

Database Management Systems Database Normalization

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit Indian Statistical Institute, Kolkata January, 2019

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

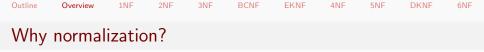
Outline	Overview	1NF	2NF	3NF	BCNF	EKNF	4NF	5NF	DKNF	6NF

1 Overview

4 3NF

8 5NF

・ロン ・部 と ・ ヨ と ・ ヨ と …

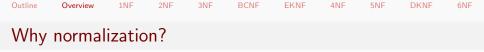


Redundancy in a database denotes the repetition of stored data

Redundancy might cause various anomalies and problems in storage requirements:

- Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency.
- Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information.
- <u>Deletion anomalies</u>: It may be impossible to delete certain information without losing some other, unrelated information.
- Increasing storage requirements: The storage requirements may increase over time.

イロト 不得下 不足下 不足下



Redundancy in a database denotes the repetition of stored data

Redundancy might cause various anomalies and problems in storage requirements:

- Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency.
- Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information.
- <u>Deletion anomalies</u>: It may be impossible to delete certain information without losing some other, unrelated information.
- Increasing storage requirements: The storage requirements may increase over time.

Outline	Overview	1NF	2NF	3NF	BCNF	EKNF	4NF	5NF	DKNF	6NF
---------	----------	-----	-----	-----	------	------	-----	-----	------	-----

An overview of different normal forms in the literature

Normal Form	Details	Reference
1NF (Codd (1970),	Domains should be atomic/At least one can-	[1, 9]
Date (2006))	didate key	
2NF (Codd (1971))	No non-prime attribute is functionally depen-	[2]
	dent on a proper subset of any candidate key	
3NF (Codd (1971),	Every non-prime attribute is non-transitively	[2, 7]
Zaniolo (1982))	dependent on every candidate key	
BCNF (Codd	Every non-trivial functional dependency is a	[3]
(1974))	dependency on a superkey	
EKNF (Zaniolo	Every non-trivial functional dependency is ei-	[7]
(1982))	ther the dependency of an elementary key at-	
	tribute or a dependency on a superkey	
4NF (Fagin (1977))	Every non-trivial multi-valued dependency is	[4]
	a dependency on a superkey	
5NF (Fagin (1979))	Every non-trivial join dependency is implied	[5]
	by the superkeys	
DKNF (Fagin	Every constraint on the table is a logical con-	[6]
(1981))	sequence of the domain and key constraints	_
6NF (Date et al.	No non-trivial join dependencies at all (w.r.t	[8]
(2002))	generalized join)	

・ロト ・聞 ト ・ ヨト ・ ヨト …

э

Motivations behind normalization

Normal Form	Basic Motivation
1NF	Removing non-atomicity
2NF	Removing partial dependency (Part of key attribute $ ightarrow$
	Non-key attribute)
3NF	Removing transitive dependency (Non-key attribute $ ightarrow$
	Non-key attribute)
BCNF	Removing any kind of redundancy

ヘロト 人間ト 人間ト 人間ト

æ

Denormalization is the process of converting a normalized

schema to a non-normalized one

Malay Bhattacharyya Database Management Systems

・ロト ・回ト ・ヨト ・ヨト

Denormalization is the process of converting a normalized

schema to a non-normalized one

Note: Designers use denormalization to tune performance of systems to support time-critical operations.

Malay Bhattacharyya Database Management Systems

The domain (or value set) of an attribute defines the set of values it might contain.

A domain is *atomic* if elements of the domain are considered to be indivisible units.

Company	Make
Maruti	WagonR, Ertiga
Honda	City
Tesla	RAV4
Toyota	RAV4
BMW	X1

Only Company	has	atomic	domain
--------------	-----	--------	--------

Company	Make
Maruti	WagonR, Ertiga
Honda	City
Tesla, Toyota	RAV4
BMW	X1

None of the attributes have atomic domains

Definition $(1^{st}$ Normal Form (1NF))

A relational schema R is in 1NF iff the domains of all attributes in R are *atomic*.

The advantages of 1NF are as follows:

- It eliminates redundancy
- It eliminates repeating groups.

