
1

Louis-Philippe Morency

Jeffrey Girard

Originally developed with help from 

Stefan Scherer and Tadas Baltrušaitis

Multimodal
Affective Computing

Lecture 12: Neural Network 

Predictive Models



Outline

▪ Discriminative Graphical Models
▪ Logistic classifier 

▪ Conditional random fields

▪ L1 and L2 regularization

▪ Neural Networks
▪ Multi-layer perceptron

▪ Back-propagation

▪ Convolutional neural networks

▪ Evaluation methods and error measures

▪ Next week: Multimodal deep learning



Upcoming Lectures

Classes Tuesday Thursday

Week 12

4/02 & 4/04

*midterm 

report*

Neural network predictive modeling
• Multi-layer perceptron
• Deep neural network
• Convolutional neural network

Midterm presentations

Week 13

4/09 & 4/11
Multimodal deep learning
• Multimodal representations
• Attention and modality alignment
• Temporal and multimodal fusion

NO CLASS

Week 14

4/16 & 4/18
Multimodal Behavior Generation
• Guest lecture: Prof. Nakano
• Generation based on user’s attitude

• Robot and virtual humans

Discussion (generation)
• Jiang Liu
• Ankit Shah 

Week 15 

4/23 & 4/25
Multimodal applications
• Assessment in the clinical process
• Biomarkers and behavioral indicators

• Validation in the medical sciences

Discussion (applications)
• Mingtong Zhang
• Mahmoud Al Ismail

Week 16

4/30 & 5/02

*final report*

NO CLASS Final presentations



4

Discriminative 

Graphical Models



Example: Markov Random Field – Graphical Model

E
v
id

e
n
c
e
s

(o
b
s
e
rv

a
b
le

)

O
U

tc
o
m

e
(n

o
n
-o

b
s
e
rv

a
b
le

)

Observable environment variables Survey-based personality variables

# book views

# notes taken

# poster views Total goals

# correct ans.

# incorrect ans.

Openness

Agreeableness

Conscientious

Mastery

avoidance

Emotion

Mastery 

approach

A
p

p
ra

is
a
l

Valence

PerformanceLearning Focus

[Sabourin et al., 2011]



Example: Markov Random Field – Factor Graph

E
v
id

e
n
c
e
s

(o
b
s
e
rv

a
b
le

)

O
U

tc
o
m

e
(n

o
n
-o

b
s
e
rv

a
b
le

)

Observable environment variables Survey-based personality variables

# book views

# notes taken

# poster views Total goals

# correct ans.

# incorrect ans.

Openness

Agreeableness

Conscientious

Mastery

avoidance

Emotion

Mastery 

approach

A
p

p
ra

is
a
l

Valence

PerformanceLearning Focus

[Sabourin et al., 2011]

How many unary 

and pairwise 

potentials?

How to improve 

the factor graph?



Example: Markov Random Field – Factor Graph

E
v
id

e
n
c
e
s

(o
b
s
e
rv

a
b
le

)

O
U

tc
o
m

e
(n

o
n
-o

b
s
e
rv

a
b
le

)

Observable environment variables Survey-based personality variables

# book views

# notes taken

# poster views Total goals

# correct ans.

# incorrect ans.

Openness

Agreeableness

Conscientious

Mastery

avoidance

Emotion

Mastery 

approach

A
p

p
ra

is
a
l

Valence

PerformanceLearning Focus

[Sabourin et al., 2011]



Example: Markov Random Field – Factor Graph

E
v
id

e
n
c
e
s

(o
b
s
e
rv

a
b
le

)

O
U

tc
o
m

e
(n

o
n
-o

b
s
e
rv

a
b
le

)

Observable environment variables Survey-based personality variables

# book views

# notes taken

# poster views Total goals

# correct ans.

# incorrect ans.

Openness

Agreeableness

Conscientious

Mastery

avoidance

Emotion

Mastery 

approach

A
p

p
ra

is
a
l

Valence

PerformanceLearning Focus

[Sabourin et al., 2011]



Generative versus Discriminative

𝜙12
ℎ1 ℎ2 ℎ3 ℎ4

𝜙23 𝜙34

𝜓1 𝜓2 𝜓3 𝜓4

𝒙𝟏

Generative or 

Discriminative?

Answer: It depends on 

the loss function!

