
Chapter 9

Operator Quantization of
Second Class Systems

9.1 Introduction

In chapters 3 and 5 we have discussed in detail the classical Poisson bracket
formulation of the Hamilton equations of motion for singular systems, and their
symmetries, respectively. We now turn to the problem of formulating the cor-
responding quantum theory. As we shall show, purely second class systems
allow for a straightforward operator quantization (apart from possible ordering
problems), while theories which involve also first class constraints must first
be effectively converted to second class systems by imposing an appropriate
number of gauge conditions. These are subsidiary conditions imposed from the
“outside”, i.e., they are not part of the Euler-Lagrange equations of motion.
When quantizing second class systems we shall be led to introduce an extended
Hamiltonian which includes all the constraints, primaries and secondaries, with
their respective Lagrange multipliers, and - in the case of gauge fixing - the
gauge conditions as well. The gauge conditions are chosen in such a way that,
together with the second class constraints, they turn the theory into a pure
second class system. In terms of the extended Hamiltonian the equations of
motion take a form analogous to those expressed in terms of the total Hamil-
tonian. These will be shown to be completely equivalent to the equations of
motion formulated by Dirac.
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9.2 Systems with only second class constraints

Consider a purely second class system subject to the constraints Ω
(2)
A2

= 0. Such
a system possesses no local (gauge) symmetry. As we have seen in chapter 3,
the classical equations of motion can then be written in form

q̇i = {qi, H0}D ,

ṗi = {pi, H0}D , (9.1)

Ω
(2)
A2

= 0 ,

where the second class constraints are implemented strongly by the Dirac brack-
ets. Since the Dirac brackets have the same algebraic properties as the Poisson
brackets, any Dirac bracket of two functions can be computed in the standard
way from the fundamental Dirac brackets,

{qi, pj}D = {qi, pj} −
N2∑

A2,B2=1

{qi,Ω(2)
A2

}Q−1
A2B2

{Ω(2)
B2
, pj} , (9.2)

with
QA2B2 = {Ω(2)

A2
,Ω

(2)
B2

} . (9.3)

In the case of a non-singular system, the last term on the rhs of (9.2) is
absent, and the transition to the quantum theory is effected by replacing
ih̄{qi, pj} by the commutator of the corresponding operators (denoted by a
“hat”), [q̂i, p̂j ] = ih̄δij . For a singular system with second class constraints,
this prescription is inconsistent with the constraints. Thus consider for exam-

ple the Poisson bracket of a second class constraint Ω
(2)
A with any function of the

canonical variables. This bracket will in general not vanish on the constrained
surface, in contrast to the commutator of the corresponding operators, which
by construction does. For the same reason one cannot impose the constraints
on the states |ψ >. On the other hand, since second class constraints are im-
plemented strongly by the Dirac brackets, this suggests that in the presence of
such constraints, the fundamental commutators of the canonical variables are
obtained from the corresponding Dirac brackets by the prescription

[q̂i, p̂j ] = ih̄ ̂{qi, pj}D , (9.4)

where the hat over the rhs term means, that first the Dirac bracket is computed,
and only then the expression so obtained is replaced by the corresponding
operator. Actually this prescription is only well defined if the Dirac bracket
on the rhs is a non singular expression of the canonical variables, and modulo
possible ordering problems. In any case, the quantum version of the rhs of
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(9.4) must be defined in such a way, that the second class constraints are
implemented strongly. In many cases of physical interest, the transition will be
obvious. Modulo such problems, the quantum equations of motion for a purely
second class system then take the form of strong equalities,

ih̄ ˙̂qi = [q̂i, Ĥ] ,

ih̄ ˙̂pi = [p̂i, Ĥ ] , (9.5)

Ω̂
(2)
A2

= 0 ,

where the commutators are obtained in the usual way from the fundamental
commutators (9.4).

