

Language Technologies Institute

Multimodal Affective Computing

Lecture 12: Neural Network Predictive Models

Louis-Philippe Morency Jeffrey Girard

Originally developed with help from Stefan Scherer and Tadas Baltrušaitis

Outline

- Discriminative Graphical Models
 - Logistic classifier
 - Conditional random fields
 - L1 and L2 regularization
- Neural Networks
 - Multi-layer perceptron
 - Back-propagation
 - Convolutional neural networks
- Evaluation methods and error measures
- Next week: Multimodal deep learning

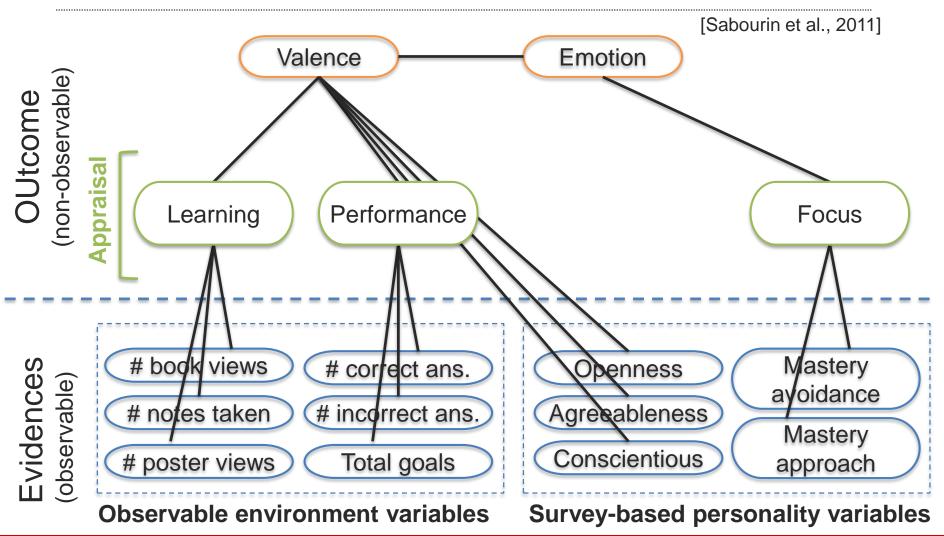
Upcoming Lectures

Classes	Tuesday	Thursday
Week 12 4/02 & 4/04 *midterm report*	 Neural network predictive modeling Multi-layer perceptron Deep neural network Convolutional neural network 	Midterm presentations
Week 13 4/09 & 4/11	 Multimodal deep learning Multimodal representations Attention and modality alignment Temporal and multimodal fusion 	NO CLASS
Week 14 4/16 & 4/18	 Multimodal Behavior Generation Guest lecture: Prof. Nakano Generation based on user's attitude Robot and virtual humans 	 Discussion (generation) Jiang Liu Ankit Shah
Week 15 4/23 & 4/25	 Multimodal applications Assessment in the clinical process Biomarkers and behavioral indicators Validation in the medical sciences 	 Discussion (applications) Mingtong Zhang Mahmoud Al Ismail
Week 16 4/30 & 5/02 *final report*	NO CLASS	Final presentations