Generative loss function:

Discriminative loss function: 𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒉(𝑗) 𝑿(𝑗); 𝜃

𝐿 𝜃 =

𝑗=1

𝑁

𝑃(𝒉 𝑗 , 𝑿 𝑗 ; 𝜃)
(joint probability)

(conditional probability)

𝒙𝟐 𝒙𝟑 𝒙𝟒



Discriminative Model: Logistic classifier 

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

Label : {0:Dominant, 1:Not-dominant}

𝑃 𝑦𝑡 = 1 𝒙𝑡 =
1

1 + exp(−𝜽𝒙𝒕)
Binary form

𝑃 𝑦𝑡 = 𝑐 𝒙𝑡 =
exp(𝜽𝑐𝒙𝒕)

σ𝑘=1
𝐾 exp(𝜽𝑘𝒙𝒕)

Multinomial form

Score function:



Comparing Linear and Logistic Models

0

1

Linear Model

Logistic Model



Discriminative Model: Logistic classifier 

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

General form

𝑃 𝑦𝑡 = 𝑐 𝒙𝑡 =
exp(𝜽𝑐𝒙𝒕)

σ𝑘=1
𝐾 𝜽𝑐𝒙𝒕

Familiar multinomial form

Score function:



Discriminative Model: Logistic classifier

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

Partition

function
Feature

functions

Weights

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

=
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜙𝑘(𝑦𝑡, 𝒙𝑡; 𝜃𝑘)



Feature Functions

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

𝑓0 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡0, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

3

K = 6

𝑓1 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡0, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓2 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡1, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓3 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡1, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓4 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡2, 𝑦𝑡 = 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓5 𝑦𝑡 , 𝒙𝒕 = ቊ
𝑥𝑡2, 𝑦𝑡 = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Label : {0:Dominant, 1:Not-dominant}

𝜃0 𝜃1

𝜃2 𝜃3

𝜃4 𝜃5

yt=0 yt=1

xt0

xt1

xt2



Partition Function: Normalizing Constant

xt

yt

Observation vector: [speech-energy, gaze, turn-taking]

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

𝒵 𝒙𝒕 = 

𝑦′=0

𝑌

exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦′, 𝒙𝒕
So that 𝑃 𝑦𝑡 𝒙𝑡 stays 

between 0 and 1.



Training and Loss Function

xt

yt

𝑃 𝑦𝑡 𝒙𝑡 =
1

𝒵 𝒙𝒕
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕

Label : {0:Dominant, 1:Not-dominant}

Observation vector: [speech-energy, gaze, turn-taking]

𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒚(𝑗) 𝑿(𝑗); 𝜃

Loss function: Conditional log likelihood

− 𝑅 𝜃



▪ L-2 Norm (Gaussian prior):

▪ L-1 Norm (Laplacian prior):

Regularization

𝑅(𝜃) = 𝜆 𝜃 2

𝑅(𝜃) = 𝜆 𝜃 1

2


1


)(L

)(L

𝐿 𝜃 =

𝑗=1

𝑁

log𝑃 𝒚(𝑗) 𝑿(𝑗); 𝜃 − 𝑅 𝜃



Sparse Feature Ranking

Regularization Penalty (λ)

0

0

0

0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0

0  0.27

0  0

0  0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0       0.20

0  0.27  0.35

0  0       0

0  0       0



Sparse Feature Ranking

Regularization Penalty (λ)

0  0       0.20  0.40

0  0.27  0.35  0.55 

0  0       0       0.33

0  0       0      0.18



LASSO and ElasticNet

xt

yt Label : {0:Dominant, 1:Not-dominant}

Observation vector: [speech-energy, gaze, turn-taking]

𝐿 𝜃 =

𝑗=1

𝑁

𝑦𝑗 − 𝑓 𝒙𝒋; 𝜃
𝟐

Lasso loss function: squared loss with L1 regularization

−𝜆 𝜃 1

𝐿 𝜃 =

𝑗=1

𝑁

𝑦𝑗 − 𝑓 𝒙𝒋; 𝜃
𝟐

ElasticNet: squared loss with L1 and L2 regularization

−𝜆 𝜃 1 −𝜆 𝜃 2



Conditional Random Fields (CRFs)

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn

[McCallum 2001]

𝑃 𝒚 𝑿 =
1

𝒵 𝑿
exp 

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝒙𝒕 +

𝑙=1

𝐿

𝜆𝑙𝑔𝑙 𝑦𝑡 , 𝑦𝑡−1



24

Hidden Conditional Random Field

Sentiment

We saw the yellow dog

x5x4x3x2x1

y

h5h4h3h2h1

for example,𝓨: {positive, negative} 

Sequence label:

𝑦 ∈ 𝒴

𝑝 𝑦 𝒙; 𝜽) =

𝒉

𝑝 𝑦, 𝒉 𝒙; 𝜽

𝑝 𝑦, 𝒉 𝐱; 𝜽) =
1

𝒵(𝒙; 𝜽)
exp 

𝑡

𝜽𝑥 ⋅ 𝑓𝑥 ℎ𝑡 , 𝐱𝒕 +

𝑡

𝜽𝑒 ⋅ 𝑓𝑒 ℎ𝑡 , ℎ𝑡−1, 𝑦 +

𝑡

𝜽𝑦 ⋅ 𝑓𝑦 𝑦, 𝒉𝒕

𝒉 = {ℎ1, ℎ2, ℎ3, … , ℎ𝑡}

Latent variables with shared hidden states:

where ℎ𝑡 ∈ ℋ

Different edge potentials
for  each label 𝒚

Shared hidden states
• Inference is tractable: 𝑶 𝒀𝑯𝟐𝑻

• Linear in sequence length T !

• Parameter learning (𝜽𝒙, 𝜽𝒆, 𝜽𝒚):
• Gradient descent or L-BFGS

𝜃𝑒
𝜃𝑥

𝜃𝑦



25

Learning Multimodal Structure

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

We saw the yellowdog

Sentiment

y
Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony



26

Multi-view Latent Variable Discriminative Models 

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

We saw the yellowdog

Sentiment

y

➢ Approximate inference using loopy-belief

Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony

𝑝 𝑦 𝒙𝑨, 𝒙𝑉; 𝜽) = 

𝒉𝑨,𝒉𝑽

𝑝 𝑦, 𝒉𝑨, 𝒉𝑽 𝒙𝑨, 𝒙𝑽; 𝜽



Recap of generative vs discriminative



28

Basic Concepts:

Neural Networks



Neural Networks – inspiration

▪ Made up of artificial neurons



Neural Networks – score function

▪ Made up of artificial neurons

▪ Linear function (dot product) followed by a nonlinear 

activation function

▪ Example a Multi Layer Perceptron



Basic NN building block

▪ Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

This part of the neural 

network is very similar 

to another predictive 

model we studied. 

Which one?

Linear classifier



Neural Networks – activation function

▪ 𝑓 𝑥 = tanh 𝑥

▪ Sigmoid - 𝑓 𝑥 = (1 + 𝑒−𝑥)−1

▪ Linear – 𝑓 𝑥 = 𝑎𝑥 + 𝑏

▪ ReLU
▪ Rectifier Linear Units

▪ Faster training - no gradient vanishing

▪ Induces sparsity

𝑓 𝑥 = max 0, 𝑥 ~log(1 + exp(𝑥) )



33

Multi-Layer Feedforward Network

𝑊3

𝑊2
𝑊1

𝑦𝑖𝑥𝑖
𝑓2;𝑊2

𝑥 = 𝜎(𝑊2𝑥 + 𝑏2)

𝑦𝑖 = 𝑓 𝑥𝑖 = 𝑓3;𝑊3
(𝑓2;𝑊2

(𝑓1;𝑊1
𝑥𝑖))

𝑓3;𝑊3
𝑥 = 𝜎(𝑊3𝑥 + 𝑏3)

Score function

Activation functions (individual layers)

𝐿𝑖 = (𝑓 𝑥𝑖 − 𝑦𝑖)
2 = (𝑓3;𝑊3

(𝑓2;𝑊2
(𝑓1;𝑊1

𝑥𝑖)) )
2

Loss function (e.g., Euclidean loss)

𝑓1;𝑊1
𝑥 = 𝜎(𝑊1𝑥 + 𝑏1)



Neural Networks inference and learning

▪ Inference (Testing)

▪ Use the score function (y = 𝑓 𝒙;𝑊 )

▪ Have a trained model (parameters 𝑊)

▪ Learning model parameters (Training)

▪ Loss function (𝐿) 

▪ Gradient

▪ Optimization



Gradient descent algorithm for MLP

▪ All layers are differentiable

▪ Start from random weight values

▪ Iteratively adjust weights in the direction that 

minimises the error

while not converged: 

# compute gradients

weights_grad = compute_gradient(loss_fun, data, weights) 

# perform parameter update

weights += - step_size * weights_grad



Training the model efficiently

▪ Backpropagation - propagate 

the error backward
▪ An efficient model of gradient 

descent, nothing more nothing less

▪ Forward propagate from input to 

output through all the layers keeping 

track of intermediate results

▪ Compute error at the final layer, use 

this to compute error at hidden layer 

(continue to input)

x1x2x3xn

h2h1hn

y1y2yn



37

Backpropagation Algorithm (efficient gradient)

Forward pass

▪ Following the graph topology, 

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix 

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

▪ Why is this rule important?



