correlated:

(u*,v*) = argmax corr(u’ X, vTY)

wv ,,' . View H, V\\
H.@0 00 @@ eoH,
. . o. .... Uu uV
. 0 v’ 00 00 | ]
¢ ° : ‘. .‘u. \. °° Wx“ “WV
"L e 09 00 | ]
X ) Y Text Image
¢ X Y

Andrew et al., ICML 2013
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Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or
more different modalities.

Modality 1 Modality 2

@ Explicit Alignment

[ J
[ J
\ é The goal is to directly find correspondences

between elements of different modalities

Implicit Alignment

e Uses internally latent alignment of modalities in

m /G order to better solve a different problem

IS
=
=

—

o
0

©

>

%)

c

S
(N

Language Technologies Institute




Temporal sequence alignment

Applications:

- Re-aligning asynchronous
data

- Finding similar data across
modalities (we can estimate
the aligned cost)

- Event reconstruction from

multiple sources
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Alignment examples (multimodal)

1/273 1/51 1/127
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Implicit Alignment

“A dog with a_tennis ball is swimming in murky water”

\

[ dog tennis ball H dog swimming 'l murky water

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping,
https://arxiv.org/pdf/1406.5679.pdf
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a
prediction task.

@ Model-Agnostic Approaches

1) Early Fusion 2) Late Fusion
Modality 1 ) MOdallty 1‘ Clascifi ”

w Classifier | mmm) )
Modality 2 s Modality 2= L Classifis™=>
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a
prediction task.

Model-Based (Intermediate) Approaches

1) Deep neural networks
2) Kernel-based methods

3) Graphical models

Multi-View Hidden CRF
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Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the
translation relationship can often be open-ended or subjective.

@ Example-based ‘ Model-driven

Dictionary of translations

e g Translation model

Training
Translation
Translation model
-8
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Core Challenge 4 — Translation

Visual gestures Transcriptions
(both speaker and  Cr—— +
listener gestures) Audio streams

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics
Symposium on Computer Animation, 2013
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Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their
representations and predictive models.

Prediction

Modality 2
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Core Challenge 5: Co-Learning

@ Parallel ‘ Non-Parallel @ Hybrid

D

Dataset

Dataset Dataset




o-Learning

= =

usion ranslation

B

lignment

epresentation

(00000 OO NN 00000 O0)]

Language Visual
Acoustic ®°®¢®

Input Modalities




Taxonomy of Multimodal Research | pupsarivorgansiizos.00406

Representation o Encoder-decoder = Model-based
« Joint o Online prediction o Kernel-based

o Neural networks Alignment o Graphical models
o Neural networks

o Graphical models n EXpliCit
o Sequential o Unsupervised Co-learning
* Coordinated o Supervised = Parallel data
o Similarity = Implicit o Co-training
o Structured o Graphical models o Transfer learning
Translation o Neural networks = Non-parallel data
= Example-based Fusion = Zero-shot learning
o Retrieval = Model agnostic " Concept grounding
o Combination = Transfer learning

o Early fusion _
= Model-based o Late fusion = Hybrid data

o Grammar-based o Hybrid fusion = Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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https://arxiv.org/abs/1705.09406

Real world tasks tackled by MMML

Affect recognition
=  Emotion
= Persuasion
= Personality traits
Media description
= |mage captioning
= Video captioning
= Visual Question Answering
Event recognition
= Action recognition
= Segmentation

Multimedia information retrieval

= Content based/Cross-media = & % ol e
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Multimodal Applications [ hitps://arxiv.org/abs/1705.09406 |

CHALLENGES
APPLICATIONS REPRESENTATION TRANSLATION FusioNn ALIGNMENT CO-LEARNING
Speech Recognition and Synthesis
Audio-visual Speech Recognition
(Visual) Speech Synthesis
Event Detection
Action Classification
Multimedia Event Detection
Emotion and Affect
Recognition
Synthesis
Media Description
Image Description
Video Description
Visual Question-Answering
Media Summarization
Multimedia Retrieval
Cross Modal retrieval

Cross Modal hashing

v’ v’ v’
v

v’ v’
v’ v’

LK
CCK
AN

O CC K

COJOOCC OO 0 KX

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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https://arxiv.org/abs/1705.09406

Discriminative
Graphical Models
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Generative versus Discriminative

¢12

X1

X2

P23

(h-a-(g)-a~(1ng)-o~(hg
Vi Yo w Ys

X3

P34

P4
X4

Generative loss function:
(joint probability)

Discriminative loss function:
(conditional probability)

Generative or
Discriminative?

Answer: It depends on
the loss function!