Note: In practice, 1NF includes a few more practical constraints like each attribute must be unique, no tuples are duplicated, and no columns are duplicated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following relation is not in $1\mathsf{NF}$ because the attribute <code>Model</code> is not atomic.

Company	Country	Make	Model	Distributor
Maruti	India	WagonR	LXI, VXI	Carwala
Maruti	India	WagonR	LXI	Bhalla
Maruti	India	Ertiga	VXI	Bhalla
Honda	Japan	City	SV	Bhalla
Tesla	USA	RAV4	EV	CarTrade
Toyota	Japan	RAV4	EV	CarTrade
BMW	Germany	X1	Expedition	CarTrade

We can convert this relation into 1NF in two ways!!!

イロト 不得下 イヨト イヨト

Approach 1: Break the tuples containing non-atomic values into multiple tuples.

Company	Country	Make	Model	Distributor
Maruti	India	WagonR	LXI	Carwala
Maruti	India	WagonR	VXI	Carwala
Maruti	India	WagonR	LXI	Bhalla
Maruti	India	Ertiga	VXI	Bhalla
Honda	Japan	City	SV	Bhalla
Tesla	USA	RAV4	EV	CarTrade
Toyota	Japan	RAV4	EV	CarTrade
BMW	Germany	X1	Expedition	CarTrade

・ロト ・部ト ・モト ・モト

Approach 2: Decompose the relation into multiple relations.

Company	Country	Make
Maruti	India	WagonR
Maruti	India	Ertiga
Honda	Japan	City
Tesla	USA	RAV4
Toyota	Japan	RAV4
BMW	Germany	X1

Make	Model	Distributor
WagonR	LXI	Carwala
WagonR	VXI	Carwala
WagonR	LXI	Bhalla
Ertiga	VXI	Bhalla
City	SV	Bhalla
RAV4	EV	CarTrade
RAV4	EV	CarTrade
X1	Expedition	CarTrade

・ロト ・回ト ・ヨト ・ヨト

э

The partial dependency $X \to Y$ holds in schema R if there is a $Z \subset X$ such that $Z \to Y$.

We say Y is partially dependent on X if and only if there is a proper subset of X that satisfies the dependency.

<u>Note</u>: The dependency $A \rightarrow B$ implies if the A values are same, then the B values are also same.

Definition (2nd Normal Form (2NF))

A relational schema R is in 2NF if each attribute A in R satisfies one of the following criteria:

- 1 A is part of a candidate key.
- 2 A is not partially dependent on a candidate key.

In other words, no non-prime attribute (not a part of any candidate key) is dependent on a proper subset of any candidate key.

Note: A *candidate key* is a *superkey* for which no proper subset is a superkey, i.e. a minimal *superkey*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following relation is in 1NF but not in 2NF because Country is a non-prime attribute that partially depends on Company, which is a proper subset of the candidate key {Company, Make, Model, Distributor}.

Company	Country	Make	Model	Distributor
Maruti	India	WagonR	LXI	Carwala
Maruti	India	WagonR	VXI	Carwala
Maruti	India	WagonR	LXI	Bhalla
Maruti	India	Ertiga	VXI	Bhalla
Honda	Japan	City	SV	Bhalla
Tesla	USA	RAV4	EV	CarTrade
Toyota	Japan	RAV4	EV	CarTrade
BMW	Germany	X1	Expedition	CarTrade

We can convert this relation into 2NF!!!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Approach: Decompose the relation into multiple relations.

		Company	Make	Model	Distributor
Company Country		Maruti	WagonR	LXI	Carwala
Maruti	India	Maruti	WagonR	VXI	Carwala
		Maruti	WagonR	LXI	Bhalla
Honda	Japan	Maruti	Ertiga	VXI	Bhalla
Tesla	USA	Honda	City	SV	Bhalla
Toyota	Japan	Tesla	RAV4	EV	CarTrade
BMW	Germany	Toyota	RAV4	EV	CarTrade
		BMW	X1	Expedition	CarTrade

Note: Each attribute in the left relation is a part of the candidate key {Company, Country} and in the right relation is a part of the candidate key {Company, Make, Model, Distributor}.

