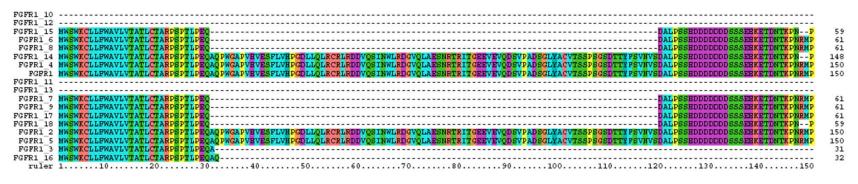
Alignment of Next-Generation Sequencing Data


Nadia Lanman HPC for Life Sciences 2019

What is sequence alignment?

- A way of arranging sequences of DNA, RNA, or protein to identify regions of similarity
 - Similarity may be a consequence of functional, structural, or evolutionary relationships between sequences
 - In the case of NextGen sequencing, alignment identifies where fragments which were sequenced are derived from (e.g. which gene or transcript)
- Two types of alignment: local and global

Global vs Local Alignment

- Global aligners try to align all provided sequence end to end
- Local aligners try to find regions of similarity within each provided sequence (match your query with a substring of your subject/target)

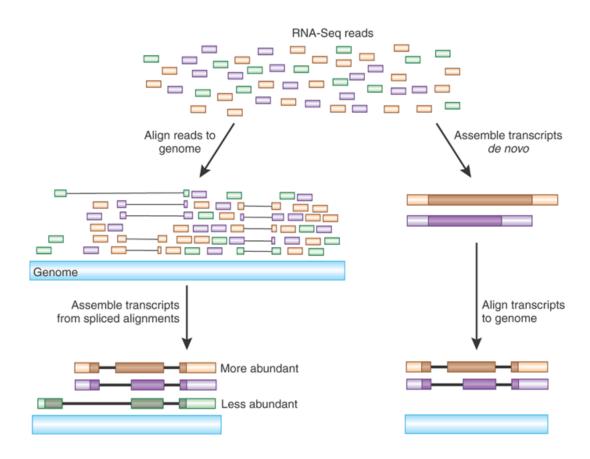
Alignment Example

Raw sequences:

AGATG and GATTG

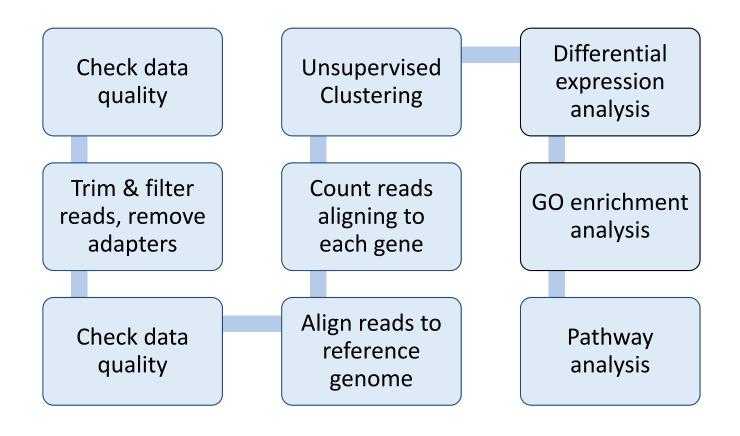
2 matches, 0 gaps
AGATG
| |
GATTG

4 matches, 1 insertion
AGA-TG.

