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Outline

= Discriminative Graphical Models
= Logistic classifier
= Conditional random fields
= L1 and L2 regularization
= Neural Networks
= Multi-layer perceptron
= Back-propagation
= Convolutional neural networks
= Evaluation methods and error measures

= Next week: Multimodal deep learning
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Upcoming Lectures

Thursday
Week 12 Neural network predictive modeling Midterm presentations
f/O_Z & 4/04 «  Multi-layer perceptron
mldte*rm «  Deep neural network
report «  Convolutional neural network
Week 13 Multimodal deep learning NO CLASS
4/09 & 4/11 «  Multimodal representations

e  Attention and modality alignment
. Temporal and multimodal fusion

Week 14 Multimodal Behavior Generation Discussion (generation)
4/16 & 4/18 «  Guest lecture: Prof. Nakano « Jiang Liu
. Generation based on user’s attitude . Ankit Shah

3 Robot and virtual humans

Week 15 Multimodal applications Discussion (applications)
4123 & 4125 . Assessment in the clinical process . Mingtong Zhang

. Biomarkers and behavioral indicators . Mahmoud Al Ismail

. Validation in the medical sciences
Week 16 NO CLASS Final presentations

4/30 & 5/02
*final report*

Language Technologies Institute




Discriminative
Graphical Models
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Example: Markov Random Field — Graphical Model

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
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Example: Markov Random Field — Factor Graph

[Sabourin et al., 2011]
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Generative versus Discriminative

¢12

X1

X2

P23

(h-a-(g)-a~(1ng)-o~(hg
Vi Yo w Ys

X3

P34

P4
X4

Generative loss function:
(joint probability)

Discriminative loss function:
(conditional probability)

Generative or
Discriminative?

Answer: It depends on
the loss function!

N
L(§) = Z p(hD), X0); )
=1

N
L(0) = ) logP(hD)[x1);6)
j=1
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Score function:

1
1+ exp(—0x;)

P(y; = 1|x;) = Binary form

exp(0.x;)
leg=1 exp(0xx;)
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Comparing Linear and Logistic Models

Linear Model

Logistic Model

A
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Score function:

exp(0cx.)

e Familiar multinomial form
Zk:l BCxt

Py, =clx;) =

P(y:lx) = Z( B
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Discriminative Model: Logistic classifier

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

P(y:lx,) = Xp Zp Z(xt) exp z b (Ve X¢; Ok)

Weights
I?artlzlon Feature
unction functions
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Feature Functions

° Label : {O:bominant, 1:Not-dominant} @

° Observation vector: [speech-energy, gaze, turn-taking] @

K
1
P(yelx,) = Z(x,) exp z 9 K=6
k=1

_ JXto) ye=0 _ JXto ye=1 y—=0 y=1
foye xe) = {O, Otherwise 1 (e, xe) = { Otherwise o o
X
Xt1 ye =0 ye =1 t0 0 1
o xe) = { ‘ . f3(e, %) = { :
0 Otherwise Otherwise Xa | 65 05
_ ) Xe2s ye=0 _ ) Xe2 ye=1 X
fa(ye xe) = {O, Otherwise fs (e xe) = { 0, Otherwise 2| ba 05
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Partition Function: Normalizing Constant

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

K
1
P(yelxe) = eXp Or e Ve, Xt)
tirt @ kZl kJk\Jt)*t

K
. So that P(y;|x;) stays
€Xp z O fe V', xt) between 0 and 1.
k=1

Z(x;)=
y

’:O
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Training and Loss Function

° Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

P(y:lx) =

K
TP ,Z Oufie (Ve %)

Loss function: Conditional log likelihood

N
L(0) = ) logP(yP|xW;0) — R(6)
j=1
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Regularization

N
L(6) =ZlogP(y<f>|XU>;9)— R(6) A o],

AR

= -2 Norm (Gaussian prior): \/

R(6) = AlI6ll; Lo, 4
N H9H1
= |-1 Norm (Laplacian prior): Q >
R(6) = A|6]l4
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Sparse Feature Ranking
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Sparse Feature Ranking
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Sparse Feature Ranking
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Sparse Feature Ranking
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LASSO and ElasticNet

e Label : {O:bominant, 1:Not-dominant}

° Observation vector: [speech-energy, gaze, turn-taking]