< fi> <

Outline Overview 1NF 2NF 3NF BCNF EKNF 4NF 5NF DKNF 6NF Functional dependency

The notion of functional dependency generalizes the notion of superkey. Consider a relation schema R, and let $X \subseteq R$ and $Y \subseteq R$. The functional dependency $X \to Y$ holds on schema R if

$$t1[X] = t2[X],$$

in any legal relation r(R), for all pairs of tuples t1 and t2 in r, then

$$t1[Y] = t2[Y].$$

Armstrong's axioms:

- Reflexivity property: If X is a set of attributes and Y ⊆ X, then X → Y holds. (known as trivial functional dependency)
- Augmentation property: If X → Y holds and γ is a set of attributes, then γX → γY holds.
- **Transitivity property**: If both $X \to Y$ and $Y \to Z$ holds, then $X \to Z$ holds.

イロト 不得 トイヨト イヨト

Armstrong's axioms:

- Reflexivity property: If X is a set of attributes and Y ⊆ X, then X → Y holds. (known as trivial functional dependency)
- Augmentation property: If X → Y holds and γ is a set of attributes, then γX → γY holds.
- **Transitivity property**: If both $X \to Y$ and $Y \to Z$ holds, then $X \to Z$ holds.

Other properties:

- Union property: If $X \to Y$ holds and $X \to Z$ holds, then $X \to YZ$ holds.
- **Decomposition property**: If $X \to YZ$ holds, then both $X \to Y$ and $X \to Z$ holds.
- **Pseudotransitivity property**: If $X \to Y$ and $\gamma Y \to Z$ holds, then $X\gamma \to Z$ holds.

Closure of functional dependencies (FDs)

We can find F^+ , the closure of a set of FDs F, as follows:

```
Initialize F^+ with F
```

repeat

for each functional dependency $f = X \rightarrow Y \in F^+$ do Apply reflexivity and augmentation properties on f and include the resulting functional dependencies in F^+ end for

for each pair of functional dependencies $f_1, f_2 \in F^+$ do

if f_1 and f_2 can be combined together using the transitivity property **then**

Include the resulting functional dependency in F^+

end if

end for

until A^+ does not further change

イロト 不得 トイヨト イヨト

Consider a relation $R = \langle UVWXYZ \rangle$ and the set of FDs = {U \rightarrow V, U \rightarrow W, WX \rightarrow Y, WX \rightarrow Z, V \rightarrow Y}. Let us compute some non-trivial FDs that can be obtained from this.

- By applying the augmentation property, we obtain $I_{\text{A}} = I_{\text{A}} = I_{A$
 - $1 \quad UX \rightarrow WX \text{ (from } U \rightarrow W\text{)}$
 - **2** WX \rightarrow WXZ (from WX \rightarrow Z)
 - 3 WXZ \rightarrow YZ (from WX \rightarrow Y)

By applying the transitivity property, we obtain

1
$$U \rightarrow Y$$
 (from $U \rightarrow V$ and $V \rightarrow Y$)

- 2 UX \rightarrow Z (from UX \rightarrow WX and WX \rightarrow Z)
- **3** WX \rightarrow YZ (from WX \rightarrow WXZ and WXZ \rightarrow YZ)

We can find A^+ , the closure of a set of attributes A, as follows:

```
Initialize A^+ with A

repeat

for each functional dependency f = X \rightarrow Y \in F^+ do

if X \subseteq A^+ then

A^+ \leftarrow A^+ \cup Y

end if

end for

until A^+ does not further change
```

<u>Note</u>: The closure is defined as the set of attributes that are functionally determined by A under a set of FDs F.

The usefulness of finding attribute closure is as follows:

- Testing for superkey
 - Compute A^+ and check if $R \subseteq A^+$
- Testing functional dependencies
 − To check if an FD X → Y holds, just check if Y ⊆ X⁺ −
 Same for checking if X → Y is in F⁺ for a given F
- Computing closure of F
 - For each $A \subseteq \mathcal{A}(R)$, we find the closure A^+ , and for each
 - $S\subseteq A^+$, we output a functional dependency A o S

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Closure of attribute sets – An example

Consider a relation $R = \langle UVWXYZ \rangle$ and the set of FDs = {U \rightarrow V, U \rightarrow W, WX \rightarrow Y, WX \rightarrow Z, V \rightarrow Y}. Let us compute UX⁺, i.e., the closure of UX.