38

Computational Graph: Multi-layer Feedforward Network

𝒉 = 𝑓(𝒙;𝑾)𝒉

Computational unit:

▪ Sigmoid unit:

𝒙
𝑾

* exp-1*

ℎ𝑗 = (1 + 𝑒−𝑊𝑗𝒙)−1

+1 1/x

𝒉

Differentiable “unit” function!
(or close approximation to compute “local Jacobian)

𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

• Multiple input

• One output

• Vector/tensor



39

Convolutional

Neural Network



40

A Shortcoming of MLP

2 Data Points – detect which head is up!

Easily modeled using one neuron. 

What is the best neuron to model this? 

This head may or may not be up – what 

happened?

Solution: instead of modeling the entire image, 

model the important region.



Why not just use an MLP for images?

▪ MLP connects each pixel in an image to each 

neuron

▪ Does not exploit redundancy in image structure

▪ Detecting edges, blobs

▪ Don’t need to treat the top left of image 

differently from the center

▪ Too many parameters 

▪ For a small 200 × 200 pixel RGB image the first 

matrix would have 120000 × 𝑛 parameters for 

the first layer alone



Feature hierarchy intuition

▪ Each layer extracts 

features from output of 

the previous layer

▪ Features learn to be 

tailored to the problem 

(at least that’s the idea)

Input pixels

Edges/blobs

Parts

Objects



Building blocks

▪ Function 𝐲 = 𝑓(𝒙)
▪ Differentiable (or 

locally differentiable)

▪ Non-linear

▪ Desired

▪ Efficient

▪ Most often mapping 
from a vector to a 
vector

Input pixels

Edges/blobs

Parts

Objects



Fully connected layer

▪ Weighted sum followed by an activation 

function (saw this before)

Input

Weighted sum

Activation

Output )2.0,,3.0,8.0,,1.0( 

𝑦𝑖 = 𝑓(𝒘𝑖
𝑇𝒙 + 𝑏𝑖)

𝑓 𝑥 = tanh 𝑥

𝑓 𝑥 = max 0, 𝑥

𝑓 𝑥 = (1 + 𝑒−𝑥)−1

𝑓(𝑥) = softmax(𝑥)

(𝒘1, … ,𝒘5, 𝒘6, … ,𝒘9)



1D convolution

▪ Intuition

▪ Correlation between signals



2D convolution

▪ Intuition

▪ Correlation between signals

▪ Can be done in multichannel 

images with multichannel 

kernels ∗

=
𝒘1 𝒘𝟐 𝒘𝟑∗ =



Weight sharing (convolutional) layer

▪ Same colour indicates same (shared) weight

▪ Used to implement convolution

∗

=
𝒘1 𝒘𝟐 𝒘𝟑



Max pooling layer

▪ Pick the maximum value from input using a smooth 

and differentiable approximation

▪ Used for sub-sampling

𝑦 =
σ𝑖=1
𝑛 𝑥𝑖𝑒

𝛼𝑥𝑖

σ𝑖=1
𝑛 𝑒𝛼𝑥𝑖



Sample CNN convolution

▪ Great animated visualization of 2D convolution

▪ http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


50

Machine Learning: 

Evaluation Methods



Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the 

model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Evaluation methods

▪ Holdout set: The available data set D is divided into two 
disjoint subsets, 
▪ the training set Dtrain (for learning a model)

▪ the test set Dtest (for testing the model)

▪ Important: training set should not be used in testing and 
the test set should not be used in learning. 
▪ Unseen test set provides a unbiased estimate of accuracy. 

▪ The test set is also called the holdout set. (the 
examples in the original data set D are all labeled with 
classes.) 

▪ This method is mainly used when the data set D is large.

▪ Unless building person specific models the training 
and test sets should not contain the same person



Evaluation methods (cont…)

▪ n-fold cross-validation: The available data is partitioned 

into n equal-size disjoint subsets. 