Lasso loss function: squared loss with L1 regularization
N

L©) =Y (3 -~ (x:6))” ~alell

j=1
ElasticNet: squared loss with L1 and L2 regularization

N

L8) =Y (3~ F(x;:6)) ~lell, ~Allell

j=1
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Conditional Random Fields (CRFS) jccaium 2001

|| e~
e
N——

K
P(y|X) = Z(X) (
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Hidden Conditional Random Field

Sequence label:
yETUY for example, Y: {positive, negative}

Latent variables with shared hidden states:
)
h = {h{, hy, hs, ..., h;} Wwhere hy € H

We saw the yellow dog

1
PO h1%0) = 2o exp {Z 0% f*(hesX) + ) 6% f<(heshe )+ ) 67 f7(, ht)}
' t t t

p(y| x;0) = ZP( * Inference is tractable: O(YHZT)

* Linearinsequence length T!
* Parameter learning (6%, 6¢, 6°):

* Gradient descent or L-BFGS
Language Technologies Institute



Learning Multimodal Structure

Modality- structure === =mmememememmmcmemm e
 Internal grouping of observations 0

Modality-shared structure @ @ @ @ @
- Interaction and synchrony @ @ @ @ @
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Multi-view Latent Variable Discriminative Models

Modality- structure
 Internal grouping of observations

Modality-shared structure
» |nteraction and synchrony

p(ylx4,x";0) = Z p(y, h4, hY x4, xV; 9)
hA v
» Approximate inference using loopy-belief

26
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Recap of generative vs discriminative

PAN = B O O G = I G AN

SEQUENGE GENERAL

Naive Bayes HMMs GRAPHS Generative directed models

onas o o

Logistic Regression Linear-chain CRFs GRAPHS General CRFs
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Basic Concepts:
Neural Networks



Neural Networks — inspiration

= Made up of artificial neurons

impulses carried
toward cell body

branches

dendrites of axon

axon

nucleus terminals

impulses carried

wo
away from cell body

*@® synapse
axon from a neuron ™
Wy

/" cell body

i (Z w;T; + b)

w11
> w;x; +b >
zi: Sa output axon
activation
function

W22
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Neural Networks — score function

= Made up of artificial neurons

= Linear function (dot product) followed by a nonlinear
activation function

= Example a Multi Layer Perceptron

input layer

hidden layer 1 hidden layer 2
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Basic NN building block

= Weighted sum followed by an activation function

Input ) o0 (o) () () h This part of the neural
network is very similar
to another predictive
model we studied.

Which one?
D Linear classifier

Weighted su
Wx+b

Activation functionl J T

Output  (v)  (n) (n)

y = f(Wx + b)

Language Technologies Institute



Neural Networks — activation function

= f(x) =tanh(x)

= Sigmoid - f(x) = (1 + e ) ! T

= Linear—f(x) =ax+»b

0
sigmoid

= RelU f(x)=max(0,x)~log(1l+ exp(x))
= Rectifier Linear Units

= Faster training - no gradient vanishing
= Induces sparsity

0
-4 -1 0 1
RelLU (soft and hard)
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Multi-Layer Feedforward Network

Activation functions (individual layers)
fiw, (x) = o(Wix + by)
fow, (x) = a(Wox + by) 70
faw, (x) = o(W3x + b3)

Score function

yi = f(x;) = f3;W3 (fz;wz (fl;w1 (x:)))

4
®
I

hidden layer 1 hidden layer 2

D
%
X

N
.t
N
> (‘\‘4
e\
OO

b

%
24

input layer

Loss function (e.g., Euclidean loss)

L = (f(xp) — }’i)z — (fs;w3 (fz;w2 (f1;w1(xi))))2

33
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Neural Networks inference and learning

» Inference (Testing)
= Use the score function (y = f(x; W))
= Have a trained model (parameters )
= Learning model parameters (Training)
= Loss function (L)
= Gradient
= Optimization
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Gradient descent algorithm for MLP

= All layers are differentiable
= Start from random weight values

* |teratively adjust weights in the direction that
minimises the error

while not converged:
# compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
# perform parameter update

weights += - step_size * weights_grad
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Training the model efficiently

= Backpropagation - propagate ° *e

the error backward
= An efficient model of gradient

descent, nothing more nothing less

J
= Forward propagate from input to .' '
output through all the layers keeping / (
track of intermediate results

= Compute error at the final layer, use o hy G
this to compute error at hidden layer

(continue to input) /
ONC

Language Technologies Institute
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Backpropagation Algorithm (efficient gradient)

L =—logP(Y =vy|z)
(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X

“backprop” gradient
= Why is this rule important?