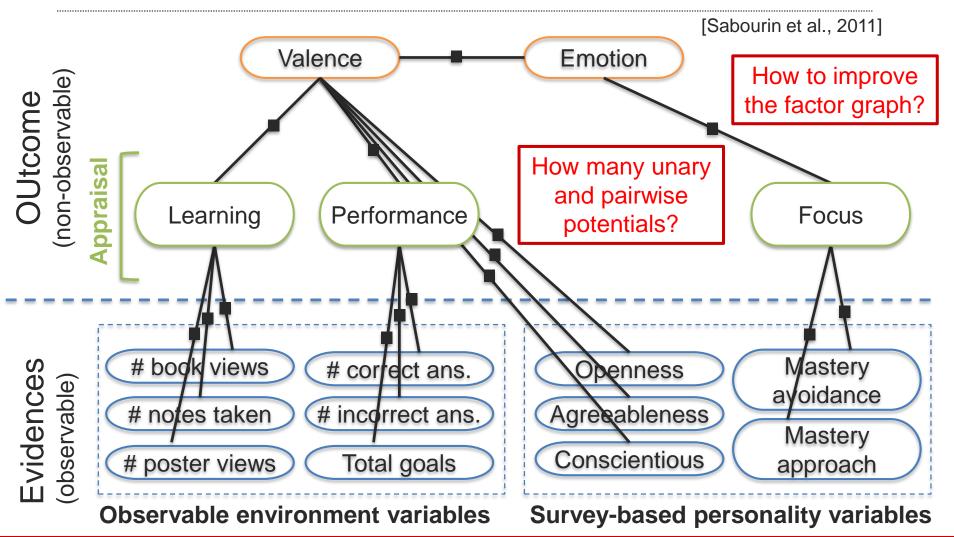
Discriminative Graphical Models

Language Technologies Institute

Example: Markov Random Field – Graphical Model

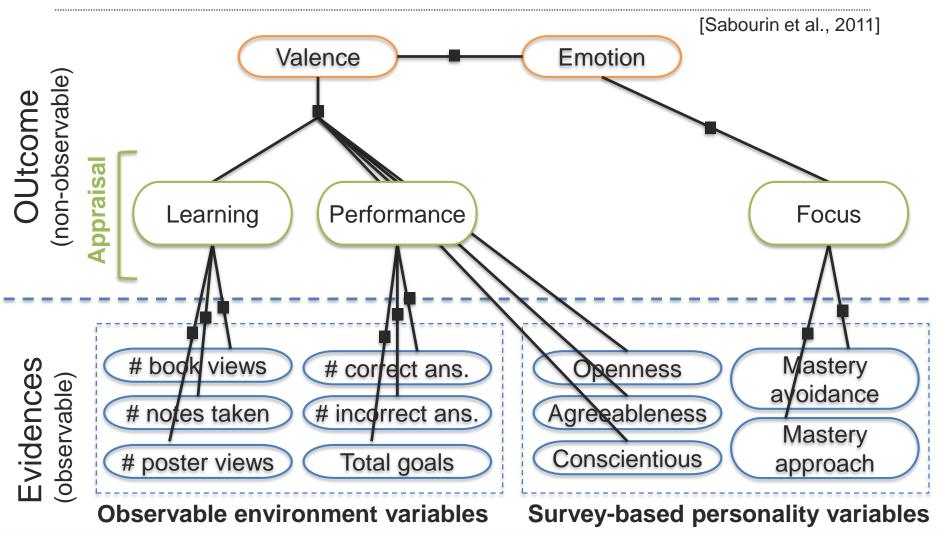


Example: Markov Random Field – Factor Graph



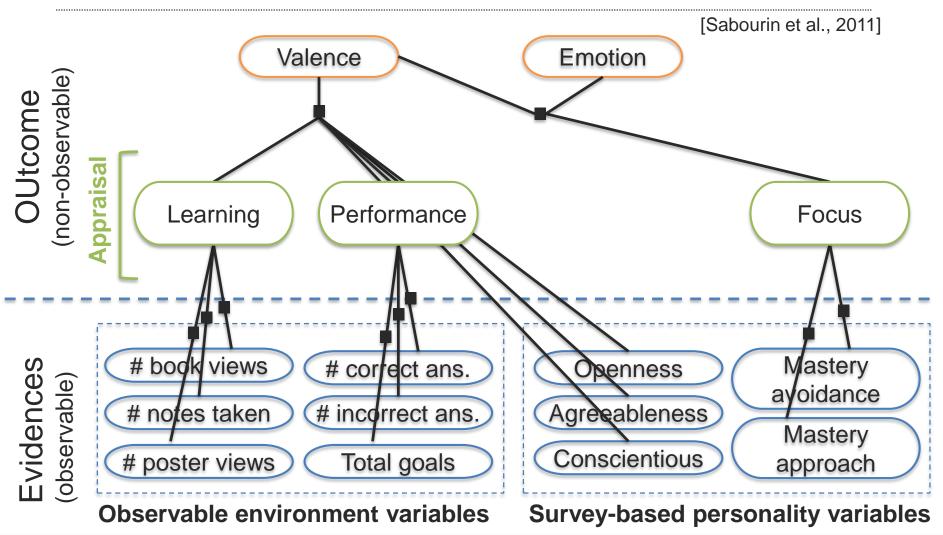
Language Technologies Institute

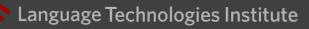
Example: Markov Random Field – Factor Graph



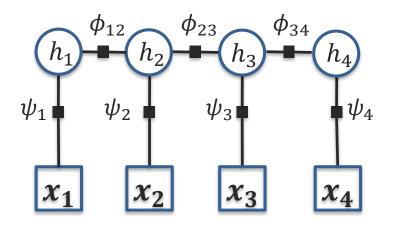
Language Technologies Institute

Example: Markov Random Field – Factor Graph





Generative versus Discriminative



Generative or Discriminative?

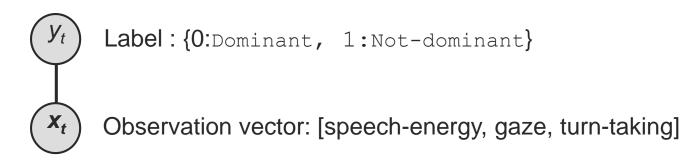
Answer: It depends on the loss function!

Generative loss function: (joint probability)

Discriminative loss function: (conditional probability)

$$L(\theta) = \sum_{j=1}^{N} P(\mathbf{h}^{(j)}, \mathbf{X}^{(j)}; \theta)$$
$$L(\theta) = \sum_{j=1}^{N} \log P(\mathbf{h}^{(j)} | \mathbf{X}^{(j)}; \theta)$$

Discriminative Model: Logistic classifier



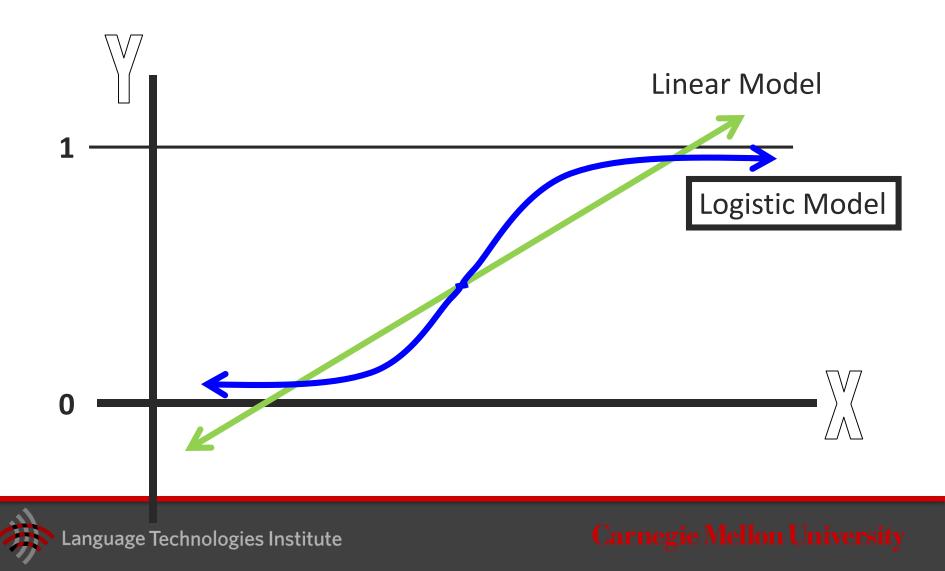
Score function:

$$P(y_t = 1 | \mathbf{x}_t) = \frac{1}{1 + \exp(-\theta \mathbf{x}_t)}$$
$$P(y_t = c | \mathbf{x}_t) = \frac{\exp(\theta_c \mathbf{x}_t)}{\sum_{k=1}^{K} \exp(\theta_k \mathbf{x}_t)}$$

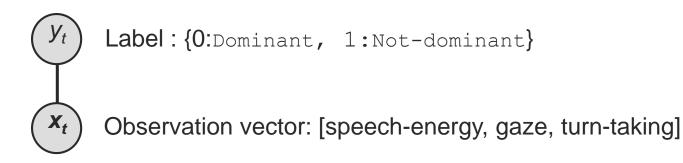
Binary form

Multinomial form

Comparing Linear and Logistic Models



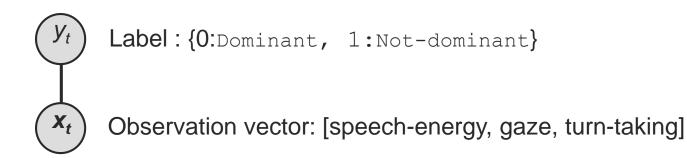
Discriminative Model: Logistic classifier

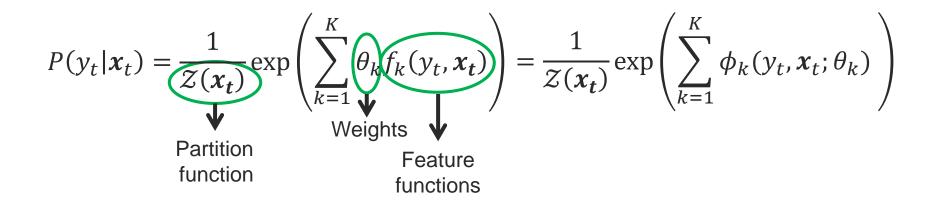


Score function:

$$P(y_t = c | \mathbf{x}_t) = \frac{\exp(\theta_c \mathbf{x}_t)}{\sum_{k=1}^{K} \theta_c \mathbf{x}_t}$$
 Familiar multinomial form
$$P(y_t | \mathbf{x}_t) = \frac{1}{Z(\mathbf{x}_t)} \exp\left(\sum_{k=1}^{K} \theta_k f_k(y_t, \mathbf{x}_t)\right)$$
 General form

