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ABSTRACT

We propose a model to automatically generate whole body mo-
tions accompanying utterances at appropriate times, similar to hu-
mans, by using various types of natural-language-analysis infor-
mation obtained from spoken language. Specifically, we focus on
the co-occurrence relationship between various types of natural-
language-analysis information such as words included in the spo-
ken language, parts of speech, a thesaurus, word positions, dia-
logue acts of the spoken language, and humanmotions. Our model
automatically generates nods, head postures, facial expressions,
hand gestures, and upper-body posture using such information.
We first recorded a two-person dialogue and constructed a multi-
modal corpus including utterance and whole body motion infor-
mation. Next, using the constructed corpus, we constructed our
model for generating a motion for each phrase unit using machine
learning and using words, parts of speech, a thesaurus, word po-
sitions, and speech acts of the entire spoken language as inputs.
These types of natural-language-analysis information were useful
for motion generation. The effectiveness of our model was veri-
fied through a subjective experiment using a virtual conversational
agent. As a result, the agent’s body motions and impressions re-
garding naturalness of motion, degree of coincidence between ut-
terance and motion, humanness of the agent, and likability of the
agent improved with our model.
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1 INTRODUCTION

In human communication, body motion, in addition to spoken lan-
guage, is important to convey emotion and intention [3]. There-
fore, a virtual agent or humanoid robot in a dialogue system should
express appropriate body motions according to utterances and ef-
fectively communicate with a user. Communication robots and vir-
tual agents have also been drawing attention in industry, and are
applied in various services such as communication opponents, re-
ception, and Q&A. One of the main problems in handling actual
services is that it takes a huge amount of time to manually create a
motion scenario for each utterance for a virtual agent or humanoid
robot to generate body motions. Also, what kind of motion is to be
generated and the timing of its appearance are situations in which
the creator’s subjectivity is taken into consideration, and an ap-
propriate motion is necessarily generated. As dialogue technology
advances, it will become unrealistic to manually provide appro-
priate motions to all speech for systems capable of automatically
responding to various utterances.

In response to these problems, we are working on enabling hu-
manoid robots and virtual agents to automatically generate mo-
tions based on the content of utterances at the proper time, similar
to humans. It is believed that the generation cost of motion will
significantly decrease or be eliminated with such technology. We
propose a model for generating whole body motions such as nod-
ding, head pose, facial expressions, hand gestures, and upper-body
posture for each phrase using various types of natural-language-
analysis information obtained from spoken language as input.
Words, parts of speech, a thesaurus in the spoken language, word
positions, and all utterance actions of the spoken language are used
as various types of natural-language-analysis information. This is
the first attempt to study the relevance of such information and
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motions. An advantage of generating motions using spoken lan-
guage information is that spoken language and body motions are
simultaneously generated and output to the brain and deep con-
nection. That is, based on such a co-occurrence relation, spoken
language information is considered effective for motion genera-
tion.

Initially, a two-person dialogue is recorded, and a multimodal
corpus including utterance, head-movement, facial-expression,
hand-gesture, and body-posture information is constructed. Next,
using the constructed corpus, a model for generating a motion for
each phrase unit is constructed using machine learning and using
words, parts of speech, a thesaurus, word positions, and speech
acts of the entire spoken language as inputs. As a result, such in-
formation was useful for motion generation in our research. The
effectiveness of the motion generated with our model was verified
through a subjective experiment using a virtual agent. As a result,
the generated motions improved impressions regarding natural-
ness of motion, degree of coincidence between utterance and mo-
tion, humanness of the agent, and likeability of the agent.

Our generationmodel outputs whole bodymotions such as nod-
ding, head pose, facial expressions, hand gestures, and upper-body
posture for each phrase using various types of language-analysis
information obtained from spoken language as input. The rele-
vance of such language information and motions has not been
studied, and this is the first attempt.

An advantage of generating motions using spoken language in-
formation is that spoken language and body motions are simul-
taneously generated and output in the brain and deep connection.
That is, based on such co-occurrence relation, spoken language in-
formation is considered effective for motion generation.