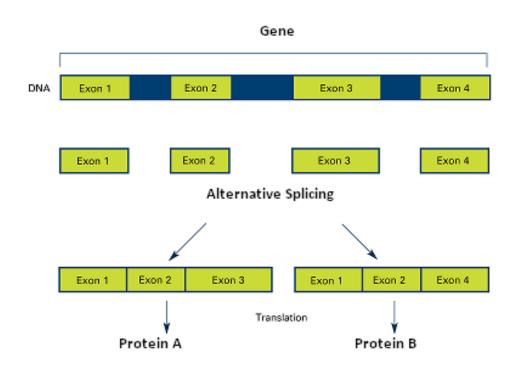

4 matches, 1 insertion

A G A T - G . | | | | | . G A T T G 3 matches, 2 end gaps

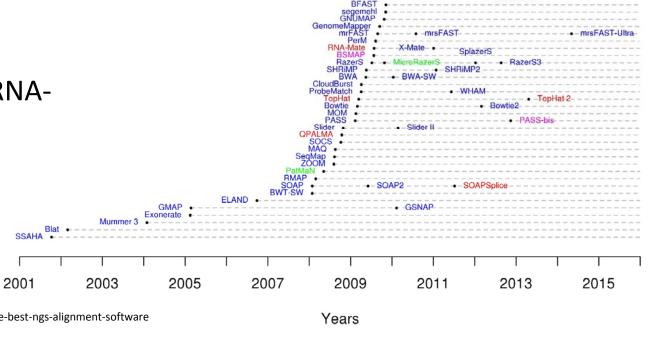
AGATG. ||| .GATTG


NGS read alignment

- Allows us to determine where sequence fragments ("reads") came from
- Quantification allows us to address relevant questions
 - How do samples differ from the reference genome
 - Which genes or isoforms are differentially expressed


Haas et al, 2010, Nature.

Standard Differential Expression Analysis


Challenges of NGS Read Alignment

- Alternative splicing
- Often must align billions of reads
- Reads will have some mismatches = an approximate matching problem
 - Sequencing errors
 - True biological variation
- Eukaryotic genome are rich in repetitive regions`
- New methods had to be developed which were specific to NGS sequence alignment
- Multi-mapped reads

More than 90 aligners exist

- Bowtie2
- BWA
- STAR
- Tophat2
- Pseudo Aligners for RNAseq quantification
 - Kalliso
 - Salmon
 - Sailfish

https://www.ecseq.com/support/ngs/what-is-the-best-ngs-alignment-software

How to align a huge amount of data?

Two general ideas

- 1. Filtering approaches exclude a large region of the reference where no approximate match can be found
 - Pidgeonhole lemma or q-gram lemma
- 2. Indexing involve preprocessing the reference, set of reads, or both. Queries can be conducted without scanning the entire reference genome.
 - String indices commonly used:
 - Suffix array
 - Uses more memory but very fast to query
 - Enhanced suffix array
 - FM-index (a data structure based on the Burrows-Wheeler transform)
 - Make very good use of memory and is also quite fast

Burrows-Wheeler Aligners

- Used with FM-index (Ferragina & Manzini, 2000) allows efficient finding of substring matches within compressed text
- Sub-linear
- Lower memory footprint, fast execution.
- Rearranges a character string into runs of similar characters
 - Makes the string very easy to compress if it has runs of repeated characters very useful for DNA strings!
- Is reversible

Burrows, Michael; Wheeler, David J. (1994), A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation

Burrows-Wheeler Aligners

- Burrows-Wheeler Transform encodes data so it is easier to compress
- Burrows-Wheeler transform of the word BANANA

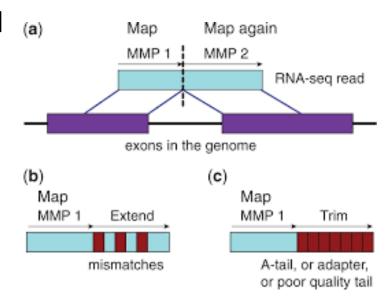
Transformation							
Input	All Rotations	Sorting All Rows in Alphabetical Order by their first letters	Taking Last Column	Output Last Column			
^BANANA	^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	BNN^AA A			

BWA

- Very fast, can do gapped alignments
 - bio-bwa.sourceforge.net
- Can be run without seeding and then will find all matches within a given edit distance
- Long read aligner (>200 bp) within BWA is also fast
- Actively maintained and has strong user community

BWA

- Burrows-Wheeler transform algorithm with FM-index using suffix arrays.
 - Need to create a genome index
- BWA can map low-divergent sequences against a large reference genome, such as the human genome.
- It consists of three algorithms:
 - BWA-backtrack (Illumina sequence reads up to 100bp)
 - BWA-SW (more sensitive when alignment gaps are frequent)
 - BWA-MEM (maximum exact matches)
- BWA SW and MEM can map longer sequences (70bp to Mbp) and share similar features such as long-read support and split alignment, but BWA-MEM, which is the latest, is generally recommended for high-quality queries as it is faster and more accurate.
- BWA-MEM also has better performance than BWA-backtrack for 70-100bp Illumina reads.