37
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Computational Graph: Multi-layer Feedforward Network

Computational unit:

« Multiple input
h=f(x;W) | - One output

* Vector/tensor

L =—logP(Y =vy|z)
(cross-entropy)

z = matmult(h,, W3)

= Sigmoid unit:

gé = (14 i) (hy) hy = f(hy; W)

_( (hy) hy = f(a;Wy)
"IO-0-0-06 1

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)

38
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Convolutional
Neural Network



A Shortcoming of MLP

2 Data Points — detect which head is up!
@ @ Easily modeled using one neuron.

What is the best neuron to model this?

This head may or may not be up — what
happened?

Solution: instead of modeling the entire image,
model the important region.

40
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Why not just use an MLP for images?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure i Sl N 4 I J
= Detecting edges, blobs - ./ N
= Don’t need to treat the top left of image
differently from the center # ' / \\

= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone
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Feature hierarchy intuition

= Each layer extracts
features from output of
the previous layer

= [eatures learn to be

tailored to the problem ;}."i‘;:'.:;‘..l{, Parts
(at least that’s the idea)
Edges/blobs
Input pixels
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Building blocks

* Functiony = f(x) ] objects
= Differentiable (or - L A
locally differentiable)

= Non-linear

SMEST- Parts
_ SARS=] G-
= Desired
= Efficient Edges/blobs
= Most often mapping
from a vector to a Input pixels

vector
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Fully connected layer

= Weighted sum followed by an activation
function (saw this before) 5.-

Input X, | ® e ® (%3 'vxz X )

Weighted sum yi = f(W;x +by)

([ f(x) = tanh(x)
N\ ) < f(x) = max(0, x)
Activation ™ sl o f)=@Q+e™)7" l
l J/ _f(x) = softmax(x)
Output OB OIO (0.1...,0.8,0.3,...,0.2)
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1D convolution

= |ntuition (f*9)(t) = f(r)g(t —7)dr
= Correlation between signals

] | | | | [ I I I
1 [ e AR — |:|J'l'rea under fio)git-) [
1] ST . S P fie)

: : : : -1
1] e R R ait-)

: : ; ; (Fealt)
Db T S _
I:I.E—é .......... e e LT T _

o L1 i ! i | | |

2 1.4 1 0.4 1] 0.5 1 1.4 2
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2D convolution

= |ntuition
= Correlation between signals
= Can be done in multichannel

Images with multichannel
kernels

| | A : . 7 V : : B . ) - “ |
o) :
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Weight sharing (convolutional) layer

= Same colour indicates same (shared) weight
= Used to implement convolution

Weighted sum

+C
™

: Ll ) :
o ) 1
) y . J
Language Technologies Institute
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Max pooling layer

= Pick the maximum value from input using a smooth
and differentiable approximation

= Used for sub-sampling

n
i=1%Xi

eaxi
Softmax
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Sample CNN convolution

= Great animated visualization of 2D convolution
= http://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] w0[z,:,0 wl[:z,:,0] o[:,:,0]
000000 0 o T 101 06 6
0 2 y//o 0 [0 i B S[6]s
o 1 [T]zoJo o N 00 1 S[F)=
o o2tz ]o o WO, 1 wil:,:,1] ol:,:,1]
0027/,2,1/0/-11 10 1 G|H|=
8 5 23 5N OB Fl 6 1 A1 Al =i [ = 12 2
000 0 0 0 0 ML -1 N i B 33 1
wl 1 wol:, : wil:,:,2]

000 0 00 Y 9 e

T T T 0 Jfo il (Gl BT

o 1 [T]TT 0 v T 00 |G

EIR N P% G ias b0 xixl) Bias bl (1x1x1)

0 1 (211 |2 0 B0[:/:,0] bl[:,:, 0]

ol 29 o7 20 |1 0 ! 0

000 0 [

00 0 0

00 2 0

0o 2 [T]zHo]e o

o 1 [T o]0 A

0 2 2 |2 0

B El G B E

000000 0
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http://cs231n.github.io/convolutional-networks/

Machine Learning:
Evaluation Methods
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Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the
model accuracy

Accuracy =

3

Traming
data

Number of correctclassifications

Total number of testcases

4.|

| earning
algorithm

N

Step [ Traming

Step 2: Testing
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Evaluation methods

Holdout set: The avalilable data set D is divided into two
disjoint subsets,

= the training set D,,,;, (for learning a model)

= the test set D, (for testing the model)

= |mportant: training set should not be used in testing and
the test set should not be used in learning.
= Unseen test set provides a unbiased estimate of accuracy.
= The test set is also called the holdout set. (the
examples in the original data set D are all labeled with
classes.)

