Database Management Systems Relational Data Model

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit Indian Statistical Institute, Kolkata January, 2019

- 1 Preliminaries
- 2 Entity-Relationship (E-R) Data Model
 - Basics
 - Constraints
 - Concept of keys
 - Special features
- The Entity-Relation(E-R) diagram
 - Components
 - Real-life examples

A relational view of data

We can define a *relation* within the data from the mathematical perspective. Given the sets X_1, X_2, \ldots, X_n (not necessarily distinct), R is a relation on these n sets if it is a set of n-tuples each of which has its first element from X_1 , its second element from X_2 , and so on. We often refer to X_i as the ith attribute (taking values from a domain) of R.

As defined above, R is said to have degree n. Relations of degree 1 are often called unary, degree 2 binary, degree 3 ternary, and degree n n-ary.

Preliminaries

Example of a relation of degree 4:

Table: OSCAR

Year	Category	Movie	Name
1982	Best Costume Design	Gandhi	Bhanu Athaiya
1992	Lifetime Achievement Award	null	Satyajit Ray
2008	Best Original Song	Slumdog Millionaire	Gulzar
2008	Best Original Song	Slumdog Millionaire	A.R. Rahman
2008	Best Original Score	Slumdog Millionaire	A.R. Rahman
2008	Best Sound Mixing	Slumdog Millionaire	Resul Pookutty

The basic notions

In the Entity-Relationship (E-R) data model, we deal with multiple relations present in the data.

The E-R data model uses three basic notions as listed below:

- Entity sets
- Attributes
- Relationship sets

The basic notions

In the Entity-Relationship (E-R) data model, we deal with multiple relations present in the data.

The E-R data model uses three basic notions as listed below:

- Entity sets
- Attributes
- Relationship sets

Note: The Entity-Relationship (E-R) data model defines relations between the relations (tables).

Entity sets

An *entity set* is a set of objects (entities) of the same type that share the same attributes. E.g., the set of all musicians who are associated with a particular music company can be defined as the entity set 'Musicians'.

Entity sets

An *entity set* is a set of objects (entities) of the same type that share the same attributes. E.g., the set of all musicians who are associated with a particular music company can be defined as the entity set 'Musicians'.

Note: Entity sets are not necessarily disjoint.

Attributes

An entity is represented by a set of attributes. An *attribute* of an entity set is a function that maps from the entity set into a domain.

Attributes

An entity is represented by a set of attributes. An *attribute* of an entity set is a function that maps from the entity set into a domain.

An attribute can be of different types as given below.

- Simple attribute indivisible (e.g., age)
- Composite attribute divisible (e.g., STD code and local code in a phone number)
- Single-valued attribute takes a single value (e.g., gender)
- Multivalued attribute takes multiple values (e.g., playing instruments)
- Derived attribute value can be derived from other attributes (e.g., age can be derived from DOB)
- Descriptive attribute takes descriptive value (e.g., reason of breaking a contract)

Relationship sets

A relationship set denotes a set of associations (relationships) among multiple entities. In a formal sense, it is a mathematical relation on no less that two (possibly nondistinct) entity sets.

Relationship sets

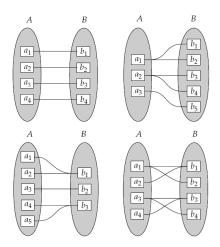
A *relationship set* denotes a set of associations (relationships) among multiple entities. In a formal sense, it is a mathematical relation on no less that two (possibly nondistinct) entity sets.

Consider the following two entity sets 'Musicians' and 'Instruments'. We can define a relationship set 'Plays' to denote the association between musicians and the instruments they play.

Table: Musicians

Name	Aadhaar	
Zakir Hussain	???????????	
Pt. Shiv Kumar Sharma	XXXXXXXXXXX	
Shivmani	*******	
A. R. Rahman	0000000000000	

Table: Instruments


ID	Name	Key
1	Flute	G-Flat
2	Flute	В
3	Flute	B-flat
4	Guitar	E-flat

Constraints in E-R data model

An E-R data model may include the following types of constraints:

- Constraints on mapping cardinalities (also termed as constraints on cardinality ratios) – reflects the number of entities to which another entity can be associated via a relationship set
- Participation constraints reflects the fraction of entities that can participate in at least one relationship
- Complex constraints hybrid of other constraints
- Key related constraints

Constraints on mapping cardinalities

Constraints on mapping cardinalities

- One-to-one: An entity in A is associated with at most one entity in B, and an entity in B is associated with at most one entity in A.
- One-to-many: An entity in A is associated with any number (zero or more) of entities in B. An entity in B, however, can be associated with at most one entity in A.
- Many-to-one: An entity in *A* is associated with at most one entity in *B*. An entity in *B*, however, can be associated with any number (zero or more) of entities in *A*.
- Many-to-many: An entity in A is associated with any number (zero or more) of entities in B, and an entity in B is associated with any number (zero or more) of entities in A.