Bowtie2

- Bowtie (now Bowtie2) is part of a suite of tools for analyzing RNA-seq data (Bowtie, Tophat, Cufflinks, CummeRbund)
 - http://bowtie-bio.sourceforge.net
- Bowtie2 is a Burrows-Wheeler Transform (BWT) aligner and handles reads longer than 50 nt.
 - Need to prepare a genome index
- Given a reference and a set of reads, this method reports at least one good local alignment for each read if one exists.
- Bowtie (now Bowtie2) is faster than BWA for some alignments but is sometimes less sensitive than BWA
 - Can view all sorts of arguments for one or the other on SeqAnswers.com

Langmead and Salzberg, 2012, Nat. Methods

STAR

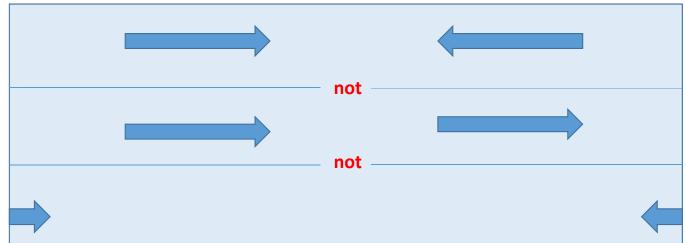
- <u>Splicing Transcripts Alignment to a Reference</u>
- Two steps: Seed searching and clustering/stitching/scoring (find MMP -maximal mappable prefix using Suffix Arrays)
- Fast splice aware aligner, high memory (RAM) footprint
- Can detect chimeric transcripts
- Generate indices using a reference genome fasta, and annotation gtf or gff from Ensembl/UCSC.

Dobin et al., 2013 Bioinformatics

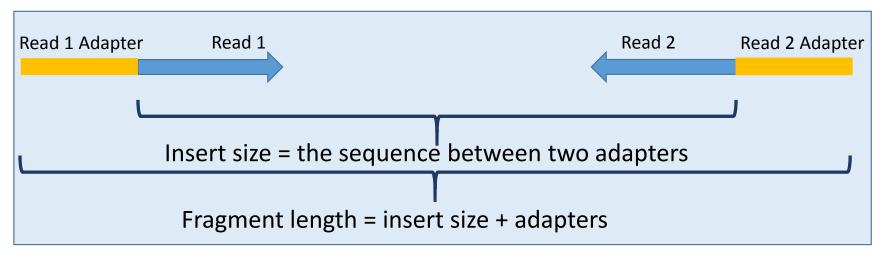
Alignment Concepts and Terminology

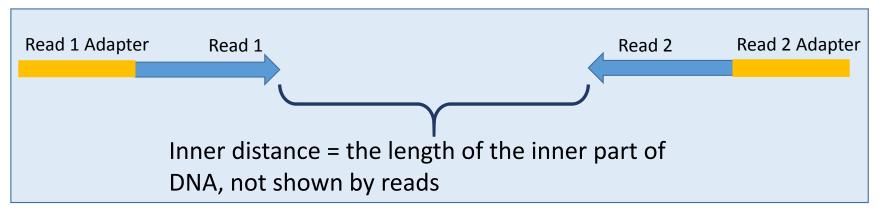
Edit distance

ATCGACCGCGCTAA-TATTAGTC...


CGACGGCGCTAACTATTA

edit distance = 2


 Mapping quality: the confidence that the read is correctly mapped to the genomic coordinates


Probability mapping is incorrect = 10^{-MQ/10}

Proper pairs

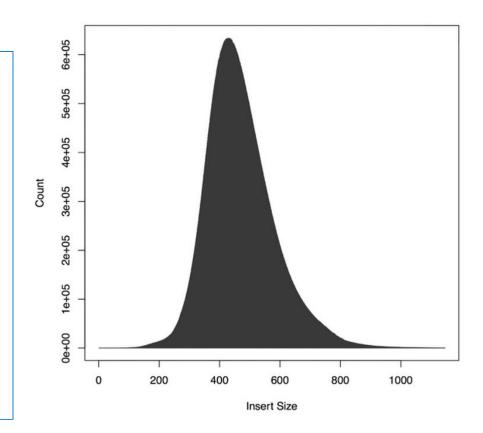
Alignment Concepts and Terminology

Note: when you align RNA reads to a DNA genome, set the insert size fairly liberally to allow for introns. Ex 200,000 for the human genome

Insert size

Find insert size and mean and median

bamtools stats -i foo.bam -insert


Or

samtools stats --insert-size foo.bam

Or

bbmap.sh ref=reference.fasta in1=read1.fq in2=read2.fq ihist=ihist_mapping.txt out=mapped.sam maxindel=200000

Or one of the many other options available (just Google).....