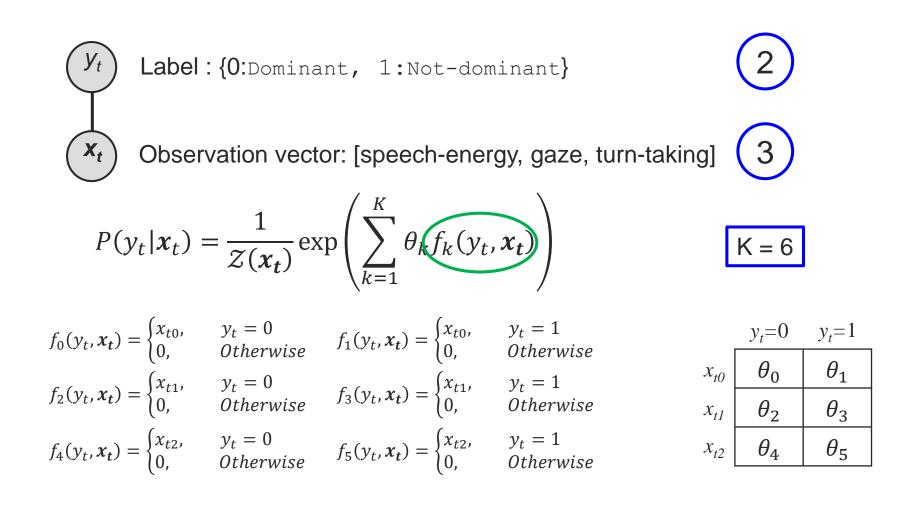
Discriminative Model: Logistic classifier

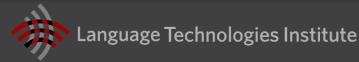




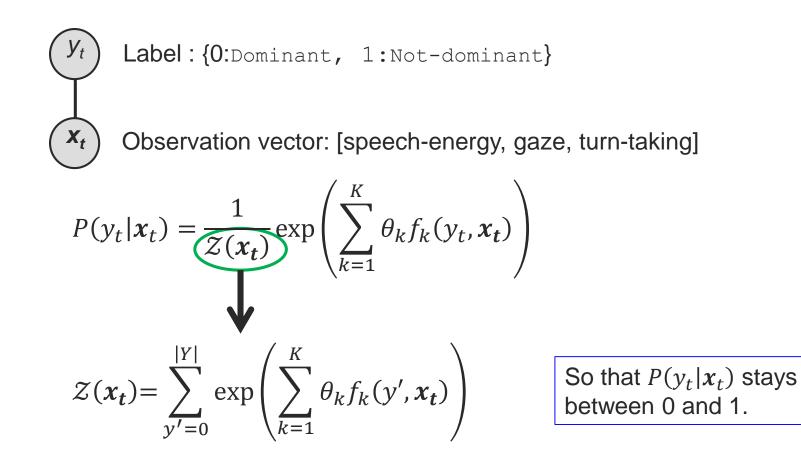


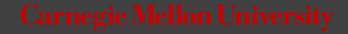
Feature Functions





Partition Function: Normalizing Constant





Training and Loss Function

Label: {0:Dominant, 1:Not-dominant}

Observation vector: [speech-energy, gaze, turn-taking]

$$P(y_t | \boldsymbol{x}_t) = \frac{1}{\mathcal{Z}(\boldsymbol{x}_t)} \exp\left(\sum_{k=1}^K \theta_k f_k(y_t, \boldsymbol{x}_t)\right)$$

Loss function: Conditional log likelihood

$$L(\theta) = \sum_{j=1}^{N} \log P(\mathbf{y}^{(j)} | \mathbf{X}^{(j)}; \theta) - R(\theta)$$

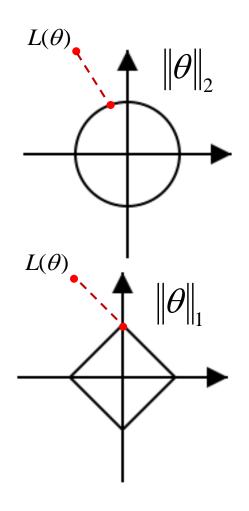
 y_t

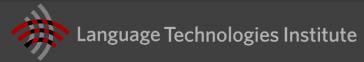
X_t

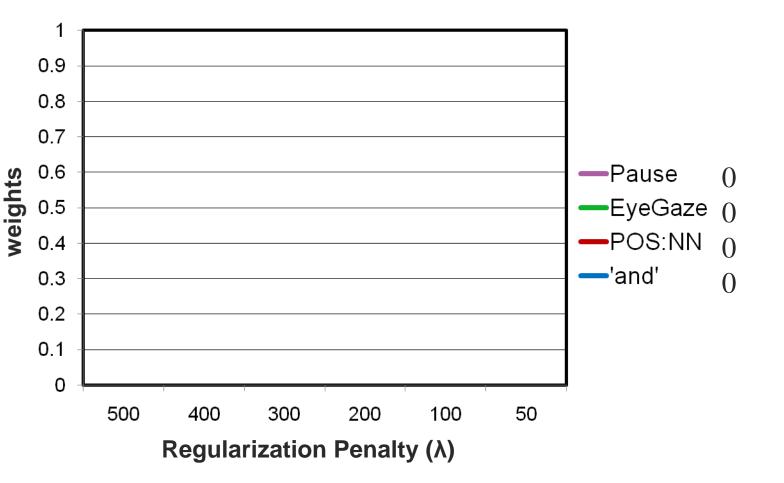
Regularization

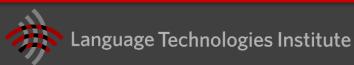
$$L(\theta) = \sum_{j=1}^{N} \log P(\mathbf{y}^{(j)} | \mathbf{X}^{(j)}; \theta) - R(\theta)$$

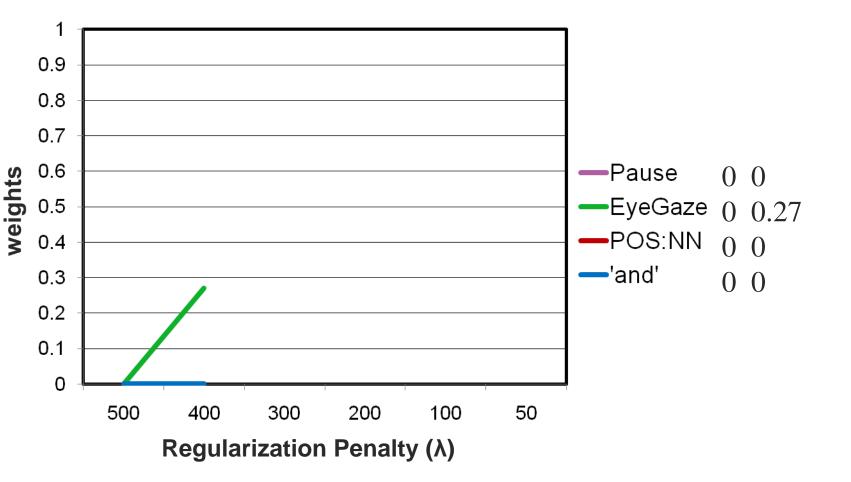
- L-2 Norm (Gaussian prior): $R(\theta) = \lambda \|\theta\|_2$
- L-1 Norm (Laplacian prior): $R(\theta) = \lambda \|\theta\|_1$