2 RELATEDWORK

In human communication, body motions, such as nodding, head
posture, facial expressions, hand gestures, and upper-body pos-
ture, as well as speech, are known to transmit emotion and inten-
tion [3, 24–26]. Therefore, it has been shown that enabling a hu-
manoid virtual agent or robot appropriate body motions not only
improves their natural appearance but also promotes conversation.
For example, a motion accompanying an utterance has the effect
of strengthening the persuasive power of that utterance, making
it easier for the other party to understand the content of the ut-
terance [18]. Against such a background, many studies have been
conducted to enable virtual agents to generate appropriate mo-
tions. Cassel et al. proposed a system framework for generating
motion that suits the uttered voice based on text information [5].
In this framework, they proposed to generate representative non-
verbal behavior, such as beat gesture and gaze direction, based on
a heuristic rule by using word information of speech.

Attempts have been made to generate motion during speak-
ing, especially using speech-sound information [2, 4, 6, 9, 12–
14, 16, 26, 28, 29], which is used frequently as sound pressure and
prosodic features. However, it was difficult to accurately generate
body motions from the speech-sound of utterances. It is known
that the co-occurrence relationship between speech-sound fea-
tures and nodding is weak in Japanese [11, 29]. Therefore, if a
model capable of generating body motions at a more appropriate

Figure 1: Example of dialogue scene

time also uses information other than speech-sound information,
more effective communication between a dialog system and user
may be possible.

In conventional studies on motion generation from natural lan-
guage information, small motions, such as presence or absence of
nodding and limited hand gestures [6, 11, 12, 15, 21], are created
mainly using word information, which is very simple information.
Some studies also involved generating limited hand gestures using
some natural language information. They also addressed generat-
ing hand gestures based on speech and natural language informa-
tion. However, our focus was generating whole bodymotions from
detailed natural-language-analysis information.

There are also several advantages of using natural-language-
analysis information. A dialog agent using speech synthesizes
speech sound from synthetic sound processing, such as feature-
amount extraction, when generating motions using speech infor-
mation after acquiring text information from which the dialogue
agents speaks. This increases processing time. As a result, the prob-
lem with motion generation using voice information is that the
response time to the user is delayed. On the other hand, when
natural-language-analysis information is used, such processing is
unnecessary and responsiveness is ensured, which is important
for real-time communication. Since the input of speech synthe-
sis is based on the spoken language, motion-generation accuracy
does not change when using only spoken languages but may de-
crease. It is also expected that this technology will be applied more
widely, such as to text chattingwithout using speech, by using only
natural-language-analysis information.

3 CORPUS DATA

To collect a Japanese conversation corpus including verbal and
nonverbal behaviors for generating nods in a dialogue, we
recorded 24 face-to-face two-person conversations (12 groups of
two different people). The participants were Japanese males and
females in their 20s to 50s who had never met before. They sat
facing each other (Fig. 1). To gather more data on nodding accom-
panying utterances, we adopted the explanation of a cartoon that
participants had not seen as the conversational content. Before the
dialogue, they watched a famous cartoon called “’Tom & Jerry” in
which the characters do not speak. In each dialogue, one partic-
ipant explained the content of the cartoon to the conversational
partner within ten minutes. At any time during this period, the
partner could freely ask questions about the content.
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Generation target Number of classes Class details
Number of nods 6 0, 1, 2, 3, 4, more than 5
Depth of nod 4 micro, small, medium, large

Head rotation (yaw) 9 front, right-micro, right-small, right-medium, right-large, left-micro, left-small,
left-medium, left-large

Head rotation (roll) 9 front, right-micro, right-small, right-medium, right-large, left-micro, left-small,
left-medium, left-large

Head rotation (pitch) 7 front, up-micro, up-small, up-medium, up-large, up-micro, up-small, up-medium, up-large
Facial expression 8 happiness, sadness, surprise, fear, anger, disgust, contempt, normal
Hand gesture 9 none, iconic, metaphoric, beat, deictic, feedback, compellation, hesitate, others

Upper-body posture 7 center, forward-small, forward-medium, forward-large, forward-small, forward-medium,
forward-large

Table 1: List of generated motion parameters

We recorded the participants’ voices with a pin microphone
attached to the chest and videoed the entire discussion. We also
took bust (chest, shoulders, and head) shots of each participant
(recorded at 30 Hz). In each dialogue, the data on the utterances
and nodding behaviors of the person explaining the cartoon were
collected in the first half of the ten-minute period (120 minutes in
total) as follows.