Initially UX⁺ = UX

- Then we have $UX^+ = UVX$ (as $U \rightarrow V$ and $U \subseteq UX$)
- Then we have $UX^+ = UVWX$ (as $U \rightarrow W$ and $U \subseteq UVX$)
- \blacksquare Then we have UX+ = UVWXY (as WX \rightarrow Y and WX \subseteq UVWX)
- \blacksquare Finally, we have UX^+ = UVWXYZ (as WX \rightarrow Z and WX \subseteq UVWXY)

Note: The closure of UX covers all the attributes in *R*.

イロト 不得 トイヨト イヨト 二日

If a relation is not in a desired normal form, it can be decomposed into multiple relations such that each decomposed relation satisfies the required normal form.

Suppose a relation R consists of a set of attributes $\mathcal{A}(R) = \{A_1, A_2, \dots, A_n\}$. A *decomposition* of R replaces R by a set of (two or more) relations $\{R_1, \dots, R_m\}$ such that both the following conditions hold:

•
$$\forall i : \mathcal{A}(R_i) \subset \mathcal{A}(R)$$

• $\mathcal{A}(R_1) \cup \cdots \cup \mathcal{A}(R_m) = \mathcal{A}(R)$

・ロン ・四 ・ ・ ヨ ・ ・

The decomposition of a relation might aim to satisfy different criteria as listed below:

- Preservation of the same relation through join (lossless-join)
- Dependency preservation
- Repetition of information

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preservation of the same relation through join	
XYZ	
\checkmark x_1 y_1 z_1 \searrow	
X Y X Z Y Z	
x_1 y_1 x_1 z_1 x_1 z_1	
x_1 y_2 x_1 z_2 x_1 z_2	

	Х	Y	Ζ			
	<i>x</i> ₁	<i>y</i> 1	Z_1			
	<i>x</i> ₁	<i>y</i> ₁	z 2			
	<i>x</i> ₁	<i>y</i> ₂	z_1			
	<i>x</i> ₁	<i>y</i> ₂	z ₂			
Lossy-join decomposition						

X	Y	Ζ
<i>x</i> ₁	<i>y</i> ₁	<i>z</i> ₁
<i>x</i> ₁	<i>y</i> ₂	<i>z</i> ₂

Lossless-join decomposition

▲ロト ▲御 と ▲ 臣 と ▲ 臣 と

æ

Outline Overview 1NF 2NF 3NF BCNF EKNF 4NF 5NF DKNF 6NF Testing for lossless-join decomposition

A decomposition of R into $\{R_1, R_2\}$ is *lossless-join*, iff $\mathcal{A}(R_1) \cap \mathcal{A}(R_2) \to \mathcal{A}(R_1)$ or $\mathcal{A}(R_1) \cap \mathcal{A}(R_2) \to \mathcal{A}(R_2)$ in F^+ .

Consider the example of a relation $R = \langle UVWXY \rangle$ and the set of FDs = {U \rightarrow VW, WX \rightarrow Y, V \rightarrow X, Y \rightarrow U}.

Note that, the decomposition $R_1 = \langle UVW \rangle$ and $R_2 = \langle WXY \rangle$ is not lossless-join because $R_1 \cap R_2 = W$, and W is neither a key for R_1 nor for R_2 .

However, the decomposition $R_1 = \langle UVW \rangle$ and $R_2 = \langle UXY \rangle$ is lossless-join because $R_1 \cap R_2 = U$, and U is a key for R_1 .

イロト 不得 トイヨト イヨト 二日

Outline Overview 1NF 2NF 3NF BCNF EKNF 4NF 5NF DKNF 6NF Dependency preservation Image: Comparison Image: Comparison

The decomposition of a relation R with respect to a set of FDs F replaces R with a set of (two or more) relations $\{R_1, \ldots, R_m\}$ with FDs $\{F_1, \ldots, F_m\}$ such that F_i is the subset of dependencies in F^+ (the closure of F) that include only the attributes in R_i .

The decomposition is *dependency preserving* iff $(\cup_i F_i)^+ = F^+$.