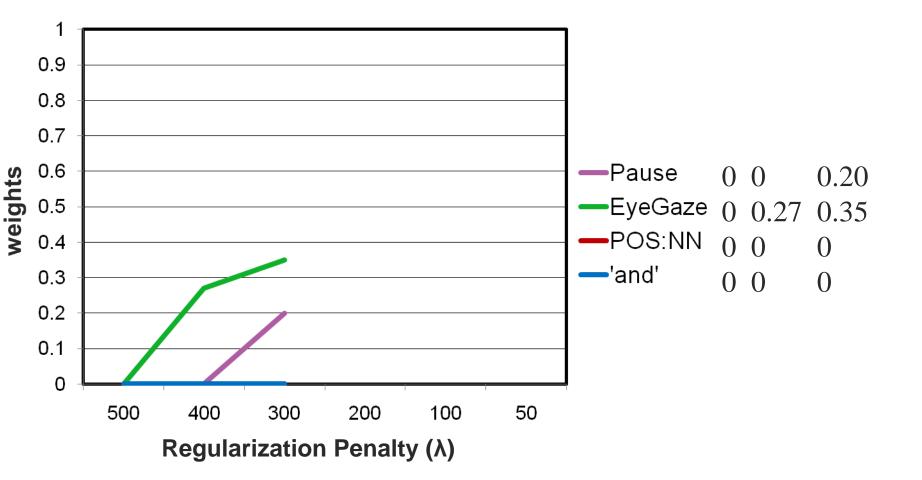


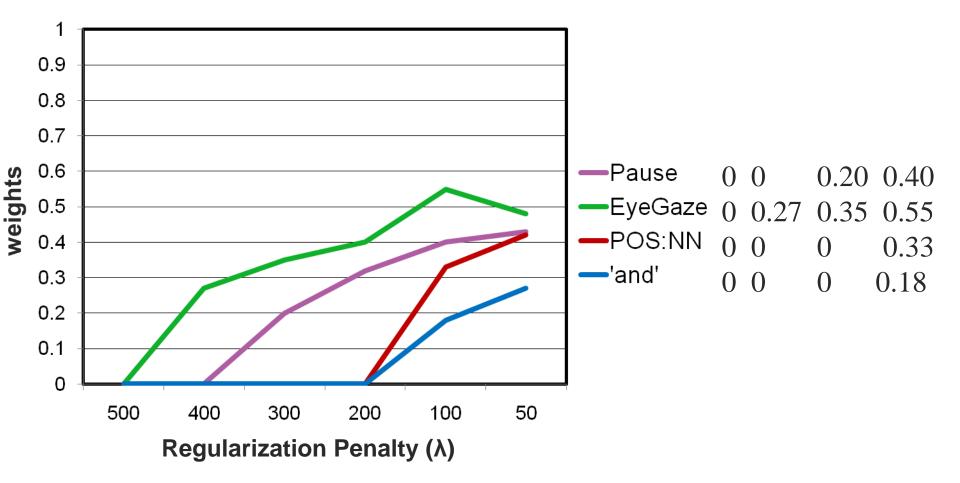


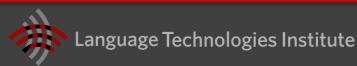




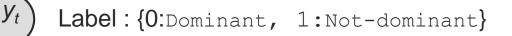








LASSO and ElasticNet

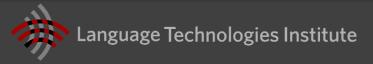


Observation vector: [speech-energy, gaze, turn-taking]

Lasso loss function: squared loss with L1 regularization $L(\theta) = \sum_{j=1}^{N} (y_j - f(x_j; \theta))^2 - \lambda \|\theta\|_1$

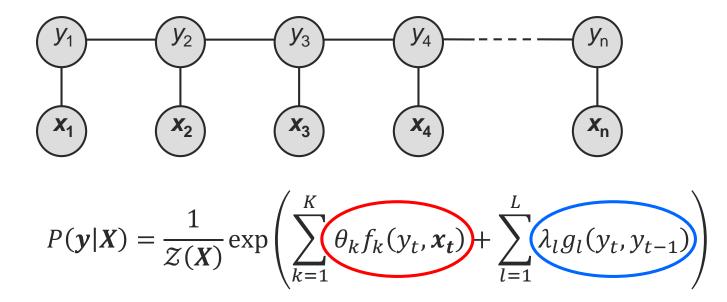
ElasticNet: squared loss with L1 and L2 regularization

$$L(\theta) = \sum_{j=1}^{N} \left(y_j - f(\mathbf{x}_j; \theta) \right)^2 - \lambda \|\theta\|_1 - \lambda \|\theta\|_2$$

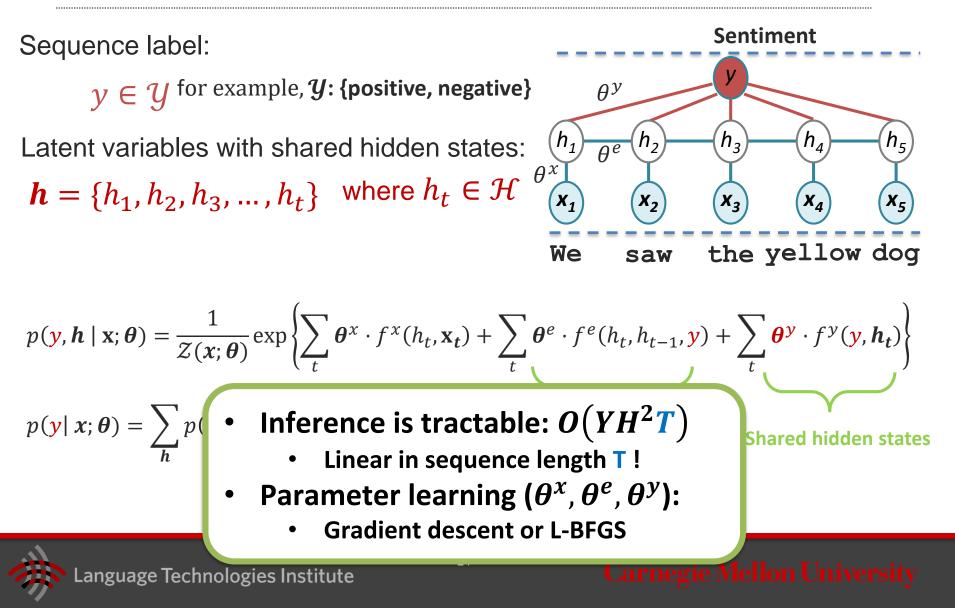


 \boldsymbol{X}_t

Conditional Random Fields (CRFs) [McCallum 2001]