• Utterances: We built an utterance unit using the inter-
pausal unit (IPU) [17]. The utterance interval was manually
extracted from the speech wave. A portion of an utterance
followed by 200 ms of silence was used as the unit of one
utterance. We collected 2965 IPUs. We also used J-tag [8],
which is a general morphological analysis tool for Japanese,
to divide an IPU into phrases. We collected 11877 phrases in
total.

• Head direction: Using the facial-image processing tool
OpenFace [23] for the front image of the participant ob-
tained from the video camera installed in front of the partic-
ipant, three-dimensional face orientation information such
as the angles of yaw, roll, and pitch, were acquired. When
each of these angles is 10 degrees or less, it is micro, 20 de-
grees or less, small, 30 degrees or less, medium, and 45 de-
grees, large.

• Head nod: A head nod is a gesture in which the head is tilted
in alternating up and down arcs along the sagittal plane.
A skilled annotator annotated the nods by using bust/head
and overhead views in each frame of the videos. We re-
garded nodding continuously in time as one nod event. The
frequency (number) of nods was also manually labeled as
1, 2, 3, 4, or 5 or more. The change in the rotation angle
of the head when nodding occurred was measured using
OpenFace, which is head-tracking software that uses im-
age processing [1]. The difference between the direction
angle of the head at the beginning of nodding and that
when the head is oriented furthest downward was obtained
as nodding-depth information. Furthermore, the nodding
depth was classified into the following four stages.
– Micro: Depth less than 5 degrees
– Small: Depth greater than 5 degrees and less than or equal
to 10 degrees

– Medium: Depth greater than 10 degrees and less than or
equal to 20 degrees

– Large: Depth greater than 20 degrees
• Facial expression:We used OpenFace to extract the strength
of an action unit (AU) [22]. We extracted seven facial ex-
pressions (joy, anger, disgust, sadness, fear, surprise, nor-
mal) using the related combinations of AU strengths. Specif-
ically, joy is related to AU 6 and AU 12; anger to AU 4, AU
7, and AU 24; disgust to AU 4, AU 7, and AU 25; sadness
to AU 1, AU 4, AU 7, AU 15, and AU 17; fear to AU1, AU2,
AU5, and AU26; and surprise to AU1, AU2, AU20, and AU43.
We calculated the average strength of each AU related to
each facial expression as that of that facial expression. We
set this mean value as the strength xf of an expression f .
The average value µf and standard deviation σf of xf were
also calculated for each facial expression using the inten-
sity value of each facial expression obtained from the entire
dialogue corpus. We calculated the Z score Zf using these
values and normalized xf . We selected the facial-expression
classes that had the largest Zf of each facial expression as
the current facial expressions. When the Zf of all facial ex-
pressions was less than 0.3, these expressions were assigned
to the “normal” class .

• Hand gesture: manual annotation was carried out on the
state in which the hand gesture is being performed. The se-
ries of actions of this gesture was classified into the follow-
ing four states.
– Prep: Raise hands to gesture from home position
– Hold: State of holding hand in the air (standby time to
start gesture)

– Stroke: Perform gesture
– Return: Return hand to home position
However, a series of actions from Prep to Return was con-
sidered as one gesture event for convenience. Furthermore,
hand gestures were classified into the following eight types
based on McNeil’s hand-gesture classification [19].
– Iconic: Gesture used to express scene depiction and mo-
tion.

– Metaphoric: Similar to Iconic, it is a painterly and graph-
ical gesture, but contents instructed are abstract, for ex-
ample, the flow of time.