<u>Note</u>: Through dependency preserving decomposition, we want to minimize the cost of global integrity constraints based on FDs' (i.e., avoid big joins in assertions).

・ロト ・聞ト ・ヨト ・ヨト

Outline Overview 1NF 2NF 3NF BCNF EKNF 4NF 5NF DKNF 6NF Testing for dependency preserving decomposition

Consider the example of a relation $R = \langle XYZ \rangle$, having the key X, and the set of FDs = {X \rightarrow Y, Y \rightarrow Z, X \rightarrow Z}.

Note that, the decomposition $R_1 = \langle XY \rangle$ and $R_2 = \langle XZ \rangle$ is lossless-join but not dependency preserving because $F_1 = \{X \rightarrow Y\}$ and $F_2 = \{X \rightarrow Z\}$ incur the loss of the FD $\{Y \rightarrow Z\}$, resulting into $(F_1 \cup F_2)^+ \neq F^+$.

However, the decomposition $R_1 = \langle XY \rangle$ and $R_2 = \langle YZ \rangle$ is lossless-join and also dependency preserving because $F_1 = \{X \rightarrow Y\}$ and $F_2 = \{Y \rightarrow Z\}$, satisfying $(F_1 \cup F_2)^+ = F^+$.

Definition (3rd Normal Form (3NF))

A relational schema R is in 3NF if for every non-trivial functional dependency $X \rightarrow A$, one of the following statements is true:

- **1** X is a superkey of R.
- **2** A is a part of some key for R.

<u>Note</u>: A *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following relation is in 2NF but not in 3NF because Country is a non-prime attribute that depends on Company, which is again a non-prime attribute. Notably, the key in this relation is {PID}.

PID	Company	Country	Make	Model	Distributor
P01	Maruti	India	WagonR	LXI	Carwala
P02	Maruti	India	WagonR	VXI	Carwala
P03	Maruti	India	WagonR	LXI	Bhalla
P04	Maruti	India	Ertiga	VXI	Bhalla
P05	Honda	Japan	City	SV	Bhalla
P06	Tesla	USA	RAV4	EV	CarTrade
P07	Toyota	Japan	RAV4	EV	CarTrade
P08	BMW	Germany	X1	Expedition	CarTrade

We can convert this relation into 3NF!!!

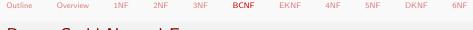
- 4 同 6 4 日 6 4 日 6

Approach: Decompose the relation into multiple relations.

		PID	Company	Make	Model	Distributor
Company Country		P01	Maruti	WagonR	LXI	Carwala
Maruti	India	P02	Maruti	WagonR	VXI	Carwala
		P03	Maruti	WagonR	LXI	Bhalla
Honda	Japan	P04	Maruti	Ertiga	VXI	Bhalla
Tesla	USA	P05	Honda	City	SV	Bhalla
Toyota	Japan	P06	Tesla	RAV4	EV	CarTrade
BMW	BMW Germany —		Toyota	RAV4	EV	CarTrade
		P07 P08	BMW	X1	Expedition	CarTrade

Note: Each attribute in the left relation is a part of the superkey {Company, Country} and in the right relation is a part of the candidate key {ProductID}.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Boyce-Codd Normal Form

Definition (Boyce-Codd Normal Form (BCNF))

A relational schema R is in BCNF if for every non-trivial functional dependency $X \rightarrow A$, X is a superkey of R.

<u>Note</u>: A *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following relation is in 3NF but not in BCNF because the attribute Price depends on non-superkey attributes.

PID	Company	Make	Model	Distributor	Price
P01	Maruti	WagonR	LXI	Carwala	415K
P02	Maruti	WagonR	VXI	Carwala	470K
P03	Maruti	WagonR	LXI	Bhalla	410K
P04	Maruti	Ertiga	VXI	Bhalla	820K
P05	Honda	City	SV	Bhalla	990K
P06	Tesla	RAV4	EV	CarTrade	1700K
P07	Toyota	RAV4	EV	CarTrade	1700K
P08	BMW	X1	Expedition	CarTrade	3520K

We can convert this relation into BCNF!!!