Hidden Conditional Random Field



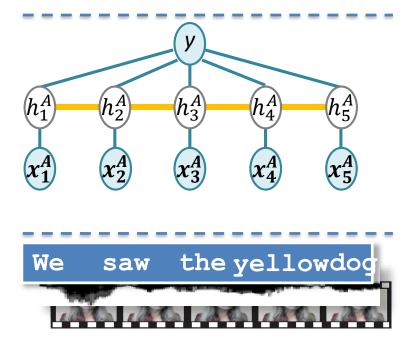
Learning Multimodal Structure

Modality-private structure

• Internal grouping of observations

Modality-shared structure

Interaction and synchrony



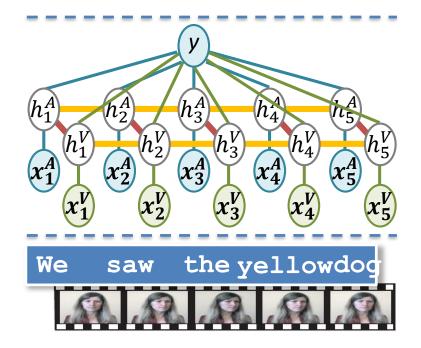
Multi-view Latent Variable Discriminative Models

Modality-private structure

Internal grouping of observations

Modality-shared structure

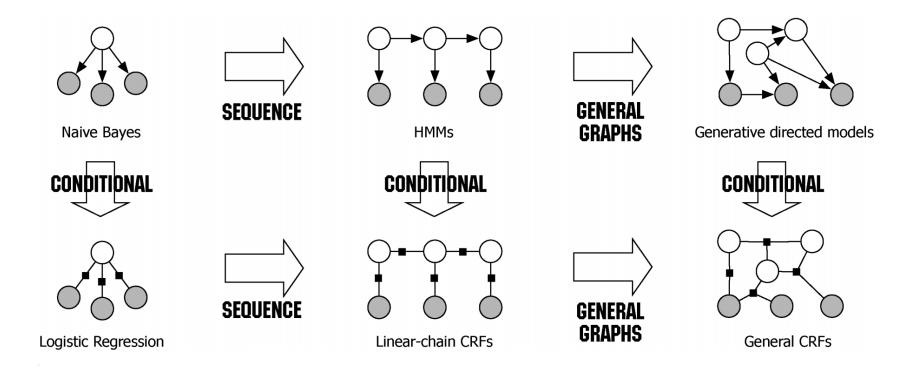
Interaction and synchrony

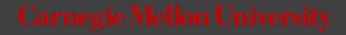


$$p(y|\mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta}) = \sum_{\mathbf{h}^{A}, \mathbf{h}^{V}} p(y, \mathbf{h}^{A}, \mathbf{h}^{V} | \mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta})$$

Approximate inference using loopy-belief

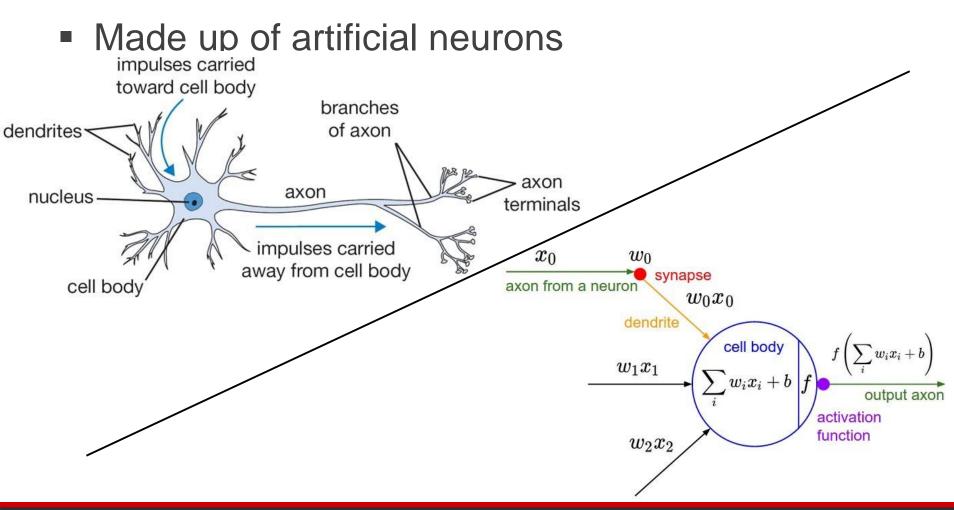
Recap of generative vs discriminative





Basic Concepts: Neural Networks

Neural Networks – inspiration



Neural Networks – score function

- Made up of artificial neurons
 - Linear function (dot product) followed by a nonlinear activation function
- Example a Multi Layer Perceptron



Basic NN building block

Weighted sum followed by an activation function

Input x_n x_3 x_2 x_1 Weighted sum Wx + bActivation function Output y_n y_2 y_1

This part of the neural network is very similar to another predictive model we studied. Which one? Linear classifier

$$y = f(Wx + b)$$

Neural Networks – activation function

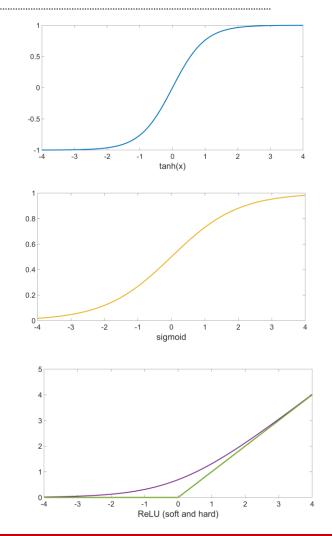
•
$$f(x) = \tanh(x)$$

• Sigmoid -
$$f(x) = (1 + e^{-x})^{-1}$$

• Linear
$$- f(x) = ax + b$$

• **ReLU**
$$f(x) = \max(0, x) \sim \log(1 + \exp(x))$$

- Rectifier Linear Units
- Faster training no gradient vanishing
- Induces sparsity





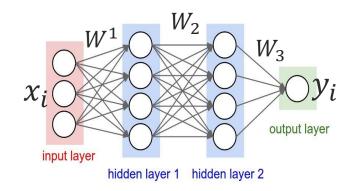
Multi-Layer Feedforward Network

Activation functions (individual layers)

$$f_{1;W_1}(x) = \sigma(W_1x + b_1)$$

$$f_{2;W_2}(x) = \sigma(W_2x + b_2)$$

$$f_{3;W_3}(x) = \sigma(W_3x + b_3)$$

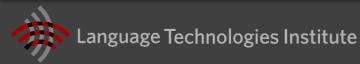


Score function

$$y_i = f(x_i) = f_{3;W_3}(f_{2;W_2}(f_{1;W_1}(x_i)))$$

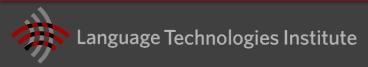
Loss function (e.g., Euclidean loss)

$$L_i = (f(x_i) - y_i)^2 = (f_{3;W_3}(f_{2;W_2}(f_{1;W_1}(x_i))))^2$$



Neural Networks inference and learning

- Inference (Testing)
 - Use the score function (y = f(x; W))
 - Have a trained model (parameters W)
- Learning model parameters (Training)
 - Loss function (L)
 - Gradient
 - Optimization