N
L(§) = Z p(hD), X0); )
=1

N
L(0) = ) logP(hD)[x1);6)
j=1
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Score function:

1
1+ exp(—0x;)

P(y, = 1|x;) = Binary form

exp(0.x;)
leg=1 exp (0 x;)

Language Technologies Institute
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Comparing Linear and Logistic Models

Linear Model

Logistic Model

A
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Score function:

exp(0cx.)

e Familiar multinomial form
Zk:l BCxt

Py, =clx;) =

P(y:lx) = Z( B

Language Technologies Institute
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

P(y:lx,) = Xp Zp Z(xt) exp z b (Ve X¢; Ok)

Weights
I?artlzlon Feature
unction functions
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Feature Functions

° Label : {O:bominant, 1:Not-dominant} @

° Observation vector: [speech-energy, gaze, turn-taking] @

K
1
P(yelx,) = Z(x,) exp z 9 K=6
k=1

_ JXto) ye=0 _ JXto ye=1 y—=0 y=1
foye xe) = {O, Otherwise 1 (e, xe) = { Otherwise o o
X
Xt1 ye =0 ye =1 t0 0 1
o xe) = { ‘ . f3(e, %) = { :
0 Otherwise Otherwise Xa | 65 05
_ ) Xe2s ye=0 _ ) Xe2 ye=1 X
fa(ye xe) = {O, Otherwise fs (e xe) = { 0, Otherwise 2| ba 05
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Partition Function: Normalizing Constant

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

K
1
P(yelxe) = eXp Or e Ve, Xt)
tirt @ kZl kJk\Jt)*t

K
. So that P(y;|x;) stays
€Xp z O f V', xt) between 0 and 1.
k=1

Z(x;)=
y

’:O
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Training and Loss Function

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

P(y:lx) =

K
TP ,Z Oufie (Ve %)

Loss function: Conditional log likelihood

N
L(0) = ) logP(yP|xW;0) — R(6)
j=1
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Regularization

N
L(6) =ZlogP(y<f>|XU>;9)— R(6) A o],

AR

= -2 Norm (Gaussian prior): \/

R(6) = AlI6ll; Lo, 4
N H9H1
= |-1 Norm (Laplacian prior): Q >
R(6) = A|6]l4
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Sparse Feature Ranking

0.6 —=Pause 0
—=EyeGaze ()
0.4 =—POS:NN
0.3 =='and' 0

weights
o
a

500 400 300 200 100 50
Regularization Penalty (A)
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Sparse Feature Ranking

1
0.9
0.8
0.7
0 06 =—Pause (0 0
fn 0.5 —EyeGaze () (.27
S 04 —POS:NN ( 0
0.3 =='and’ 00

/
0.2
0.1 /
3 A
500 400 300 200 100 50
Regularization Penalty (A)
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Sparse Feature Ranking

0.6 —Pause 0 0 0.20
—EyeGaze (0 0.27 0.35
0.4 —POS:NN 0 0 0

=—'and’ 00 0

weights
o
a

)\

0.1 /

L £ 00

500 400 300 200 100 50
Regularization Penalty (A)
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Sparse Feature Ranking

weights
o
a

0.2
0.1 /

o L L

/s~

500

400

300

200

100

Regularization Penalty (A)
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LASSO and ElasticNet

e Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Lasso loss function: squared loss with L1 regularization
N

L©) =Y (3 -~ (x:6))” ~alell

j=1
ElasticNet: squared loss with L1 and L2 regularization

N

L8) =Y (3~ F(x;:6)) ~lell, ~Allell

j=1
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Conditional Random Fields (CRFS) jccaium 2001

Nyeh
\gi!

K
POIX) = 55 e (
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Hidden Conditional Random Field

Sequence label:
yETUY for example, Y: {positive, negative}

Latent variables with shared hidden states:
)
h = {h{, hy, hs, ..., h;} Wwhere hy € H

We saw the yellow dog

1
PO h1%0) = 2o exp {Z 0% f*(hesX) + ) 6% f<(heshe )+ ) 67 f7(, ht)}
' t t t

p(y| x;0) = ZP( * Inference is tractable: O(YHZT)

* Linearinsequence length T!
* Parameter learning (6%, 6¢, 6°):

* Gradient descent or L-BFGS
Language Technologies Institute -



Learning Multimodal Structure

Modality- structure === =mmememememmmcmemm e
 Internal grouping of observations 0

Modality-shared structure @ @ @ @ @
- Interaction and synchrony @ @ @ @ @
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Multi-view Latent Variable Discriminative Models

Modality- structure
 Internal grouping of observations

Modality-shared structure
» |nteraction and synchrony

p(ylx4,x";0) = Z p(y, h4, hY x4, xV; 9)
hA v
» Approximate inference using loopy-belief