– Beat: Tone of utterance and emphasizing remarks. Vibrate
hands and waving them according to speech.
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Target Chance level Proposed model
Number of nods 0.226 0.428
Depth of nod 0.304 0.475

Head rotation (yaw) 0.232 0.331
Head rotation (roll) 0.297 0.397
Head rotation (pitch) 0.261 0.379
Facial expression 0.175 0.294
Hand gesture 0.156 0.305

Upper-body posture 0.183 0.313
Table 2: Evaluation results of our model and chance level

– Deictic: A gesture that points directly to directions,
places, and things, such as finger pointing.

– Feedback: Gesture to synchronize, agree with, and re-
spond to the utterances of others. A gesture accompany-
ing speaking in response to a previous utterance/gesture
of another person; also, imitating the opponent’s gesture.

– Compellation: Gesture to call the other party.
– Hesitate: A gesture when it is time to say something.
– Others: Gestures other than the above.

• Upper-body posture: participants were seated in this dia-
logue scene, and there was no significant change in the
seated position. For this reason, we extracted the posture
behind the upper body based on the three-dimensional po-
sition of the head. Specifically, we obtained the difference
between the center position and coordinate position in the
front-back direction of the head position obtained using
OpenFace. Based on this positional information, the change
in posture angle of the upper body was calculated. When
it was 10 degrees or less, it was classified as micro, 20 de-
grees or less, small, 30 degrees or less, medium, and over 45
degrees, large.

All verbal and nonverbal behavior data were integrated at 30
Hz for display using the ELAN viewer [27]. This viewer enabled
us to annotate the multimodal data frame-by-frame and observe
the data intuitively.

4 BODY-MOTION GENERATION

We constructed our model using the conditional random field
(CRF). The model generated one motion class for each phrase in
each of the eight motions parameters listed in Table 1 using the
constructed corpus including words, parts of speech, a thesaurus,
word positions, and speech acts of the entire spoken language as
input. That is, eight motion labels were generated for each clause.
We used the following natural-language-analysis features.

• Length of phrase (LP): Number of characters in a phrase.
• Word position (WP): Word position in a sentence.
• Bag of words (BW): Other studies focused on a limited num-
ber of words to generate head nods. To handle more generic
word information, we examined the number of occurrences
of all words, not some words. We used J-tag [8], a general
morphological analysis tool for Japanese.

• Dialogue act (DA): A DA was extracted using an estima-
tion technique for Japanese [10, 20]. The technique can es-
timate a DA using the word N-grams, semantic categories

Figure 2: Virtual agent in experiment

(obtained from a Japanese thesaurus Goi-Taikei), and char-
acter N-grams. There are 32 types of DAs.

• Part of speech (PS): Number of occurrences of the PSs of
words in a phrase. We used J-tag [8] to extract PS informa-
tion.

• Large-scale Japanese thesaurus (LT): The LT is a large lex-
ical database of Japanese. Nouns, verbs, adjectives, and ad-
verbs are grouped into sets of cognitive synonyms (synsets),
each expressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical relations.

We constructed our motion-generation model using the eight
motion parameters listed in Table 1. We used 24-fold cross valida-
tion using a leave-one-person-out technique with the data for the
same 24 participants mentioned above. We evaluated how effec-
tively the body motions of a participant could be estimated with
an estimator generated only from the data of other people.

Table 2 shows the average F-measure. The chance level is a per-
formance F-measure of when all classes with the most correct an-
swers are output. The F-measure significantly improved over the
chance level in all motion-generation parameters (the result of the
corresponding t-test: p < .05). The proposed model using words,
PSs, the LT, WPs, and DAs of the entire spoken language was ef-
fective in generating whole body motions.

5 SYSTEM CONSTRUCTION AND
EVALUATION EXPERIMENT

The proposedmotion-generationmodel was assessed through sub-
jective experiments as to whether it is effective in generating mo-
tions when controlling the body motions of a virtual agent.