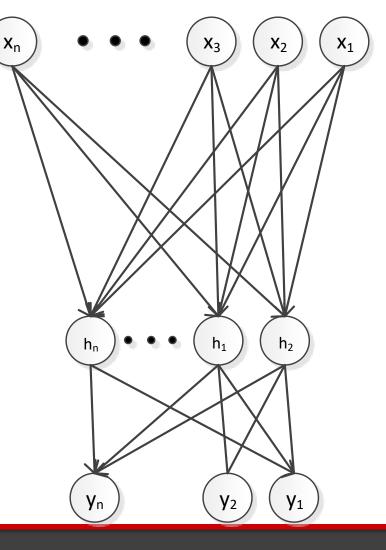
Gradient descent algorithm for MLP

- All layers are differentiable
- Start from random weight values
- Iteratively adjust weights in the direction that minimises the error

```
while not converged:
    # compute gradients
    weights_grad = compute_gradient(loss_fun, data, weights)
    # perform parameter update
    weights += - step_size * weights_grad
```


Training the model efficiently

- Backpropagation propagate the error backward
 - An efficient model of gradient descent, nothing more nothing less
- Forward propagate from input to output through all the layers keeping track of intermediate results
- Compute error at the final layer, use this to compute error at hidden layer (continue to input)



Backpropagation Algorithm (efficient gradient)

Forward pass

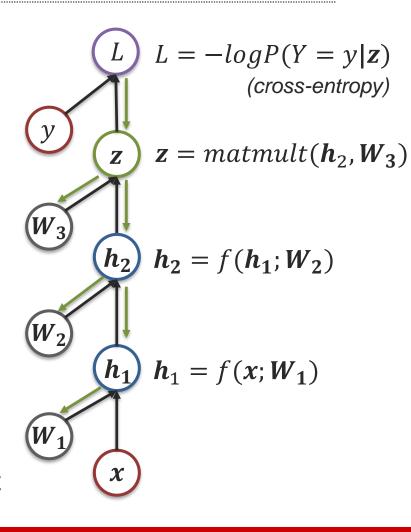
 Following the graph topology, compute value of each unit

Backpropagation pass

- Initialize output gradient = 1
- Compute "local" Jacobian matrix using values from forward pass
- Use the chain rule:

```
Gradient = "local" Jacobian x
"backprop" gradient
```

Why is this rule important?

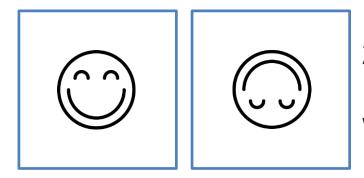


Computational Graph: Multi-layer Feedforward Network

Computational unit: $L = -logP(Y = y|\mathbf{z})$ (cross-entropy) • Multiple input **h** h = f(x; W) • Multiple inp • One output $\mathbf{z} = matmult(\mathbf{h}_2, \mathbf{W}_3)$ Z Vector/tensor Sigmoid unit: W_3 h_2 $h_2 = f(h_1; W_2)$ $h_j = (1 + e^{-W_j x})^{-1}$ h h_1 $h_1 = f(x; W_1)$ W Differentiable "unit" function! X (or close approximation to compute "local Jacobian)

Convolutional Neural Network

A Shortcoming of MLP



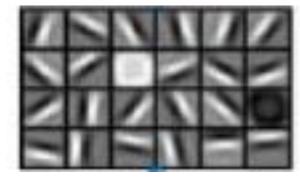
2 Data Points – detect which head is up!Easily modeled using one neuron.What is the best neuron to model this?

This head may or may not be up – what happened?

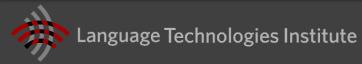
Solution: instead of modeling the entire image, model the important region.

Why not just use an MLP for images?

- MLP connects each pixel in an image to each neuron
- Does not exploit redundancy in image structure
 - Detecting edges, blobs
 - Don't need to treat the top left of image differently from the center

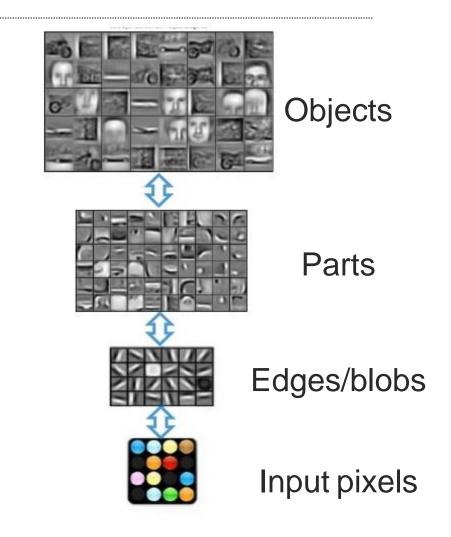


- Too many parameters
 - For a small 200 × 200 pixel RGB image the first matrix would have 120000 × n parameters for the first layer alone



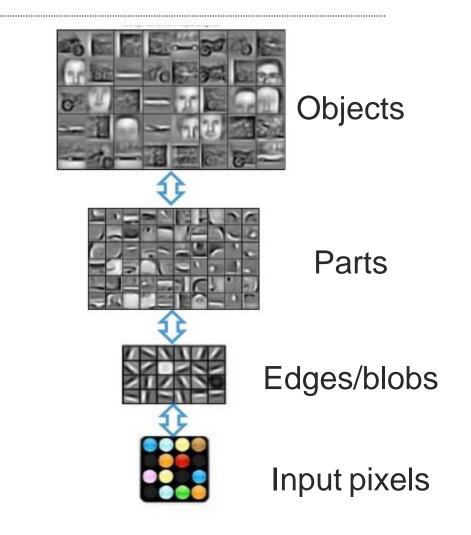
Feature hierarchy intuition

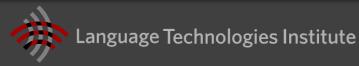
- Each layer extracts features from output of the previous layer
- Features learn to be tailored to the problem (at least that's the idea)



