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Outline

▪ Multimodal core challenges - review

▪ Multimodal representations
▪ Joint and coordinated representations

▪ Multimodal autoencoder & tensor fusion

▪ Deep canonical correlation analysis

▪ Multimodal alignment
▪ Implicit and explicit alignment

▪ Dynamic time warping

▪ Attention models

▪ Multimodal fusion
▪ Multi-view recurrent network

▪ Memory fusion networks



Upcoming Lectures

Classes Tuesday Thursday

Week 13

4/09 & 4/11
Multimodal deep learning
• Multimodal representations
• Attention and modality alignment
• Temporal and multimodal fusion

NO CLASS

Week 14

4/16 & 4/18
Multimodal Behavior Generation
• Guest lecture: Prof. Nakano
• Generation based on user’s attitude

• Robot and virtual humans

Discussion (generation)
• Jiang Liu
• Ankit Shah 

Week 15 

4/23 & 4/25
Multimodal applications
• Assessment in the clinical process
• Biomarkers and behavioral indicators

• Validation in the medical sciences

Discussion (applications)
• Mingtong Zhang
• Mahmoud Al Ismail

Week 16

4/30 & 5/02

*final report*

NO CLASS Final presentations
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Multimodal Machine 

Learning: Core 

Technical Challenges
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Core Challenges in “Deep” Multimodal ML

Tadas Baltrusaitis, Chaitanya Ahuja, 
and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

These challenges are non-exclusive.

https://arxiv.org/abs/1705.09406


6Input Modalities Language Visual
Acoustic

Big dog
on the 
beach

Prediction
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𝑡2

𝑡3

𝑡𝑛

𝑡4

𝑡5

𝑡6

𝑡2

𝑡3

𝑡𝑛
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Taxonomy of Multimodal Research

Representation
▪ Joint

o Neural networks

o Graphical models

o Sequential

▪ Coordinated

o Similarity

o Structured

Translation
▪ Example-based

o Retrieval

o Combination

▪ Model-based

o Grammar-based

o Encoder-decoder

o Online prediction

Alignment

▪ Explicit

o Unsupervised

o Supervised

▪ Implicit

o Graphical models

o Neural networks

Fusion

▪ Model agnostic

o Early fusion

o Late fusion

o Hybrid fusion

▪ Model-based

o Kernel-based

o Graphical models

o Neural networks

Co-learning

▪ Parallel data

o Co-training

o Transfer learning

▪ Non-parallel data

▪ Zero-shot learning

▪ Concept grounding

▪ Transfer learning

▪ Hybrid data

▪ Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406


Real world tasks tackled by MMML

▪ Affect recognition

▪ Emotion

▪ Persuasion

▪ Personality traits

▪ Media description

▪ Image captioning

▪ Video captioning

▪ Visual Question Answering

▪ Event recognition

▪ Action recognition

▪ Segmentation

▪ Multimedia information retrieval

▪ Content based/Cross-media



Multimodal Applications

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406
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Multimodal 

Representations
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Core Challenge: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B



Deep Multimodal Boltzmann machines

▪ Generative model

▪ Individual modalities trained like a 

DBN

▪ Multimodal representation trained 

using Variational approaches

▪ Used for image tagging and cross-

media retrieval

▪ Reconstruction of one modality from 

another is a bit more “natural” than in 

autoencoder representation

▪ Can actually sample text and images

[Srivastava and  Salakhutdinov,  Multimodal Learning with Deep Boltzmann Machines, 2012, 2014]

· · · softmax



Deep Multimodal Boltzmann machines

Srivastava and Salakhutdinov, “Multimodal Learning with Deep Boltzmann Machines”, NIPS 2012



Deep Multimodal autoencoders

▪ A deep representation 

learning approach

▪ A bimodal auto-encoder

▪ Used for Audio-visual speech 

recognition

[Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

[Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

▪ Remove video

[Ngiam et al., Multimodal Deep Learning, 2011]
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Multimodal Encoder-Decoder

· · ·

· · ·

· · ·

· · ·

Text Image

···

𝒀𝑿

▪ Visual modality often 

encoded using CNN

▪ Language modality will 

be decoded using LSTM 

▪ A simple multilayer 

perceptron will be used 

to translate from visual 

(CNN) to language 

(LSTM)



Multimodal Joint Representation

▪ For supervised learning tasks

▪ Joining the unimodal 

representations:

▪ Simple concatenation

▪ Element-wise multiplication  

or summation

▪ Multilayer perceptron

▪ How to explicitly model    

both unimodal and      

bimodal interactions?

