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Outline

= Multimodal core challenges - review

= Multimodal representations
= Joint and coordinated representations
= Multimodal autoencoder & tensor fusion
= Deep canonical correlation analysis
= Multimodal alignment
= |mplicit and explicit alignment
= Dynamic time warping
= Attention models
= Multimodal fusion
= Multi-view recurrent network
= Memory fusion networks
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Upcoming Lectures

Thursday

Week 13 Multimodal deep learning
4/09 & 4/11 . Multimodal representations

. Attention and modality alignment
. Temporal and multimodal fusion

Week 14 Multimodal Behavior Generation
4/16 & 4/18 o  Guest lecture: Prof. Nakano
o Generation based on user’s attitude

. Robot and virtual humans

Week 15 Multimodal applications
4123 & 4125 . Assessment in the clinical process
. Biomarkers and behavioral indicators

. Validation in the medical sciences

Week 16 NO CLASS
4/30 & 5/02

*final report*
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NO CLASS

Discussion (generation)
. Jiang Liu
. Ankit Shah

Discussion (applications)
. Mingtong Zhang
. Mahmoud Al Ismail

Final presentations




Multimodal Machine
Learning: Core
Technical Challenges



Core Challenges in “Deep” Multimodal ML

Representation Multimodal Machine Learning:
_ A Survey and Taxonomy

Alignment |

By Tadas Baltrusaitis, Chaitanya Ahuja,

. and Louis-Philippe Morency
Fusion
https://arxiv.org/abs/1705.09406
Translation 15 core challenges
] V137 taxonomic classes

Co-Learnin g 253 referenced citations

These challenges are non-exclusive.
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https://arxiv.org/abs/1705.09406
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Taxonomy of Multimodal Research | pupsarivorgansiizos.00406

Representation o Encoder-decoder = Model-based
« Joint o Online prediction o Kernel-based

o Neural networks Alignment o Graphical models
o Neural networks

o Graphical models n EXpliCit
o Sequential o Unsupervised Co-learning
* Coordinated o Supervised = Parallel data
o Similarity = Implicit o Co-training
o Structured o Graphical models o Transfer learning
Translation o Neural networks = Non-parallel data
= Example-based Fusion = Zero-shot learning
o Retrieval = Model agnostic . Conceptgrourllding
o Combination = Transfer learning

o Early fusion _
= Model-based o Late fusion = Hybrid data

o Grammar-based o Hybrid fusion = Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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Real world tasks tackled by MMML

Affect recognition
=  Emotion
= Persuasion
= Personality traits
Media description
= |mage captioning
= Video captioning
= Visual Question Answering
Event recognition
= Action recognition
= Segmentation

Multimedia information retrieval

= Content based/Cross-media = & % ol e
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Multimodal Applications [ hitps://arxiv.org/abs/1705.09406 |

CHALLENGES
APPLICATIONS REPRESENTATION TRANSLATION FusioNn ALIGNMENT CO-LEARNING
Speech Recognition and Synthesis
Audio-visual Speech Recognition
(Visual) Speech Synthesis
Event Detection
Action Classification
Multimedia Event Detection
Emotion and Affect
Recognition
Synthesis
Media Description
Image Description
Video Description
Visual Question-Answering
Media Summarization
Multimedia Retrieval
Cross Modal retrieval

Cross Modal hashing

v’ v’ v’
v

v’ v’
v’ v’
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Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy
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Multimodal
Representations



Core Challenge: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 =P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2

Language Technologies Institute




Deep Multimodal Boltzmann machines

=  Generative model

= |ndividual modalities trained like a
DBN

= Multimodal representation trained
using Variational approaches

= Used for image tagging and cross-
media retrieval

= Reconstruction of one modality from w D w.D
another is a bit more “natural” than in v v
autoencoder representation

= Can actually sample text and images

Language Technologies Institute




Deep Multimodal Boltzmann machines

. Generated Tags Input Text 2 nearest neighbours to generated
Image Given Tags 9 image features

pentax, k10d, beach, sea,
kangarooisland, ~ surf, strand, nature, hill
southaustr.alia, shore, wave, scener'y, green
sa, australia, seascape, clouds
australiansealion, sand, ocean,
300mm waves
night, lights,
christmas, flower, nature,
<no text> nightshot, green, flowers,
nacht, nuit,notte, petal, petals, bud
longexposure,
noche, nocturna
portrait, bw,
blackandwhite,
aheram, 0505 woman, blue, red, art,
sarahc, moo people, faces, artwork, painted,
girl,blackwhite, paint, artistic
person, man surreal, gallery
bleu
fall, autumn,
unseulpixel, trees, leaves, bw, blackandwhite,
 naturey crap foliage, forest, noiretblanc,
woods, biancoenero
branches, blancoynegro
path
Model MAP Prec@50
Random 0.124 0.124
SVM (Huiskes et al., 2010) 0.475 0.758
LDA (Huiskes et al., 2010) 0.492 0.754
DBM 0.526 £ 0.007  0.791 £ 0.008