An experimental systemwas configured for our model to gener-
ate the eight motion parameters for each phrase. A speech engine
(FutureVoice) [7] using a DNN created the synthesized sound from
the spoken language. The virtual agent shown in Fig. 4 was created
on UNITY, and correspondences to the eight motion parameters
were created. Animation of body motion was generated on UNITY
according to the occurrence of sound based on the reproduction of
speech sound and motion-schedule information. At this time, the
eight motion-generation parameters could be used independently.
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Figure 3: Results of subjective evaluation

For headmovement, all parameters weremixed and generated, and
lipsync was implemented so that simple lip motion matching the
voice could be generated.

Two control conditions, i.e., not performing a motion that
matches an utterance (unconditional) and random motion gener-
ation (random), were applied for comparison with motions gen-
erated with the proposed model. The same five utterances of the
agent’s self-introduction were prepared for each condition. After
observing the behavior of the agent under each condition, sub-
jective evaluation on a 7-point Likert scale was carried out. The
evaluation items were "naturalness of movement", "consistency in
utterance and movement", "likability", and "humanness". Ten par-
ticipants (men andwomen) took part in the evaluation. Eachmodel
was randomly presented for each participant to offset the order ef-
fect.

The average scores are shown in Fig. 3. A one-way analysis of
variance was conducted within each evaluation item, and it was
verified whether the effect of each experimental condition was
significant. Significant differences were found for all items (nat-
uralness of movement: F (2, 27) = 37.12,p < .01, consistency in
utterance and movement: F (2, 27) = 18.34,p < .01, likability:
F (2, 27) = 7.80,p < .01, and humanness: F (2, 27) = 33.76,p < .01).
There were significant differences between the proposed model’s
conditions and the two control conditions from the correspond-
ing t test. Therefore, all items seemed to have improved with the
proposed model.

6 DISCUSSION

The accuracy of our model was from 0.294 to 0.475, which is not
necessarily high. Regarding this, in the first place, human motion
is not necessarily of a nature that must occur with a specific ut-
terance, that is, it is originally generated naive in the first place.

Therefore, it is difficult to perfectly reproduce actual human mo-
tions, but this is not essential. We examined how accurately a vir-
tual agent could reproduce human motions by conducting a sub-
jective evaluation. The agent’s motions generated with the pro-
posed model were considered natural, consistent in motions and
utterances, likable, and human-like, demonstrating the effective-
ness of our model.

There are several issues with our model. First, estimation ac-
curacy needs to be improved. Previous studies have shown that
hand gestures can be generated using deep learning. Second, it is
possible to generate more types of hand gestures. There are cur-
rently several types of hand gestures. In reality, however, hand
gestures have many types of movement. Third, generation of fa-
cial expressions from text information is not necessarily accurate.
Since speaking the same text does not necessarily have the same
emotion, it is difficult to generate expressions only with text infor-
mation. We are planning to solve these problems in the future.

7 CONCLUSION AND FUTUREWORK

We focused on the co-occurrence relation between various types
of natural-language-analysis information such as words included
in the spoken language, parts of speech, a thesaurus, word posi-
tions, speech acts of the entire spoken language, and human mo-
tions. We constructed a model that automatically generates nods,
head pose, facial expressions, hand gestures, and upper-body pos-
ture. First, we recorded a two-party dialogue and constructed a
multimodal corpus including utterance, head-movement, facial-
expression, hand-gesture, and body-posture information. Next, us-
ing the constructed corpus, we constructed our model for generat-
ing a motion for each phrase by using machine learning and var-
ious natural-language-analysis information as input. These types
of information were useful for motion generation. To promote the
wide use of this model, we constructed a demonstration system
that can easily generate motions by using the proposed gener-
ation model and automatically control virtual agents created on
UNITY from the spoken language only. In this system, when an
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arbitrary spoken language is input, synthesized sound and motion
information are acquired from the speech synthesizer and motion-
generation API, and an utterance of UNITY and animated motion
are generated. By conducting a user subjective evaluation using
this demonstration system, it was possible to evaluate the natural-
ness of motion, consistency between utterance andmotion, likabil-
ity, and humanness of the agent. We confirmed that the impression
of these items improved with our model.

This motion-generation model can be widely applied not only
to interactive systems using virtual agents and humanoid robots
but also to avatars on text-chat applications and CG animation.
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