Building blocks

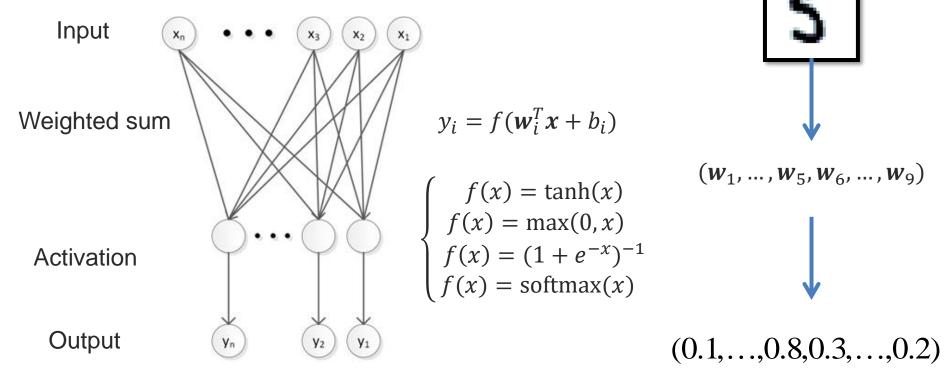
- Function $\mathbf{y} = f(\mathbf{x})$
 - Differentiable (or locally differentiable)
 - Non-linear
- Desired
 - Efficient
 - Most often mapping from a vector to a vector





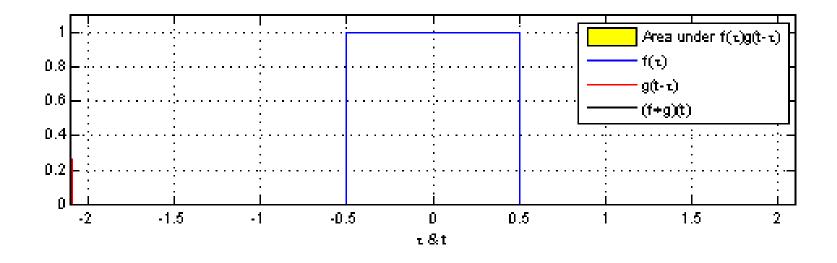
Fully connected layer

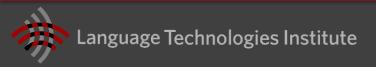
 Weighted sum followed by an activation function (saw this before)



1D convolution

- Intuition $(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t \tau) d\tau$
- Correlation between signals

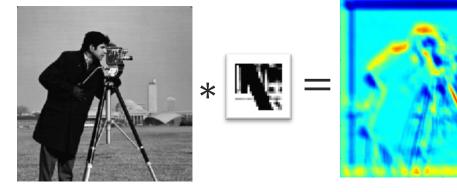


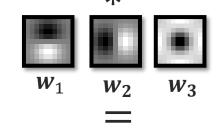


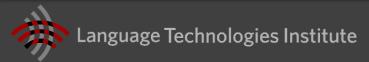
2D convolution

- Intuition
 - Correlation between signals
- Can be done in multichannel images with multichannel kernels

*

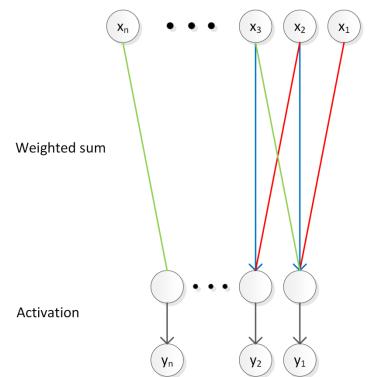




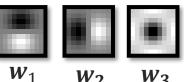


Weight sharing (convolutional) layer

- Same colour indicates same (shared) weight
- Used to implement convolution

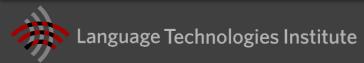


*



 W_2

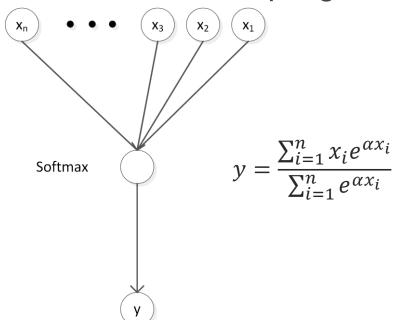
 W_3

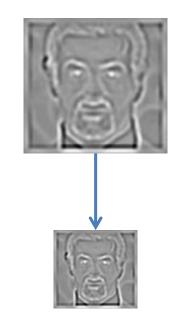


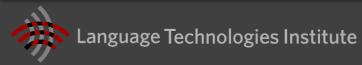


Max pooling layer

- Pick the maximum value from input using a smooth and differentiable approximation
- Used for sub-sampling



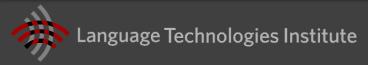




Sample CNN convolution

- Great animated visualization of 2D convolution
- <u>http://cs231n.github.io/convolutional-networks/</u>

Input Volume (+pad 1) (7x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
x[:,:,0]	w0[:,:,0]	w1[:,:,0]	o[:,:,0]
0 0 0 0 0 0 0 0	0 + -1	-1 0 1	0 6 6
0 2 2 1 1 0	0 0 0	1 -1 -1	-5 6 8
0 1 1 2 0 0 0	1 1 -1	0 0 1	-6 -7 -3
0 0 2 1 2 0 0	WD[+,:,1]	w1[:,:,1]	0[:,:,1]
0 0 2 2 2 1 0	-1 1 x	1 0 1	-6 -5 -2
0 1 2 1 0 1 0	1 -1	-1 -1 -1	-1 2 2
0 0 0 0 0 0 0	1 1 -1	0 -1 1	-3 3 -1
x[:,:,1]	w0[:,:/2]	w1[:,:,2]	
0 0 0 0 0 0 0	0 2 0	1 0 0	
0 2 1 0 2 9 8	8 0 0	1 0 -1	
0 1 1 1 1 2 0	0 1 0	0 0 0	
0 1 2 1 0 1 0	Bias b0 (1x1x1)	Bias b1 (1x1x1)	
0 1 2 1 2 0 0	b0[:,:,0]	b1[:,:,0]	
0 2 0 2 1 2 0	1	0	
0 0 0 0 0 0 0	7		
x[:,:,2] 0 0 0 0 0 0 0 0		toggle me	ovement
0 0 9 2 2 7 0			
0 2 1 2 0 0 0			
0 1 1 1 0 0 0			
0 2 9 2 2 2 0			
0 1 2 0 1 2 0			

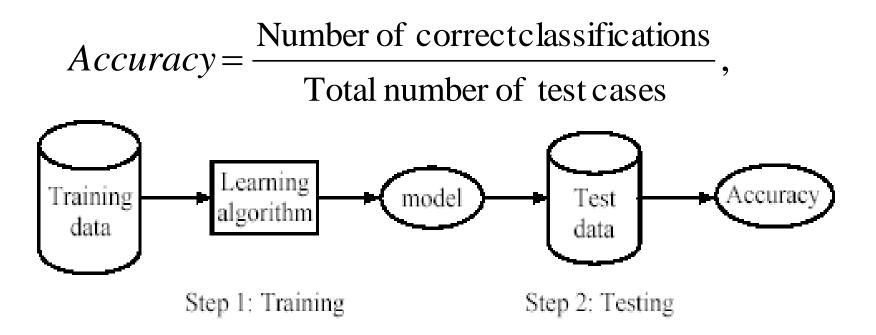


Machine Learning: Evaluation Methods

Language Technologies Institute

Supervised learning process: two steps

Learning (training): Learn a model using the training data Testing: Test the model using unseen test data to assess the model accuracy



Evaluation methods

- Holdout set: The available data set D is divided into two disjoint subsets,
 - the *training set D_{train}* (for learning a model)
 - the test set D_{test} (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning.
 - Unseen test set provides a unbiased estimate of accuracy.
- The test set is also called the holdout set. (the examples in the original data set D are all labeled with classes.)
- This method is mainly used when the data set *D* is large.
- Unless building person specific models the training and test sets should not contain the same person

Evaluation methods (cont...)