DBM (using unlabelled data) 0.585 &+ 0.004 0.836 + 0.004

Srivastava and Salakhutdinov, “Multimodal Learning with Deep Boltzmann Machines”, NIPS 2012
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Deep Multimodal autoencoders

= A deep representation e (8 oS

learning approach 0o 1 oo (0o 1 00)

= A bimodal auto-encoder \/S'hmd

. . [OO eee OO ]Representation
= Used for Audio-visual speech T
recognition [oo-}-ocu [oo-}ooo]

(OO0 eee QO] [0O ses OO |

Audio Input Video Input
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Deep Multimodal autoencoders - training

= |ndividual modalities can be

1 Audio Reconstruction  Video Reconstruction
pretralned (00 ++- 00O] (0O +++ 00)
* RBMSs 1 1

(00 ++- 00| (00 .- 00|

= Denoising Autoencoders ~_ .
. [OO eee OO ]Representation
= To train the model to

reconstruct the other modality (@] @0 0]
= Use both .. W0o) (00..-00]

] Audio Input Video Input
= Remove audio

Language Technologies Institute




Deep Multimodal autoencoders - training

= |ndividual modalities can be

I Audio Reconstruction  Video Reconstruction
pretrained o)
= RBMs 1 1

(00 ++- 00| (00 .- 00|

= Denoising Autoencoders \/S'h a

= To train the model to 90 5 20 Jrepmsena
reconstruct the other modality [oo--T- 00] (et
= Use both (00 ... 00 (09" WO
. Audio Input Video Input
= Remove audio
= Remove video
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Multimodal Encoder-Decoder

= Visual modality often
encoded using CNN

= Language modality will D)
be decoded using LSTM (:)
= A simple multilayer /Q\
perceptron will be used ©)
to translate from visual 00 00 | )
(CNN) to language | |
(LSTM) @0 - 00) L0 ---00]
Text Image

X Y
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Multimodal Joint Representation

» For supervised learning tasks

= Joining the unimodal
representations:
= Simple concatenation
= Element-wise multiplication 000 -- 0001,
or summation /\
" Multilayer perceptron  p_(@@ 90 [@0-.-00lh,
= How to explicitly model
poth unimodal and
oimodal interactions?

e.g. Sentiment
(@@ - - - @® @) softmax

[QQ...QQ] [ ]

Text Image
X Y
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Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)
(& - ; Sentiment Intensity [-3,+3]
’, A e @@ ---@® @) softmax
« 2199 subjective video segments (000 ---000) h,

» Sentiment intensity annotations
* 3 modalities: text, video, audio

00 ---00),(

h)[c ACISELE

00 ---00) | ] 00 ---00)

hy = f(W - [hy, hy, hy]) Text Image Audio
X Y Z

) @000

h,

Multimodal joint representation:
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Unimodal, Bimodal and Trimodal Interactions

Speaker’s behaviors

Sentiment Intensity

— “This MOVIE is SICK” = == m= mm s o o o o o s o o s s o o s s o s o o > ?

©

-8 “This MOVie is fair” = = = mm e o o o o o o o o o o o o o > +

E Unimodal
c SIMIlE = == o o o o o >

-

LOUd VOICE [ = m= o o o s o o i s o o o e o o e o i o e > ?

= “This movie is sick” T | ——— > + +
S bimodal

g “This movie is sick” S| ————— > mmmm

al rre—s _ s o

This movie is sick Loud Voice fmm===—————— > ?