Constraints on mapping cardinalities

- One-to-one: An entity in A is associated with at most one entity in B, and an entity in B is associated with at most one entity in A.
- One-to-many: An entity in A is associated with any number (zero or more) of entities in B. An entity in B, however, can be associated with at most one entity in A.
- Many-to-one: An entity in *A* is associated with at most one entity in *B*. An entity in *B*, however, can be associated with any number (zero or more) of entities in *A*.
- Many-to-many: An entity in A is associated with any number (zero or more) of entities in B, and an entity in B is associated with any number (zero or more) of entities in A.

As for example, the relationship set 'Plays' between the entity sets 'Musicians' and 'Instruments' is many-to-many.

Participation constraints

- Total participation: The participation of an entity set *E* in a relationship set *R* is said to be *total* if every entity in *E* participates in at least one relationship in *R*.
- Partial participation: The participation of an entity set E in a relationship set R is said to be partial if only some entities in E participate in at least one relationship in R.

Participation constraints

- Total participation: The participation of an entity set *E* in a relationship set *R* is said to be *total* if every entity in *E* participates in at least one relationship in *R*.
- Partial participation: The participation of an entity set E in a relationship set R is said to be partial if only some entities in E participate in at least one relationship in R.

As for example, consider that an entity 'Album' is associated with the entity 'Musicians' via a relationship set 'Director'. Then, the participation of 'Album' in the relationship set 'Director' is total but the participation of 'Musicians' is partial.

<u>Note</u>: The constraints on mapping cardinalities are between the entity pairs but the participation constraints are between an entity and a relationship set.

Complex constraints

E-R diagrams can also reflect more complex constraints on the number of times each entity participates in relationships in a relationship set.

An edge between an entity set and a binary relationship set can have an associated minimum and maximum cardinality, shown in the form l..h, where l is the minimum and h the maximum cardinality.

Complex constraints

E-R diagrams can also reflect more complex constraints on the number of times each entity participates in relationships in a relationship set.

An edge between an entity set and a binary relationship set can have an associated minimum and maximum cardinality, shown in the form l..h, where l is the minimum and h the maximum cardinality.

- A minimum value of 1 indicates total participation of the entity set in the relationship set.
- A maximum value of 1 indicates that the entity participates in at most one relationship, while a maximum value * indicates no limit.

Note: A label 1..* on an edge is equivalent to a double line.

A subset K of R is a *superkey* of R if, in any legal relation r(R), for all pairs t1 and t2 of tuples in r such that $t1 \neq t2$, then $t1[K] \neq t2[K]$, i.e. no two tuples in any legal relation r(R) may have the same value on attribute set K.

Basically, a *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

A subset K of R is a *superkey* of R if, in any legal relation r(R), for all pairs t1 and t2 of tuples in r such that $t1 \neq t2$, then $t1[K] \neq t2[K]$, i.e. no two tuples in any legal relation r(R) may have the same value on attribute set K.

Basically, a *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

A candidate key is a superkey for which no proper subset is a superkey, i.e. a minimal superkey.

A subset K of R is a *superkey* of R if, in any legal relation r(R), for all pairs t1 and t2 of tuples in r such that $t1 \neq t2$, then $t1[K] \neq t2[K]$, i.e. no two tuples in any legal relation r(R) may have the same value on attribute set K.

Basically, a *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

A candidate key is a superkey for which no proper subset is a superkey, i.e. a minimal superkey.

A *primary key* is a *candidate key* that is finally used by the database designer.

A subset K of R is a *superkey* of R if, in any legal relation r(R), for all pairs t1 and t2 of tuples in r such that $t1 \neq t2$, then $t1[K] \neq t2[K]$, i.e. no two tuples in any legal relation r(R) may have the same value on attribute set K.

Basically, a *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

A candidate key is a superkey for which no proper subset is a superkey, i.e. a minimal superkey.

A *primary key* is a *candidate key* that is finally used by the database designer.

An attribute of a relation R_1 is its *foreign key*, referencing another relation R_2 , if it is a *primary key* for R_2 .

Table: OSCAR_DIRECTOR

Best Director	Awards	Nominations
John Ford	4	5
William Wyler	3	12
Frank Capra	3	6
Billy Wilder	2	8
David Lean	2	7
Fred Zinnemann	2	7
Steven Spielberg	2	7

In the above relational schema, {Best Director}, {Best Director, Awards}, {Best Director, Nominations} and {Best Director, Awards, Nominations} are all *superkeys* and {Best Director} is the only *candidate key*.