Alignment Concepts and Terminology

Multimapped reads: reads that align *equally well* to more than one reference location

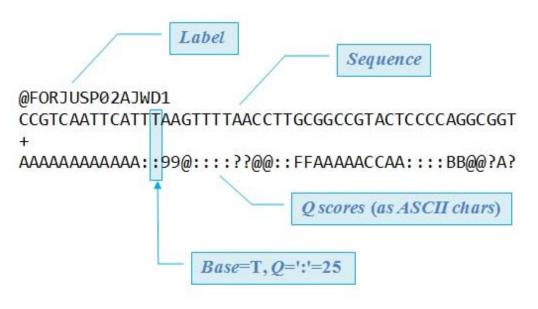
-How multimapped reads are handled depends on parameter settings selected, program, application, and how many time reads map to multiple places

Duplicate reads: reads that arise from the same library fragment

- -How duplicates are handled also depends on parameter settings selected, program, application
- -Can arise during library prep (PCR duplicates) or during colony formation (optical duplicates)

Mappability

- Not all of the genome is 'available' for mapping when reads are aligned to the unmasked genome.
- <u>Uniqueness</u>: This is a direct measure of sequence uniqueness throughout the reference genome.

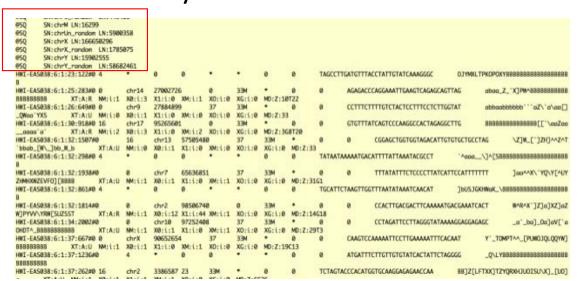

		Nonrepetitive sequence		Mappable sequence	
Organism	Genome size (Mb)	Size (Mb)	Percentage	Size (Mb)	Percentage
Caenorhabditis elegans	100.28	87.01	86.8%	93.26	93.0%
Drosophila melanogaster	168.74	117.45	69.6%	121.40	71.9%
Mus musculus	2,654.91	1,438.61	54.2%	2,150.57	81.0%
Homo sapiens	3,080.44	1,462.69	47.5%	2,451.96	79.6%

FASTQ Format

- Text files containing header, sequence, and quality information
- Quality information is in ACII format
- $Q = -10 \log_{10} p$

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%



https://www.drive5.com/usearch/manual/fastq_files.html

BAM and SAM format

- SAM file is a tab-delimited text file that contains sequence alignment information
- BAM files are simply the binary version (compressed and indexed version)of SAM files → they are smaller
- Example:

Header lines (begin with "@")

Alignment section

Understanding SAM flags

Decoding SAM flags

This utility makes it easy to identify what are the properties of a read based on its SAM flag value, or conversely, to find what the SAM Flag value would be for a given combination of properties.

To decode a given SAM flag value, just enter the number in the field below. The encoded properties will be listed under Summary below, to the right.

Summary:

not primary alignment (0x100)

SAM Flag: 256 Explain

Switch to mate | Toggle first in pair / second in pair

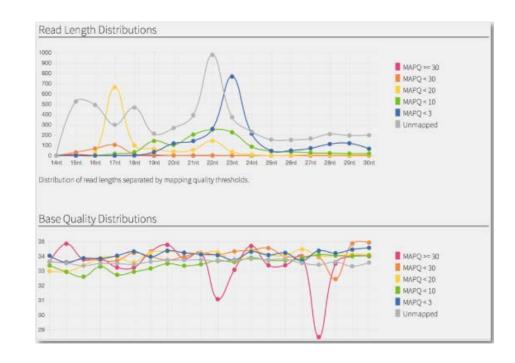
Find SAM flag by property:

To find out what the SAM flag value would be for a given combination of properties, tick the boxes for those that you'd like to include. The flag value will be shown in the SAM Flag field above.