イロト イヨト イヨト イ

Decomposition into BCNF – An algorithm

 $Result := \{R\}$ and flag := FALSECompute F^+

while NOT flag do

if There is a schema $R_i \in Result$ that is not in BCNF then Let $X \to Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin F^+$ and $X \cap Y = \phi$. $Result := (Result - R_i) \cup (R_i - Y) \cup (X, Y) //$ This is simply decomposing R into R - Y and XY provided $X \to Y$ in R violates BCNF

else

flag := TRUE
end if
end while

イロト イポト イヨト イヨト

Decomposition into BCNF – An algorithm

 $Result := \{R\}$ and flag := FALSECompute F^+

while NOT flag do

if There is a schema $R_i \in Result$ that is not in BCNF then Let $X \to Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin F^+$ and $X \cap Y = \phi$. $Result := (Result - R_i) \cup (R_i - Y) \cup (X, Y) //$ This is simply decomposing R into R - Y and XY provided $X \to Y$ in R violates BCNF

else

flag := TRUE
end if
end while

Note: This decomposition process ensures lossless property

イロト 不得下 イヨト イヨト 二日

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies {CP \rightarrow A, BD \rightarrow P, C \rightarrow B}.

< ロ > < 同 > < 回 > < 回 > < □ > <

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies {CP \rightarrow A, BD \rightarrow P, C \rightarrow B}.

Solution: Let us start with $BD \rightarrow P$. Based on this, we decompose R and obtain $\langle ABCDQVZ \rangle$ and $\langle BDP \rangle$. Now $\langle BDP \rangle$ is in BCNF (BD is the key).

< ロ > < 同 > < 回 > < 回 > < □ > <

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies {CP \rightarrow A, BD \rightarrow P, C \rightarrow B}.

Solution: Let us start with $BD \rightarrow P$. Based on this, we decompose R and obtain $\langle ABCDQVZ \rangle$ and $\langle BDP \rangle$. Now $\langle BDP \rangle$ is in BCNF (BD is the key). For $C \rightarrow B$, $\langle ABCDQVZ \rangle$ is not in BCNF. Therefore, we have further decomposition into $\langle ACDQVZ \rangle$ and $\langle CB \rangle$.

イロト 不得 トイヨト イヨト

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies {CP \rightarrow A, BD \rightarrow P, C \rightarrow B}.

Solution: Let us start with BD \rightarrow P. Based on this, we decompose *R* and obtain <ABCDQVZ> and <BDP>. Now <BDP> is in BCNF (BD is the key). For C \rightarrow B, <ABCDQVZ> is not in BCNF. Therefore, we have further decomposition into <ACDQVZ> and <CB>. Thus, the decomposition <ACDQVZ>, <CB> and <BDP> is a lossless-join decomposition of *R* into BCNF.

イロト 不得 トイヨト イヨト

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies {CP \rightarrow A, BD \rightarrow P, C \rightarrow B}.

Solution: Let us start with $BD \rightarrow P$. Based on this, we decompose R and obtain $\langle ABCDQVZ \rangle$ and $\langle BDP \rangle$. Now $\langle BDP \rangle$ is in BCNF (BD is the key). For $C \rightarrow B$, $\langle ABCDQVZ \rangle$ is not in BCNF. Therefore, we have further decomposition into $\langle ACDQVZ \rangle$ and $\langle CB \rangle$. Thus, the decomposition $\langle ACDQVZ \rangle$, $\langle CB \rangle$ and $\langle BDP \rangle$ is a lossless-join decomposition of R into BCNF. **Alternate solution:** Suppose, we start with $C \rightarrow B$. Then the relation R would be decomposed into $\langle ACDPQVZ \rangle$ and $\langle CB \rangle$.

The only dependencies that hold over $\langle ACDPQVZ \rangle$ are $CP \rightarrow A$ and the key dependency $A \rightarrow ACDPQVZ$. CP is a key. Hence the decomposed relations are in BCNF.