©

e “This movie is sick” Smile Loud voice [= = === == > .
g & trimodals
-IE “This movie is fair” Smile Loud voice [= == = == = = o = > +
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Multimodal Tensor Fusion Network (TFN)

Models both unimodal and
bimodal interactions:

- ol I G

e.g. Sentiment

Bimodal e

@@ ---@® @] softmax

h,( @@ --00) | Jh,
90 ---00] | ]
Text Image
X Y
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Multimodal Tensor Fusion Network (TFN)

hy ® h,

Can be extended to three modalities:

= @[] o]

Explicitly models / | \

bimodal and h[OO .- 90
» - x a
Interactions !

rraxrin | 00 - - 00)

Text Image Audio
X Y Z
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Experimental Results — MOSI Dataset

Multimodal Binary S-class  Regression Bl Binary 5-class  Regression
Baseline Acc(%) Fl  Acc(%) MAE  r Acc(%) Fl Acc(%) MAE  r
Random 502 487 239 188 - TFNlang'uage 74.8 75.6 38.5 0.99 0.61
SAL-CNN 73.0 - ; ] ] TFNucoustic  65.1 673 275 1.23 0.36
i‘F/M‘MD Z’l}-g 33? 2?-8 H? 22? TFNvimosa: 752 760 396 092  0.65
: : : TFNirimodat 745 750 389 093 0.65
TEN 771 719 420  0.87 0.70 TN, orrimodat  75.3 76.2 397 0.919 0.66
Human 85.7 875 539 071 082
— TEN 771 779 420 087 0.70
A 40 127 167 10237017 TFNariy 752 762 39.0 0.96 0.63

Language Technologies Institute




Coordinated
Multimodal
Representations



Coordinated Multimodal Representations

Learn (unsupervised) two or more

coordinated representations from

multiple modalities. A loss function

IS defined to bring closer these .
multiple representations. Similarity metric | cosine

/v\ distance)

00 ---00) 0000

00 00
00 ---00) |
Text Image
X Y
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Coordinated Multimodal Embeddings

Input t1
Image features s Text: a parrot rides a tricycle

Language Technologies Institute




Multimodal Vector Space Arithmetic
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Multimodal Vector Space Arithmetic

Nearest images
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Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest
schema possible

@ Learn two linear projections, one '
for each view, that are maximally

correlated: g A'f
:L /projection of X:K
(u*,v*) = argmax corr(H,, H,) H, / . H,
o @0 00 @9 .00
= argmax corr(u’ X, v'Y) U v
wv rrex ]
Text Image
X Y

Language Technologies Institute




Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)
u,v

Two views X, Y where same instances have the same color

Language Technologies Institute



Canonical Correlation Analysis

We want to learn multiple projection pairs (u )X, v;Y):

(u’(‘i), ”zi)) = all;(%r;l?)x corr(u(Tl-)X, v(Ti) Y) ~ u{i)zxyv(i)

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)Zva(]) = u{j)Zva(i) =0 fori :/:]

UXyyV = tT(UZXyV) where U = [u(l),u(z),..., u(k)]
and V = [v(l),v(z),..., v(k)]

Language Technologies Institute



Canonical Correlation Analysis

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

Ul'sy,U=1 VIZ,wWw=I

Canonical Correlation Analysis:
maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1

Language Technologies Institute



Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1

1 0 O A4 0 0

y y 0O 1 O 0 A, O

N T o lwlo 0o 10 0 2
XY YY 0 4, 0 0 1 o0

0 0 A; 0 0 1
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr (H o H y)
V.UW,W,

Linear projections
maximizing correlaton  H_ (@@ .00 (@0...00H

y
U V
@ Orthogonal projections 90 - 00
L w.| w,
@ Unit variance of the 00 00 —+
projection vectors _Text ‘ mage
X Y

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

X' Y’
Jointly optimize for DCCA and Text Image
autoencoders loss functions 90 00 | ]
» A trade-off between multi-view 90 - 00 | - ]

correlation and reconstruction
error from individual views

H, (@0 ...00) (@0 ..09JH,
Ul 14
rrgx Yy
w.,| W,
90 - 00
Text Image
Wang et al., ICML 2015 X Y

Language Technologies Institute



Explicit alignment
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Core Challenge: Alignment

Definition: Identify the direct relations between (sub)elements
from two or more different modalities.

Modality 1 Modality 2 @ Explicit Alignment

The goal is to directly find
correspondences between elements of
different modalities

Implicit Alignment

Uses internally latent alignment of
modalities in order to better solve a
different problem

Language Technologies Institute




Temporal sequence alignment

Applications:

- Re-aligning asynchronous
data

- Finding similar data across
modalities (we can estimate
the aligned cost)

- Event reconstruction from

multiple sources

Language Technologies Institute



Let’s start unimodal — Dynamic Time Warping

= We have two unaligned temporal unimodal
signals

" X =x,x, .., 0, | € R

" Y=|y,¥s . ¥, | € RO

= Find set of indices to minimize the alignment
difference: — T

= MW kW = MW W

l
2
VN — 5
L(pt, p:) = Z ||xp%c _yp%’ . 4 m
t=1 3 | riy \
2 Loy oy Py \
1 I [ ':' : "\\ ‘-‘
; o \
= Where pf and p; are index vectors of same Sl A A
length 3l | \
2 1
* Finding these indices is called Dynamic Time
Warplng 1 2 3 4 5 6 7 8