- read paired
- read mapped in proper pair
- read unmapped
- mate unmapped
- read reverse strand
- mate reverse strand
- first in pair
- second in pair
- not primary alignment
- read fails platform/vendor quality checks
- read is PCR or optical duplicate
- supplementary alignment

https://broadinstitute.github.io/picard/explain-flags.html

Processing SAM/BAM files


- SAMtools is a software suite which provides various utilities for manipulating alignments in SAM format
 - Sorting, merging, indexing, and generating alignments in a per-position format
 - import: SAM-to-BAM conversion
 - view: BAM-to-SAM conversion and sub alignment retrieval
 - sort: sorting alignment
 - merge: merging multiple sorted alignments
 - index: indexing sorted alignment
 - faidx: FASTA indexing and subsequence retrieval
 - tview: text alignment viewer
 - pileup: generating position-based output and consensus/indel calling
 - RSamTools package in Bioconductor allows similar functionality in R.

Processing SAM/BAM files

- Picard is a collection of Java-based command-line utilities that manipulate sequencing data and formats such as SAM/BAM/CRAM and VCF. It has a Java API (SAM-JDK) for creating new programs that read and write SAM files.
- Currently contains 86 different tools
- Well-supported and frequently utilized
- The mark duplicate function is particularly useful.

SAMstat for mapping QC

- SAMstat is a C program that plots nucleotide overrepresentation and other statistics in mapped and unmapped reads and helps understand the relationship between potential protocol biases and poor mapping.
- It reports statistics for unmapped, poorly and accurately mapped reads separately. This allows for identification of a variety of problems, such as remaining linker and adaptor sequences, causing poor mapping

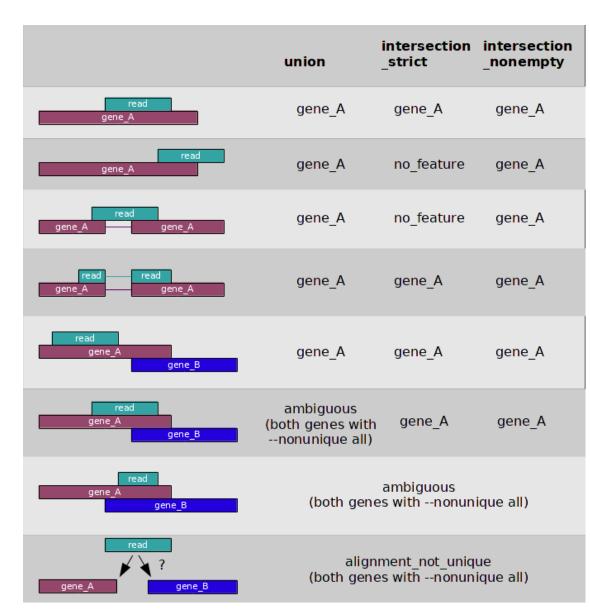

```
samstat <file.sam> <file.bam> <file.fa> <file.fq> ....

For each input file SAMStat will create a single html page named after the input file name plus a dot html suffix.
```

Lassmann et al., 2011, Bioinformatics.

Quantifying Genes

- Now that alignment has been performed, reads can be counted and a matrix created, quantifying genes and transcripts
- Many techniques exist
 - HTSeq-Count
 - FeatureCounts
 - RSEM
 - Pseudoaligners


RSEM

- RNA-seq Expectation Maximization
- RNA-seq gene and isoform quantification program
- Uses Bowtie, Bowtie2, or STAR to perform mapping
- Can take a *de novo* assembled transcriptome as input
- Uses EM (expectation-maximization) algorithm to estimate maximum likelihood expression levels (including dealing with multireads)
- Must index genome or transcriptome
- Outputs both gene and isoform quantification results

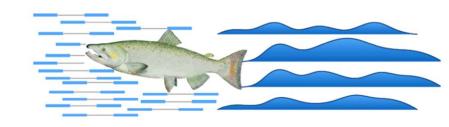
HTSeq-Count

- <u>Input</u>: SAM or BAM file and a GTF or GFF file with annotated gene models
- Output: counts for each gene the number of reads that overlap with its exons
- Only reads mapping unambiguously to a single gene are counted
- Reads aligned to multiple positions or overlapping with more than one gene are discarded
- Does not include "end" location of GTF files in the feature interval


Anders S, Pyl PT, Huber W. Bioinformatics. 2014.