Note that

- BCNF is stronger than 3NF if a schema R is in BCNF then it is also in 3NF.
- 3NF is stronger than 2NF if a schema *R* is in 3NF then it is also in 2NF.
- 2NF is stronger than 1NF if a schema R is in 2NF then it is also in 1NF.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Elementary Key Normal Form

Definition (Elementary Key Normal Form (EKNF))

A relational schema R is in EKNF if for every non-trivial functional dependency $X \rightarrow A$, one of the following statements is true:

- **1** X is a superkey of R.
- **2** X is an elementary key attribute

<u>Note</u>: A non-trivial functional dependency $X \to Y$ is an elementary dependency if there exist no partial dependency. A key K is elementary key if $K \to Y$ is an elementary dependency.

Consider a relation schema R, and let $X \subseteq R$ and $Y \subseteq R$. The functional dependency $X \twoheadrightarrow Y$ holds on schema R if

$$t1[X] = t2[X],$$

in any legal relation r(R), for all pairs of tuples t1 and t2 in r, implies

where the two tuples t3 and t4 are also in r and Z denotes $R - (X \cup Y)$.

Consider a relation schema R, and let $X \subseteq R$ and $Y \subseteq R$. The functional dependency $X \twoheadrightarrow Y$ holds on schema R if

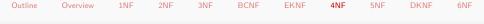
t1[X] = t2[X],

in any legal relation r(R), for all pairs of tuples t1 and t2 in r, implies

•
$$t1[X] = t2[X] = t3[X] = t4[X]$$

• $t1[Y] = t3[Y]$ and $t2[Y] = t4[Y]$
• $t1[Z] = t4[Z]$ and $t2[Z] = t3[Z]$
where the two tuples $t3$ and $t4$ are also in r and Z denotes $R - (X \cup Y)$.

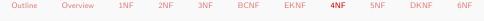
Note: The tuples *t*1, *t*2, *t*3 and *t*4 are not necessarily distinct.



Visualizing multi-valued dependency

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X	Y	$R-(X\cup Y)$
$+2$ m_1 m_2 $n_{1,1}$ n_2 $n_{2,1}$ n_3	<i>t</i> 1	<i>m</i> 1 <i>m</i> i	$m_{i+1}m_j$	$m_{j+1}m_k$
$ \cdot 2 \cdots 1 \cdots 1 \cdots 1 \cdots 1 \cdots 1 \cdots 1 \cdots 1 \dots 1 $	t2	m1mi	$n_{i+1}n_i$	$n_{j+1}n_k$

≣ ।•

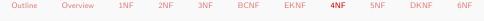


Visualizing multi-valued dependency

	X	Y	$R-(X\cup Y)$
t1	<i>m</i> ₁ <i>m_i</i>	$m_{i+1}m_j$	$m_{j+1}m_k$
t2	m ₁ m _i	$n_{i+1}n_i$	$n_{j+1}n_k$
t3	m1mi	$m_{i+1}m_j$	$n_{j+1}n_k$
<i>t</i> 4	<i>m</i> ₁ <i>m_i</i>	$n_{i+1}n_i$	$m_{j+1}m_k$

Malay Bhattacharyya Database Management Systems

≣⇒



Visualizing multi-valued dependency

	X	Y	$R-(X\cup Y)$
t1	<i>m</i> ₁ <i>m_i</i>	$m_{i+1}m_j$	$m_{j+1}m_k$
t2	m1mi	$n_{i+1}n_i$	$n_{j+1}n_k$
t3	m1mi	$m_{i+1}m_j$	$n_{j+1}n_k$
<i>t</i> 4	<i>m</i> 1 <i>mi</i>	$n_{i+1}n_i$	$m_{j+1}m_k$

An example of $X \twoheadrightarrow Y$

- If $X \twoheadrightarrow Y$ holds, then $X \twoheadrightarrow (R (X \cup Y))$ holds.
- If $X \rightarrow Y$ holds and $W \supseteq Z$, then $WX \rightarrow YZ$ holds.
- If $X \rightarrow Y$ and $Y \rightarrow Z$ both holds, then $X \rightarrow (Z Y)$ holds.
- If $X \to Y$ holds, then $X \twoheadrightarrow Y$ holds.
- If $X \to Y$ holds and there exists W such that (a) $W \cap Y = \phi$, (b) $W \to Z$ and (c) $Y \supseteq Z$, then $X \to Z$ holds.

Definition (4th Normal Form (4NF))

A relational schema R is in 4NF if for every non-trivial multi-valued dependency $X \rightarrow A$, X is a superkey of R.