▪ Use each subset as the test set and combine the rest n-1 

subsets as the training set to learn a classifier. 

▪ The procedure is run n times, which give n accuracies. 

▪ The final estimated accuracy of learning is the average of 

the n accuracies. 

▪ 10-fold and 5-fold cross-validations are commonly used. 

▪ This method is used when the available data is not large.



Evaluation methods (cont…)

▪ Leave-one-out cross-validation: This method is 

used when the data set is very small. 

▪ It is a special case of cross-validation

▪ Each fold of the cross validation has only a 

single test example and all the rest of the data 

is used in training. 

▪ If the original data has m examples, this is m-

fold cross-validation



55

▪ How do we determine 𝐶 or 𝛾 for SVM training?

▪ Parameters that we do not learn through 
optimization are called hyper-parameters

▪ Need a way to find optimal values for our task
▪ For some approaches rules of thumb exist

▪ Need an analytical way to do it

▪ Common ways
▪ Grid search

▪ Random search (not as bad as it sounds)

Hyperparameters



Training and Validation

▪ Data: labeled instances, e.g. emails marked spam/ham
▪ Training set

▪ Validation set

▪ Test set

▪ Training
▪ Estimate parameters on training set

▪ Tune hyperparameters on validation/development set 

▪ Report results on test set

▪ Anything short of this yields over-optimistic claims

▪ Evaluation
▪ Many different metrics

▪ Ideally, the criteria used to train the classifier should be closely 
related to those used to evaluate the classifier

▪ Statistical issues
▪ Want a classifier which does well on test data

▪ Overfitting: fitting the training data very closely, but not 
generalizing well

▪ Error bars: want realistic (conservative) estimates of accuracy

Training

Data

Validation

Data

Test

Data



57

Take home

▪ 1. Never touch test data during 

training/validation

▪ 2. Never touch test data during 

training/validation

▪ 3. Never touch test data during 

training/validation



58

Machine Learning: 

Measuring Error



Measuring Error

▪ Error rate = # of errors / # of instances = (FN+FP) / N

▪ Recall = # of found positives / # of positives 

= TP / (TP+FN) = sensitivity = hit rate

▪ Precision = # of found positives / # of found

= TP / (TP+FP)

▪ Specificity = TN / (TN+FP)

▪ False alarm rate = FP / (FP+TN) = 1 - Specificity



F1-value (also called F1-score)

▪ It is hard to compare two classifiers using two measures. F1 score 

combines precision and recall into one measure

▪ 𝐹1 =
2⋅𝑝⋅𝑟

𝑝+𝑟

▪ 𝐹1 - score is the harmonic mean of precision and recall

▪ 𝐹1 =
2

1

𝑝
+
1

𝑟

▪ The harmonic mean of two numbers tends to be closer to the 

smaller of the two

▪ Preferred over accuracy when data is unbalanced

▪ Why?



T
ru

e
 P

os
it

iv
e
 R

at
e
  
  

  
(s

e
ns

it
iv

it
y)

0%

100%

False Positive Rate (1-specificity)0% 100%

Receiver Operating Characteristic (ROC) Curve



T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

AUC = 
50%

AUC = 
90% AUC = 

65%

AUC = 100%

T
ru

e
 P

o
s
it
iv

e
 

R
a

te

0

%

100

%

False Positive 

Rate

0

%

10

0%

AUC for ROC curves



63

Evaluation of regression

▪ Root Mean Square Error 

▪ σ𝑖 𝑦𝑖 − 𝑥𝑖
2

▪ Not easily interpretable

▪ Correlation – trend prediction in a way
▪ Nice interpretation: 0 – no relationship, 1 – perfect relationship

▪ 𝜌 =
σ𝑖 𝑥𝑖− ҧ𝑥 (𝑦

𝑖
−ത𝑦)

𝑛−1 𝜎𝑥𝜎𝑦

▪ Concordance Correlation Coefficient (CCC)
▪ A method to combine both

▪ 𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2+ 𝜇𝑥−𝜇𝑦
2, 𝜌 – correlation coefficient

▪ Has nice interpretability as well



Take home

▪ Error measure selection is not straightforward

▪ Pick the right one for your problem

▪ F1, AUC, Accuracy, RMSE, CCC

▪ Make sure the same measure is used for 

validation and testing

▪ Otherwise you might be learning 

suboptimal models

▪ Wrong error measure can hide both bad 

and good results