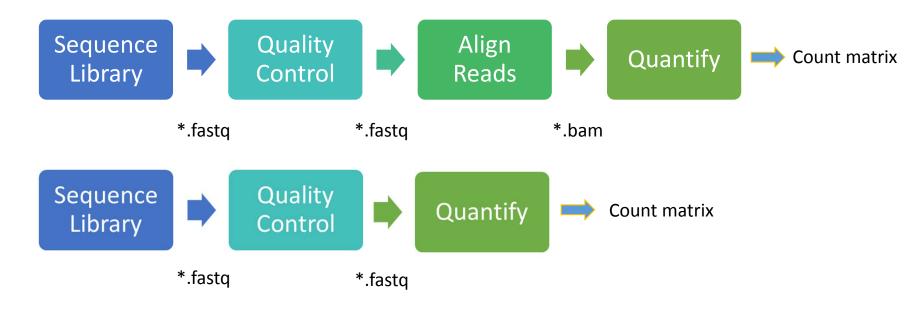
featureCounts

- A software program developed for counting reads to genomic features such as genes, exons, promoters, and genomic bins
- Quite similar to HTSeq-Count
- Takes as input SAM/BAM file and annotation file (GTF format or a SAF Simplified Annotation Format)
- By default ignores reads mapping to more than one feature
- featureCounts is ~20 times faster than HTSeq-count
- With default settings is more liberal that HTSeq-count
- Feature Counts breaks the tie of ambiguous reads by assigning fragments to the feature that receives the highest number of reads from a pair (1 or 2) mapping to the feature
- Includes the GTF/GFF "end" location from feature intervals


Alignment-free Quantification

Sailfish: 25x faster than anything that can before it. Accuracy is just as good.

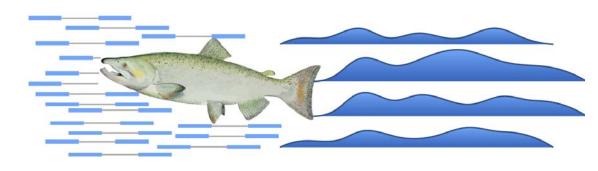
Kalliso: 10x faster than Sailfish, more accurate.

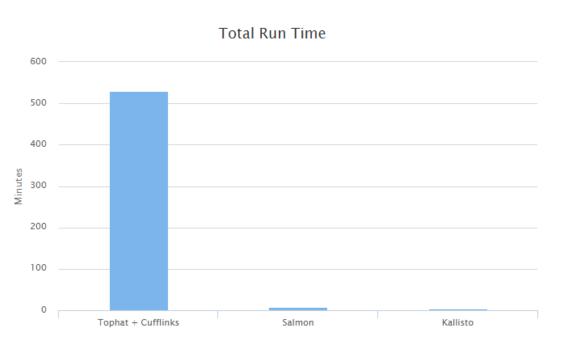


Salmon: Sailfish's successor. Borrows some techniques from Kallisto

Pseudoalignment

- Given a paired read, from which transcript could I have originated from?
- Not nucleotide sequence alignment
- It determines, for each read, not where in each transcript it aligns, but rather which transcripts it is compatible with.
- Very fast
 - The quantification of 78.6 million reads takes 14 minutes on a standard desktop using a single CPU core.
 - ~6 million reads quantified per minute


Why use a pseudoaligner?



Advantages:

- -Pseudoalignment of reads preserves important information needed for quantification
- -Fast
- -Accurate

Salmon

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. *Nat Methods*. 2017;14(4):417–419.

- You used this in week 4 to generate a count matrix
- Input: fasta file with your reference sequence and fastq files of your reads
- Output: tab separated quantification file
- Two steps:
 - 1. Indexing
 - 2. Quantification