Weak and strong entity sets

If an entity set does not have sufficient attributes to form a primary key then it is termed as a weak entity set, otherwise it is termed as a strong entity set.

An entity set may include subgroupings of entities that are distinct in some way from other entities in the set.

For instance, a subset of entities within an entity set may have attributes that are not shared by all the entities in the entity set. The E-R model provides a means for representing these distinctive entity groupings.

Special features – Generalization

There might exist similarities between two entities in the sense that they have several attributes in common. This commonality can be expressed by generalization, which is a containment relationship that exists between a higher-level entity set and one or more lower-level entity sets.

Higher- and lower-level entity sets also may be designated by the terms superclass and subclass, respectively.

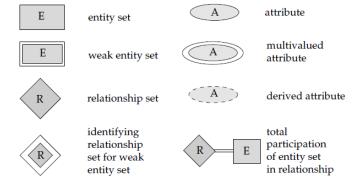
Special features – Generalization

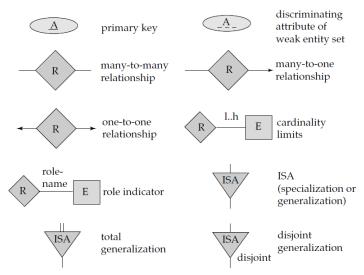
The *total generalization* demands that every entity in the superclass must belong to some subclass.

The partial generalization ensures that the entities in the superclass may not belong to any subclass.

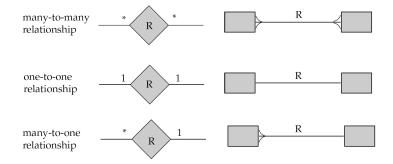
The *disjoint generalization* demands that every subclass must be disjoint.

The *overlapping generalization* ensures that the same entity may belong to more than one subclass within a single generalization.


Special features – Attribute inheritance


A crucial property of the higher- and lower-level entities created by specialization and generalization is attribute inheritance. The attributes of the higher-level entity sets are said to be inherited by the lower-level entity sets.

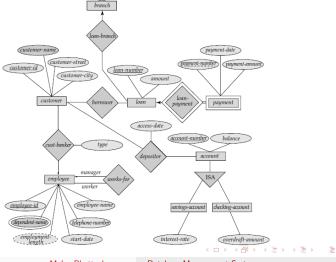
An E-R diagram graphically represents the entire logical structure of a database. It comprises the following components.


- Rectangles
- Double rectangles
- Diamonds
- Double diamonds
- Ellipses
- Double ellipses
- Dashed ellipses
- Lines
- Double lines
- and so on

The mapping constraints can be represented in multiple alternative ways as shown below.

Entity-Relation(E-R) diagram – Specialization and generalization

In E-R diagrams, specialization (and also generalization) is depicted by a triangle component labeled ISA (standing for "is a") which denotes that an entity (say a musician) "is a" part of another entity (say a person).

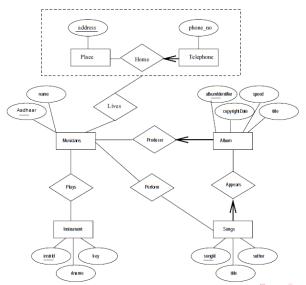

The ISA relationship may also be referred to as a superclass-subclass relationship. Higher- and lower-level entity sets are depicted as regular entity setsthat is, as rectangles containing the name of the entity set.

assets

branch-city

The E-R diagram for a banking system

branch-name



The E-R diagram for a music company

Suppose Saregama India Ltd wishes to store the information about their musicians (and other company details) in a database. Prepare an E-R diagram considering the following features.

- 1 Each musician that records at Saregama has an Aadhaar, a name, an address, and a mobile number. Poorly paid musicians often share the same address, and no address has more than one mobile.
- 2 Each instrument used in songs recorded at Saregama has a unique ID, a name (e.g., sitar, piano, tabla) and a musical key (e.g., B, B-flat, G-flat).
- 3 Each album recorded under the Saregama label has a unique ID, a title, a copyright date, and a format type (e.g., CD or VCD). Note that, an album is directed by a musician.
- 4 Each song recorded at Saregama has a title and an author (lyricist).
- 5 Each musician may play several instruments, and a given instrument may be played by several musicians.
- 6 Each album has a number of songs on it, but no song may appear on more than one album
- 7 Each song is performed by one or more musicians, and a musician may perform a number of songs.
- 8 Each album has exactly one musician who acts as its producer. A musician may although produce several albums.

The E-R diagram for a music company