<u>Note</u>: A *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The following relation is in 4NF.

Name	Age	Codeword	Media
Irfan	28	abc	News
Irfan	40	xyz	News
Irfan	40	abc	Radio
Irfan	28	xyz	Radio
Imran	42	abc	News

・ロト ・聞ト ・ヨト ・ヨト

æ

Decomposition into 4NF – An algorithm

Result := {R} and flag := FALSE Compute D^+ // Given schema R_i , let D_i denote the restriction of D^+ to R_i

while NOT flag do

if There is a schema $R_i \in Result$ that is not in 4NF w.r.t. D_i then

Let $X \twoheadrightarrow Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin D_i$ and $X \cap Y = \phi$. Result := $(Result - R_i) \cup (R_i - Y) \cup (X, Y) //$ Decompose R into R - Y and XY provided $X \twoheadrightarrow Y$ in R violates 4NF else

flag := TRUE
end if
end while

イロト 不得下 イヨト イヨト 二日

Decomposition into 4NF – An algorithm

Result := {R} and flag := FALSE Compute D^+ // Given schema R_i , let D_i denote the restriction of D^+ to R_i

while NOT flag do

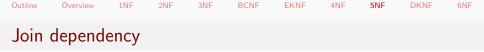
if There is a schema $R_i \in Result$ that is not in 4NF w.r.t. D_i then

Let $X \to Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin D_i$ and $X \cap Y = \phi$. Result := $(Result - R_i) \cup (R_i - Y) \cup (X, Y) //$ Decompose R into R - Y and XY provided $X \to Y$ in R violates 4NF else

```
flag := TRUE
end if
```

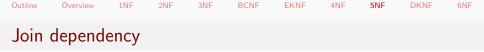
end while

Note: The decomposition process ensures lossless property



Given a relation schema R, a join dependency $JD(R_1, R_2, \ldots, R_n)$ is defined by the constraint that every legal relation r(R) should have a non-additive join decomposition into R_1, R_2, \ldots, R_n , i.e. for every such r we have

$$(\pi_{R_1}(r), \pi_{R_2}(r), \ldots, \pi_{R_n}(r)) = r.$$



Given a relation schema R, a join dependency $JD(R_1, R_2, \ldots, R_n)$ is defined by the constraint that every legal relation r(R) should have a non-additive join decomposition into R_1, R_2, \ldots, R_n , i.e. for every such r we have

$$(\pi_{R_1}(r), \pi_{R_2}(r), \ldots, \pi_{R_n}(r)) = r.$$

Note: Multi-valued dependency is a special case of join

dependency where n = 2.

Definition (5th Normal Form (5NF))

A relational schema R is in 5NF if for every non-trivial join dependency $JD(R_1, R_2, ..., R_n)$ in F^+ , every R_i is a superkey of R.

Malay Bhattacharyya Database Management Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (5th Normal Form (5NF))

A relational schema R is in 5NF if for every non-trivial join dependency $JD(R_1, R_2, ..., R_n)$ in F^+ , every R_i is a superkey of R.

Note: 5NF is also known as project-join normal form.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Domain Key Normal Form

Definition (Domain Key Normal Form (DKNF))

A relational schema R is in DKNF if all the constraints and dependencies that should hold on the valid relation states is a logical consequence of the domain and key constraints on the relation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (6th Normal Form (6NF))

A relational schema R is in 6NF if there exists no non-trivial join dependencies at all (with reference to generalized join operator).

(日)

- E. F. Codd (1970) CACM, 13(6):377-387.
- E. F. Codd (1971) *IBM Research Report*, RJ909.
- E. F. Codd (1974) *IBM Research Report*, RJ1385.
- R. Fagin (1977) ACM TDS, 2(3), 262-278.
- R. Fagin (1979) *IBM Research Report*, RJ2471.
- R. Fagin (1981) CACM, 6, 387-415.
- C. Zaniolo (1982) ACM TDS, 7(3), 489-499.
- C. J. Date (2002) *Temporal Data and the Relational Model*, Morgan Kaufmann.
- C. J. Date (2006) *Date on Database: Writings 2000-2006*, Springer-Verlag.