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

𝒉𝒎
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Multimodal Sentiment Analysis

· · ·

· · ·

Text
𝑿

𝒉𝒙

softmax· · ·

Sentiment Intensity [-3,+3]

· · · 𝒉𝒎

Audio
𝒁

𝒉𝒛

· · ·

· · ·

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒎 = 𝒇 𝑾 ∙ 𝒉𝒙, 𝒉𝒚, 𝒉𝒛
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Unimodal, Bimodal and Trimodal Interactions

“This movie is fair”

Smile

Loud voice

Speaker’s behaviors Sentiment Intensity

U
n

im
o

d
al

?

“This movie is sick” Smile

“This movie is sick” Frown

“This movie is sick” Loud voice ?

B
im

o
d

al

“This movie is sick” Smile Loud voice

Tr
im

o
d

al

“This movie is fair” Smile Loud voice

“This movie is sick” ?

Resolves ambiguity

(bimodal interaction)

Still Ambiguous !

Different trimodal

interactions !

Ambiguous !

Unimodal cues

Ambiguous !
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=
𝒉𝒙 𝒉𝒙 ⊗𝒉𝒚
1 𝒉𝒚

Multimodal Tensor Fusion Network (TFN)

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

Models both unimodal and 

bimodal interactions:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

[Zadeh, Jones and Morency, EMNLP 2017]

𝒉𝒎
Unimodal

Bimodal

Important !
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Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

⊗
𝒉𝒛
1

[Zadeh, Jones and Morency, EMNLP 2017]

Explicitly models unimodal, 
bimodal and trimodal

interactions !
· · ·

· · ·

Audio
𝒁

· · ·

· · ·

Text
𝑿

𝒉𝒙 𝒉𝒛

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒛

𝒉𝒙

𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚
𝒉𝒙 ⊗𝒉𝒛

𝒉𝒛 ⊗𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚 ⊗𝒉𝒛
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Experimental Results – MOSI Dataset

Improvement over State-Of-The-Art



24

Coordinated

Multimodal 

Representations
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Coordinated Multimodal Representations

· · ·

· · ·

· · ·

· · ·

Text Image

· · · · · ·

Similarity metric

(e.g., 

cosine 

distance)

Learn (unsupervised) two or more 

coordinated representations from 

multiple modalities. A loss function 

is defined to bring closer these 

multiple representations. 

𝒀𝑿



Coordinated Multimodal Embeddings

[Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]



Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]



Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]
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Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

1 Learn two linear projections, one 

for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

“canonical”: reduced to the simplest or clearest 

schema possible

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚

= argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀
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Correlated Projection

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
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Canonical Correlation Analysis

2

We want to learn multiple projection pairs 𝒖(𝑖)𝑿, 𝒗(𝑖)𝒀 :

We want these multiple projection pairs to be orthogonal 

(“canonical”) to each other:

𝒖(𝑖)
∗ , 𝒗(𝑖)

∗ = argmax
𝒖 𝑖 ,𝒗(𝑖)

𝑐𝑜𝑟𝑟 𝒖(𝑖)
𝑻 𝑿, 𝒗(𝑖)

𝑻 𝒀 ≈ 𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]
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Canonical Correlation Analysis

3 Since this objective function is invariant to scaling, we 

can constraint the projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

Canonical Correlation Analysis:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

Σ =

𝚺𝑿𝑿 𝚺𝒀𝑿

𝚺𝑿𝒀 𝚺𝒀𝒀

𝑼,𝑽

1 0 0
0 1 0
0 0 1

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

1 0 0
0 1 0
0 0 1
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Same objective function as CCA:

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

Andrew et al., ICML 2013

1
Linear projections 

maximizing correlation

2 Orthogonal projections

3
Unit variance of the 

projection vectors
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Deep Canonically Correlated Autoencoders (DCCAE)

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image
𝒀′𝑿′

Jointly optimize for DCCA and 

autoencoders loss functions

➢ A trade-off between multi-view 

correlation and reconstruction 

error from individual views

Wang et al., ICML 2015
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Explicit alignment
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Core Challenge: Alignment

Definition: Identify the direct relations between (sub)elements 
from two or more different modalities.