71
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Recap of generative vs discriminative

PAN = B O O G = I G AN

SEQUENGE GENERAL

Naive Bayes HMMs GRAPHS Generative directed models

onas o o

Logistic Regression Linear-chain CRFs GRAPHS General CRFs
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Machine Learning:
Evaluation Methods
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Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the
model accuracy

Accuracy =

3

Traming
data

Number of correctclassifications

Total number of testcases

4.|

| earning
algorithm

N

Step [ Traming

Step 2: Testing
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Evaluation methods

Holdout set: The avalilable data set D is divided into two
disjoint subsets,

= the training set D,,,;, (for learning a model)

= the test set D, (for testing the model)

= |mportant: training set should not be used in testing and
the test set should not be used in learning.
= Unseen test set provides a unbiased estimate of accuracy.
= The test set is also called the holdout set. (the
examples in the original data set D are all labeled with
classes.)

= This method is mainly used when the data set D is large.

* Unless building person specific models the training
and test sets should not contain the same person

Language Technologies Institute



Evaluation methods (cont...)

= n-fold cross-validation: The available data is partitioned
Into n equal-size disjoint subsets.

= Use each subset as the test set and combine the rest n-1
subsets as the training set to learn a classifier.

= The procedure is run n times, which give n accuracies.

= The final estimated accuracy of learning is the average of
the n accuracies.

= 10-fold and 5-fold cross-validations are commonly used.
= This method is used when the available data is not large.
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Evaluation methods (cont...)

= | eave-one-out cross-validation: This method is
used when the data set is very small.

= |tis a special case of cross-validation

= Each fold of the cross validation has only a
single test example and all the rest of the data
IS used In training.

= |f the original data has m examples, this is m-
fold cross-validation

Language Technologies Institute



Hyperparameters

= How do we determine C or y for SVM training?

= Parameters that we do not learn through
optimization are called hyper-parameters

= Need a way to find optimal values for our task
= For some approaches rules of thumb exist

= Need an analytical way to do it

= Common ways

= Grid search
= Random search (not as bad as it sounds)
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Training and Validation

= Data: labeled instances, e.g. emails marked spam/ham
» Training set
= Validation set
= Test set

=  Training
= Estimate parameters on training set
= Tune hyperparameters on validation/development set
= Report results on test set
= Anything short of this yields over-optimistic claims

m Evaluation

= Many different metrics

= |deally, the criteria used to train the classifier should be closely SR
related to those used to evaluate the classifier Validation

Data
=  Statistical issues

» Want a classifier which does well on test data

= Overfitting: fitting the training data very closely, but not Test
generalizing well

= Error bars: want realistic (conservative) estimates of accuracy Data
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Take home

= 1. Never touch test data during
training/validation

= 2. Never touch test data during
training/validation

= 3. Never touch test data during
training/validation
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Machine Learning:
Measuring Error
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Measuring Error

Predicted class

True Class Yes No
Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative
= Error rate = # of errors / # of instances = (FN+FP) / N
=  Recall = # of found positives / # of positives

= TP / (TP+FN) = sensitivity = hit rate
= Precision = # of found positives / # of found

=TP / (TP+FP)
= Specificity = TN/ (TN+FP)
= False alarm rate = FP / (FP+TN) = 1 - Specificity
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F,-value (also called F,-score)

= |tis hard to compare two classifiers using two measures. F, score
combines precision and recall into one measure

2'pr

" h= p+r

= F; - score is the harmonic mean of precision and recall

] Flzi

1 1
_+_
DT

=  The harmonic mean of two numbers tends to be closer to the
smaller of the two

= Preferred over accuracy when data is unbalanced
=  Why?
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Receiver Operating Characteristic (ROC) Curve

100%

True Positive Rate

(sensitivity)

0%

0%  False positive Rate (1-specificity) 100%
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AUC for ROC curves
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Evaluation of regression

= Root Mean Square Error
. \/Zi(Yi — x;)*

= Not easily interpretable

= Correlation — trend prediction in a way
= Nice interpretation: 0 — no relationship, 1 — perfect relationship

2= -y)
N (n—1)oxoy

= Concordance Correlation Coefficient (CCC)
= A method to combine both
. . 2p0x0y
Pe 0'3%+0'321+(I«‘x_ﬂy
= Has nice interpretability as well

=, p — correlation coefficient

Language Technologies Institute




Take home

= Error measure selection is not straightforward

= Pick the right one for your problem
= F1, AUC, Accuracy, RMSE, CCC

= Make sure the same measure Is used for
validation and testing

= Otherwise you might be learning
suboptimal models

= Wrong error measure can hide both bad
and good results

Language Technologies Institute