Language Technologies Institute



DTW alternative formulation

1 0000O0O
5 5 B o 00000
4 4 Ko o 0000O0O
o 0 o 00000
3 3 — 1o oo oY o o
I
2 2 Jooo0o0o0o0 oo
dooooooo ol
1 1 12 3456 7 8 9
5 5 1 0000O0O
H o 00000
4 4 o o j8 0o 0 0 0 0
3 3 — Moooofffoooo
Hooooofffooo
2 2 o ooooofffoo
o oooooofffo
1 1 g
Mo oo0o0000 0off
1 2 3 45 86 7 8 9

i 2 3 4 5 6 7 8 12345672809

Alternative objective: . _ _
X, Y — original signals (same #rows, possibly

2 .
LW, W,) = | xXwW, — ywy”F different #columns)
/ W, W, - alignment matrices
2
= Zi2j|ai,j|

Frobenius norm ||4]|%

Language Technologies Institul  multimodal data?




Canonical Correlation Analysis reminder

When data is normalized it is actually equivalent to smallest RMSE
reconstruction

= (CCAloss can also be re-written as:

A
>_
LW, V) = U7X ~ V7Y
subject to: UTEyyU = VTZy WV = I gl R

projection of X

H, ,/' \\\ Hy
@0 00 @0 00
U vV
00 - 900 | ]
Text Image
X Y
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Canonical Time Warping

= Dynamic Time Warping + Canonical Correlation Analysis
= Canonical Time Warping

2

L(U,V,W,,W,) = |[UTXW, — VIYW, ||

= Allows to align multi-modal or multi-view (same modality
but from a different point of view)

- W,, W, —temporal alignment
= U,V — cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]
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Generalized Time warping

= Generalize to multiple sequences all of different
modality

2
L(U;,W;) = Z ZHUiTxiwi = UJ-TX]-WJ-HF
=1 j=1
= W,; — set of temporal alignments

= U; — set of cross-modal (spatial) alignments

Cc}? (1) Time warping
% (2) Spatial embedding
>

[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]
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Alignment examples (multimodal)

1/273 1/51 1/127

n But how to model non-linear alignment functions? -



Deep Canonical Time Warping

L(01,0, W, W) = |fo, X)Wy — fo, (Y)WyH,Zg

= Could be seen as generalization of DCCA and GTW

A — e A6 AGD AGD AKD ..

NN/ /-

DR fo() — h) 86D B A . D)

SSO[ VOO

Spatial
Transformation

Temporal alignment

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]
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Implicit alignment
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Machine Translation

= Given a sentence in one language translate it to another

Dog on the beach =2 le chien sur la plage

= Not exactly multimodal task — but a good start! Each
language can be seen almost as a modality.

Language Technologies Institute



Encoder-Decoder Architecture [Cho et al., “Leaming Phrase Representations
using RNN Encoder-Decoder for Statistical

for Machine Translation Machine Translation”, EMNLP 2014]

Context

1-of-N encoding 1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”

Language Technologies Institute




Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Dog
Atiention Hidden state s, ?
gate \l_
l j‘T‘
o Context z, .
hy hz hs\hy hs
Encoder — . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—
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Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Attention :
odule / Hidden state sl\f ?

Context z4 . .
hy hz h3 hey hs
EnCOder - . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—
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Attention Model for Machine Translation

= Before encoder would just take the final hidden state, now we
actually care about the intermediate hidden states

Dog on the

ﬁﬁﬁf? Hidden state s, H ?
gate L—#‘?'\T[

- Context z
i H B BN
hyhs h3\hy hs
EnCOder-‘ . . . . . [Bahdanau et al., “Neural Machine
Translation by Jointly Learning to Align
le  chien sur la plage and Translate”, ICLR 2015]

—

Language Technologies Institute



Attention Model for Machine Translation

The
agreement
on

the
European
Economic
Area

was

signed
in

August
1992
<end=

L
accord

sur

la

zone
économique
européenne
a

éte

signé

en

aolt

1992

<end=
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Attention Model for Image Captioning

Distribution
over L locations
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Attention Model for Image Captioning

A0.98) woman(0.54) i5(0.37)

!’

frisbee(0.37)

park(0.35) {0.33)

throwing(0.33) in(0.21)

Xu et.al., ICML 2015
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Multimodal Fusion