- n-fold cross-validation: The available data is partitioned into *n* equal-size disjoint subsets.
- Use each subset as the test set and combine the rest n-1 subsets as the training set to learn a classifier.
- The procedure is run n times, which give n accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large.

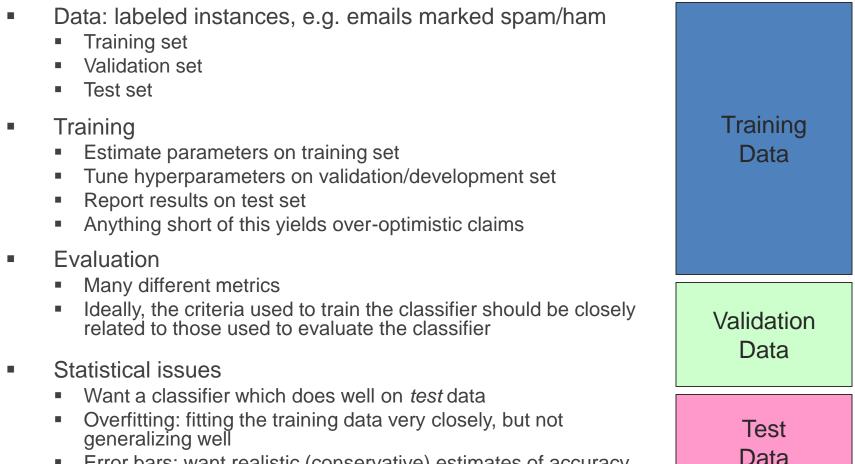
Evaluation methods (cont...)

- Leave-one-out cross-validation: This method is used when the data set is very small.
- It is a special case of cross-validation
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.
- If the original data has *m* examples, this is *m*fold cross-validation

Hyperparameters

- How do we determine C or γ for SVM training?
- Parameters that we do not learn through optimization are called hyper-parameters
- Need a way to find optimal values for our task
 For some approaches rules of thumb exist
- Need an analytical way to do it
- Common ways
 - Grid search
 - Random search (not as bad as it sounds)

Language Technologies Institute



Error bars: want realistic (conservative) estimates of accuracy

Take home

- 1. Never touch test data during training/validation
- 2. Never touch test data during training/validation
- 3. Never touch test data during training/validation

Machine Learning: Measuring Error

Language Technologies Institute

Measuring Error

	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives

= TP / (TP+FN) = sensitivity = hit rate

- Precision = # of found positives / # of found
 - = TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

F₁-value (also called **F**₁-score)

 It is hard to compare two classifiers using two measures. F₁ score combines precision and recall into one measure

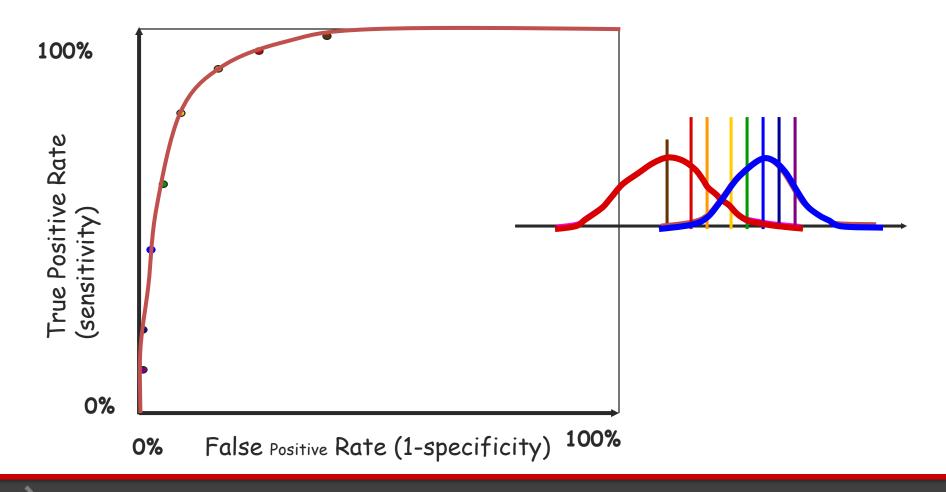
•
$$F_1 = \frac{2 \cdot p \cdot r}{p + r}$$

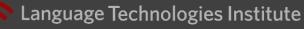
• F_1 - score is the harmonic mean of precision and recall

•
$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

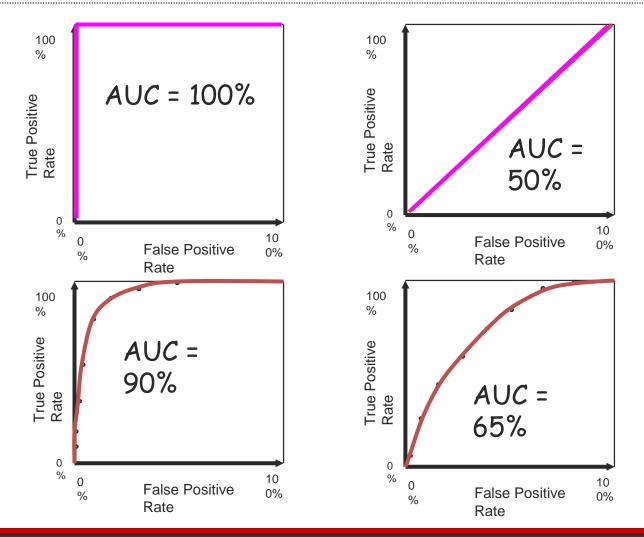
- The harmonic mean of two numbers tends to be closer to the smaller of the two
- Preferred over accuracy when data is unbalanced
 - Why?

Receiver Operating Characteristic (ROC) Curve





AUC for ROC curves





Evaluation of regression

- Root Mean Square Error
 - $\sqrt{\sum_i (y_i x_i)^2}$
 - Not easily interpretable
- Correlation trend prediction in a way
 - Nice interpretation: 0 no relationship, 1 perfect relationship

•
$$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{(n-1)\sigma_x \sigma_y}$$

- Concordance Correlation Coefficient (CCC)
 - A method to combine both

•
$$\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$
, ρ – correlation coefficient

Has nice interpretability as well

Take home

- Error measure selection is not straightforward
 - Pick the right one for your problem
 - F1, AUC, Accuracy, RMSE, CCC
- Make sure the same measure is used for validation and testing
 - Otherwise you might be learning suboptimal models
- Wrong error measure can hide both bad and good results