t1

t2

t3

tn

Modality 2Modality 1

t4

t5

tn

Fa
n

cy
 a

lg
o

ri
th

m

Explicit Alignment

The goal is to directly find 

correspondences between elements of 

different modalities

Implicit Alignment

Uses internally latent alignment of 

modalities in order to better solve a 

different problem

A

B



Temporal sequence alignment

Applications:

- Re-aligning asynchronous 

data

- Finding similar data across 

modalities (we can estimate 

the aligned cost)

- Event reconstruction from 

multiple sources



Let’s start unimodal – Dynamic Time Warping

▪ We have two unaligned temporal unimodal

signals

▪ 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑛𝑥 ∈ ℝ𝑑×𝑛𝑥

▪ 𝐘 = 𝒚1, 𝒚2, … , 𝒚𝑛𝑦 ∈ ℝ𝑑×𝑛𝑦

▪ Find set of indices to minimize the alignment 

difference:

▪ Where 𝒑𝒕
𝑥 and 𝒑𝒕

𝑦
are index vectors of same 

length

▪ Finding these indices is called Dynamic Time 

Warping

𝐿(𝒑𝑡
𝑥, 𝒑𝑡

𝑦
) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥 − 𝒚𝒑𝑡
𝑦

2

2
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DTW alternative formulation

Replication doesn’t change the objective!

𝐿(𝒑𝒕
𝑥, 𝒑𝒕

𝑦
) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥
− 𝒚𝒑𝑡

𝑦

2

2

= 𝐗𝐖𝑥
=

= 𝐘𝐖y

Alternative objective:

𝐿(𝑾𝒙,𝑾𝒚) = 𝑿𝑾𝑥 − 𝒀𝑾𝑦 𝐹

2
𝑿, 𝒀 – original signals (same #rows, possibly 

different #columns) 

𝑾𝑥,𝑾𝑦 - alignment matrices

Frobenius norm 𝑨 𝐹
2 = σ𝑖σ𝑗 𝑎𝑖,𝑗

2

But how to handle 

multimodal data?



Canonical Correlation Analysis reminder

▪ When data is normalized it is actually equivalent to smallest RMSE 

reconstruction

▪ CCA loss can also be re-written as:

𝐿(𝑼, 𝑽) = 𝐔𝑇𝐗 − 𝐕𝑇𝐘 𝐹
2

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰



Canonical Time Warping

▪ Dynamic Time Warping + Canonical Correlation Analysis 

= Canonical Time Warping

▪ Allows to align multi-modal or multi-view (same modality 

but from a different point of view)

▪ 𝑾𝒙,𝑾𝒚 – temporal alignment

▪ 𝑼,𝑽 – cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2



(1) Time warping

(2) Spatial embedding

Generalized Time warping

▪ Generalize to multiple sequences all of different 

modality

▪ 𝑾𝒊 – set of temporal alignments

▪ 𝑼𝒊 – set of cross-modal (spatial) alignments

[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]

𝐿(𝑼𝒊,𝑾𝒊) =෍

𝑖=1

෍

𝑗=1

𝐔𝑖
𝑇𝐗i𝐖i − 𝐔𝑗

𝑇𝐗j𝐖𝑗 𝐹

2



Alignment examples (multimodal)

But how to model non-linear alignment functions?



Deep Canonical Time Warping

▪ Could be seen as generalization of DCCA and GTW

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

𝐿(𝜽1, 𝜽2,𝑾𝒙,𝑾𝒚) = 𝑓𝜽1(𝐗)𝐖𝐱 − 𝑓𝜽1(𝐘)𝐖𝐲 𝐹

2
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Implicit alignment



Machine Translation

▪ Given a sentence in one language translate it to another

▪ Not exactly multimodal task – but a good start! Each 

language can be seen almost as a modality.

Dog on the beach        le chien sur la plage



Encoder-Decoder Architecture 

for Machine Translation

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Context

[Cho et al., “Learning Phrase Representations 

using RNN Encoder-Decoder for Statistical 

Machine Translation”, EMNLP 2014]



Attention Model for Machine Translation

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Dog

Encoder

Attention 

module / 

gate

[Bahdanau et al., “Neural Machine 

Translation by Jointly Learning to Align 

and Translate”, ICLR 2015]

Hidden state 𝒔0

Context 𝒛𝟎

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓



Attention Model for Machine Translation

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Dog

Encoder

Attention 

module / 

gate

[Bahdanau et al., “Neural Machine 

Translation by Jointly Learning to Align 

and Translate”, ICLR 2015]