Multimodal Fusion

Process of joining information from two or more modalities to perform
a prediction
= One of the earlier and more established problems

= e.g. audio-visual speech recognition, multimedia event detection,
multimodal emotion recognition

= Two major types Prediction
= Model Free

= Early, late, hybrid
= Model Based Fancy

algorithm
= Kernel Methods

= Graphical models
» Neural networks

Language Technologies Institute




Model free approaches — early fusion

Modality 1

Modality 2
Classifier

Modality n

= Easy to implement — just concatenate the features

= Exploit dependencies between features

= Can end up very high dimensional

= More difficult to use if features have different framerates

Language Technologies Institute



Model free approaches — late fusion

Modality 1
Classifier - -

Modality 2 Fusion

Classifier | ' mechanism

Modality n
' Classifier

Train a unimodal predictor and a multimodal fusion one

Requires multiple training stages

Do not model low level interactions between modalities

Fusion mechanism can be voting, weighted sum or an ML approach

Language Technologies Institute



Model free approaches — hybrid fusion

Modality 1
Classifier

Modality 2

Classifier _
Fusion

mechanism
Modality 1

- Classifier
Modality 2

= Combine benefits of both early and late fusion mechanisms

Language Technologies Institute



Multiple Kernel Learning

» Pick a family of kernels for each modality and learn which kernels are important for the
classification case

= (Generalizes the idea of Support Vector Machines

» Works as well for unimodal and multimodal data, very little adaptation is needed

[Lanckriet 2004]
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Multimodal Fusion for Sequential Data

Multi-View

Modality- structure ‘
Hidden Conditional Random Field

« Internal grouping of observations

Modality-shared structure
* Interaction and synchrony

p(y| x4, x";0) = z p(y, h4, AV x4, xV; 6)
hA,hY

» Approximate inference using loopy-belief

[Song, Morency and
Davis, CVPR 2012]
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Sequence Modeling with LSTM

IR A S ¢

LSTMg, > LSTM, M LSTM g [roreeessees — LSTM,,

6 © © ¢
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Multimodal Sequence Modeling — Early Fusion

IR A S ¢

LSTM > LSTM, o LSTM_g) freeereeesee: — LSTM,

CRCRCS
& & &
CRCRS
CRCRE
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Multi-View Long Short-Term Memory (MV-LSTM)

MV- | Mv- | oMv- e M-
LSTM(l) > LSTM(z) D LSTM(S) """""" — LSTM(T)
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Multi-View Long Short-Term Memory

| Multi-view topologies

| AL "
1 t 1)
MV- Hey L M- » U > c,éz) :O .| fi
tanh
LSTM, 20 o T L Mk g(ts) I Ct 3 K
3 3
MV-
R (1 g sigm
| e Input gate
@ |-
X
:3) o
sigm
i Forget gate -
| MV-
sigm
Output gate -
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Topologies for Multi-View LSTM

MV-
LSTM,

Multi-view topologies mmp View-specific

a=1, B=0

1) l XD ey D
MV- 2

Language Technologies Institute

Fully-
=) onnected
a=1, =1

m) Hybrid

a=2/3, 3—1/3
e

h(l) //V'\',
7/
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4

h(3) 7




Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

Class labels Model Precision | Recall | F'1

Easy to engage LSTM (Early fusion) | 0.75 0.81 |0.78
MV-LSTM Full 0.81 0.81 |0.81
MV-LSTM Coupled |0.79 0.81 ]0.80
MV-LSTM Hybrid | 0.80 0.86 |0.83

Difficult to engage | LSTM (Early fusion) |0.63 0.55 |0.59
MV-LSTM Full 0.68 0.68 |0.68
MV-LSTM Coupled | 0.67 0.64 |0.65
MV-LSTM Hybrid  0.74 0.64 |0.68
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Memory Based

= A memory accumulates multimodal
iInformation over time.

= From the representations throughout a
source network.

= No need to modify the structure of the
source network, only attached the
memory.
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Memory Based

/ Multi-view Gated Memory
(t-1)

\& System of LSTMS/
t—1 t t+1 t+2 t+3 t+4
[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]

Language Technologies Institute




Multimodal Machine Learning

Representation Multimodal Machine Learning:
_ A Survey and Taxonomy

Alignment N | |

By Tadas Baltrusaitis, Chaitanya Ahuja,

. and Louis-Philippe Morency
Fusion
https://arxiv.org/abs/1705.09406
Translation 15 core challenges
] V137 taxonomic classes

Co-Learnin g 253 referenced citations
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