= This method is mainly used when the data set D is large.

* Unless building person specific models the training
and test sets should not contain the same person
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Evaluation methods (cont...)

= n-fold cross-validation: The available data is partitioned
Into n equal-size disjoint subsets.

= Use each subset as the test set and combine the rest n-1
subsets as the training set to learn a classifier.

= The procedure is run n times, which give n accuracies.

= The final estimated accuracy of learning is the average of
the n accuracies.

= 10-fold and 5-fold cross-validations are commonly used.
= This method is used when the available data is not large.

Language Technologies Institute



Evaluation methods (cont...)

= | eave-one-out cross-validation: This method is
used when the data set is very small.

= |tis a special case of cross-validation

= Each fold of the cross validation has only a
single test example and all the rest of the data
IS used In training.

= |f the original data has m examples, this is m-
fold cross-validation
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Hyperparameters

= How do we determine C or y for SVM training?

= Parameters that we do not learn through
optimization are called hyper-parameters

= Need a way to find optimal values for our task
= For some approaches rules of thumb exist

= Need an analytical way to do it

= Common ways

= Grid search
= Random search (not as bad as it sounds)
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Training and Validation

= Data: labeled instances, e.g. emails marked spam/ham
» Training set
= Validation set
= Test set

=  Training
= Estimate parameters on training set
= Tune hyperparameters on validation/development set
= Report results on test set
= Anything short of this yields over-optimistic claims

m Evaluation

= Many different metrics

= |deally, the criteria used to train the classifier should be closely SR
related to those used to evaluate the classifier Validation

Data
=  Statistical issues

» Want a classifier which does well on test data

= Overfitting: fitting the training data very closely, but not Test
generalizing well

= Error bars: want realistic (conservative) estimates of accuracy Data
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Take home

= 1. Never touch test data during
training/validation

= 2. Never touch test data during
training/validation

= 3. Never touch test data during
training/validation
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Machine Learning:
Measuring Error
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Measuring Error

Predicted class

True Class Yes No
Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative
= Error rate = # of errors / # of instances = (FN+FP) / N
=  Recall = # of found positives / # of positives

= TP / (TP+FN) = sensitivity = hit rate
= Precision = # of found positives / # of found

=TP / (TP+FP)
= Specificity = TN/ (TN+FP)
= False alarm rate = FP / (FP+TN) = 1 - Specificity
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F,-value (also called F,-score)

= |tis hard to compare two classifiers using two measures. F, score
combines precision and recall into one measure

2'pr

" h= p+r

= F; - score is the harmonic mean of precision and recall

] Flzi

1 1
_+_
DT

=  The harmonic mean of two numbers tends to be closer to the
smaller of the two

= Preferred over accuracy when data is unbalanced
=  Why?
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Receiver Operating Characteristic (ROC) Curve

100%

True Positive Rate

(sensitivity)

0%

0%  False positive Rate (1-specificity) 100%
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AUC for ROC curves

100 100
% %
o AUC = 100% g
°E g8 AUC =
e @ 5 O Q/o
O >
00/0 0 16 "o False Positive 100
% False Positive 0% % Rate 0%
Rate
100 100
% %
= AUC = g
%) 2
£ ° 8
S 3 90% E o AUC =
-F €/ 65%
0 0 _
% %
00/o False Positive é‘(’)/o 0 00/0 False Positive éoOA)

Rate
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Evaluation of regression

= Root Mean Square Error
. \/Zi(Yi — x;)*

= Not easily interpretable

= Correlation — trend prediction in a way
= Nice interpretation: 0 — no relationship, 1 — perfect relationship

2= -y)
N (n—1)oxoy

= Concordance Correlation Coefficient (CCC)
= A method to combine both
. . 2p0x0y
Pe 0'3%+0'321+(I«‘x_ﬂy
= Has nice interpretability as well

=, p — correlation coefficient
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Take home

= Error measure selection is not straightforward

= Pick the right one for your problem
= F1, AUC, Accuracy, RMSE, CCC

= Make sure the same measure Is used for
validation and testing

= Otherwise you might be learning
suboptimal models

= Wrong error measure can hide both bad
and good results
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