Hidden state 𝒔1

Context 𝒛𝟏

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓

on



Attention Model for Machine Translation

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Dog

Encoder

Attention 

module / 

gate

[Bahdanau et al., “Neural Machine 

Translation by Jointly Learning to Align 

and Translate”, ICLR 2015]

Hidden state 𝒔2

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓

on the

Context 𝒛𝟐
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Attention Model for Machine Translation
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Attention Model for Image Captioning

Distribution 

over L locations

Expectation 

over features: D

𝑎1

𝑠0 𝑠1

𝑧1 𝑦1

𝑎2 𝑑1

𝑠2

𝑧2 𝑦2

𝑎3 𝑑2

First word

Output 

word



Attention Model for Image Captioning
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Multimodal Fusion



Multimodal Fusion

▪ Process of joining information from two or more modalities to perform 

a prediction 

▪ One of the earlier and more established problems

▪ e.g. audio-visual speech recognition, multimedia event detection, 

multimodal emotion recognition

▪ Two major types

▪ Model Free

▪ Early, late, hybrid

▪ Model Based

▪ Kernel Methods

▪ Graphical models

▪ Neural networks

Modality 1 Modality 2 Modality 3

Prediction

Fancy 
algorithm



Model free approaches – early fusion

▪ Easy to implement – just concatenate the features

▪ Exploit dependencies between features

▪ Can end up very high dimensional

▪ More difficult to use if features have different framerates

Classifier

Modality 1

Modality 2

Modality n



Model free approaches – late fusion

▪ Train a unimodal predictor and a multimodal fusion one

▪ Requires multiple training stages

▪ Do not model low level interactions between modalities

▪ Fusion mechanism can be voting, weighted sum or an ML approach

Modality 2

Classifier

Modality 1

Modality n

Fusion 

mechanism

Classifier

Classifier



Model free approaches – hybrid fusion

Modality 2

Classifier

Modality 1

Fusion 

mechanism

Classifier

Classifier

Modality 1

Modality 2

▪ Combine benefits of both early and late fusion mechanisms



Multiple Kernel Learning

▪ Pick a family of kernels for each modality and learn which kernels are important for the 

classification case

▪ Generalizes the idea of Support Vector Machines

▪ Works as well for unimodal and multimodal data, very little adaptation is needed

[Lanckriet 2004]
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Multimodal Fusion for Sequential Data

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

We saw the yellowdog

Sentiment

y

➢ Approximate inference using loopy-belief

Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony

𝑝 𝑦 𝒙𝑨, 𝒙𝑉; 𝜽) = ෍

𝒉𝑨,𝒉𝑽

𝑝 𝑦, 𝒉𝑨, 𝒉𝑽 𝒙𝑨, 𝒙𝑽; 𝜽

[Song, Morency and 

Davis, CVPR 2012]

Multi-View

Hidden Conditional Random Field
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Sequence Modeling with LSTM

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏
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Multimodal Sequence Modeling – Early Fusion

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)
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Multi-View Long Short-Term Memory (MV-LSTM)

𝒙𝟏

𝒚𝟏

MV-

LSTM(1)

MV-

LSTM(2)

MV-

LSTM(3)

MV-

LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Multi-View Long Short-Term Memory

MV-

LSTM(1)

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒉𝒕
(1)

𝒉𝒕
(2)

𝒉𝒕
(3)

MV-

tanh

MV-

sigm

𝒄𝒕
(1)

𝒄𝒕
(2)

𝒄𝒕
(3)

MV-

sigm

MV-

sigm

Multiple 
memory cells

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Topologies for Multi-View LSTM

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

MV-

tanh

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

Design parameters

α: Memory from 

current view

β: Memory from 

other views

View-specific

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=0

𝒈𝒕
(1)

Coupled
α=0, β=1

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

Fully-
connected

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=1

𝒈𝒕
(1)

Hybrid
α=2/3, β=1/3

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

MV-

LSTM(1)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Multi-View Long Short-Term Memory (MV-LSTM)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multimodal prediction of children engagement
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Memory Based

▪ A memory accumulates multimodal 

information over time. 

▪ From the representations throughout a 

source network.

▪ No need to modify the structure of the 

source network, only attached the 

memory. 
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Memory Based

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]
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Multimodal Machine Learning
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and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

https://arxiv.org/abs/1705.09406