9.3 Systems with first and second class
constraints

Let us next turn to the case where the Lagrangian also leads to first class

constraints Ω
(1)
A1

, (A1 = 1, · · · , N1), i.e., the system exhibits a local symmetry,
or “gauge invariance”. The quantization of such a system is more subtle. The
number of physical degrees of freedom is now further reduced by the number of
first class constraints. In this case it is convenient to implement the second class
constraints strongly via Dirac brackets and to include all first class constraints
explicitly in the equations of motion. This does not affect the dynamics of
gauge invariant observables. The classical equations of motion then read

q̇i = {qi, H}D + ξA1{qi,Ω(1)
A1

} ,
ṗi = {pi, H}D + ξA1{pi,Ω(1)

A1
} , (9.6)

Ω
(1)
A1

= 0 ; Ω
(2)
A2

= 0 ,

where the Dirac brackets are constructed from the second class constraints.
Correspondingly, the equation of motion for any function of the canonical vari-
ables reads

ḟ(q, p) ≈ {f,H}D + ξA1{f,Ω(1)
A1

} . (9.7)

Note that the parameters {ξA1}, reflecting the gauge degrees of freedom, are
not fixed by the requirement of persistence in time of the constraints, but are
left undetermined. Since the Poisson bracket of any function f(q, p) with a
first class constraint is weakly equivalent to the corresponding Dirac bracket,
eq. (9.7) can be replaced by

ḟ ≈ {f,H}D + ξA1{f,Ω(1)
A1

}D , (9.8)
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so that the second class constraints are now implemented strongly, while the
first class constraints continue to be implemented weakly. One would now
naively expect that on quantum level the Dirac backets, multiplied by ih̄, are
all replaced by the corresponding commutators. While this prescription is
consistent with the strong implementation of the second class constraints on
operator level, this is not the case for first class constraints. In fact, since

{f,Ω(1)
A1

}D does not vanish in general on the subspace Ω
(1)
A1

= 0, the transi-
tion to the commutator is not only inconsistent with implementation of the
constraints on operator level, but also inconsistent with their implementation

on the states |Ψ >, i.e. Ω̂
(1)
A1

|Ψ >= 0, as seen by considering matrix ele-

ments < Ψ′|[f,Ω(1)
A1

]|Ψ >. However, as we show below, one can nevertheless
formulate an operator valued quantum theory, by introducing a suitable set of
subsidary (gauge fixing) conditions, effectively turning the mixed constrained
system into a purely second class one. There is however a difference between a
purely second class system and a gauge fixed theory. While in the former case
all the constraints are part of the dynamical equations generated by a given
Lagrangian, the gauge fixing conditions are intoduced from the outside. Gauge
variant quantities will of course depend on the choice of gauge, while gauge
invariant quantities (observables) do not. This is also evident in (9.8), since

in this case the Dirac bracket of f(q, p) with Ω
(1)
A1

vanishes weakly, implying

independence of the parameters ξA1 . We now present some details.
Consider the equations of motion (9.6) written entirely in terms of Poisson

brackets,

q̇i ≈ {qi, H(1)}+ ξA1{qi,Ω(1)
A1

} ,
ṗi ≈ {pi, H(1)}+ ξA1{pi,Ω(1)

A1
} , (9.9)

where H(1) has been defined in (3.65), 1

H(1) = H −
N2∑

A2

Ω
(2)
A2
Q−1
A2B2

{Ω(2)
B2
, H} .

Since the dynamics of observables on Γ does not depend on the n1 parameters
ξA1 , we fix these parameters by introducing n1 suitable (gauge) conditions,
where n1 is the number of first class constraints. Let χA1(q, p) = 0 (A1 =
1, · · · , n1) be such a set of gauge conditions. If these conditions are to fix the
gauge completely, then the vanishing of the variation induced on χA1 by the
first class constraints, i.e.

δχA1 = εB1(t){χA1 ,Ω
(1)
B1

} = 0 ,

1Here H is understood to be weakly equivalent to the canonical Hamiltonian evaluated
on the primary surface, H0.
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must necessarily imply the vanishing of the parameters {εB1}. Hence the de-
terminant of the square matrix with elements

∆A1B1 = {χA1,Ω
(1)
B1

} (9.10)

must be different from zero, i.e.,

det ∆ 6= 0 . (9.11)

The gauge conditions must therefore be chosen such that (9.11) holds. They
must also be consistent with the equations of motion (9.9), augmented by the
gauge conditions:

ḟ = {f,H(1)}+ ξA1{f,Ω(1)
A1

} , (9.12)

Φr := (Ω(1),Ω(2), χ) = 0 , r = 1, · · · , 2n1 +N2 . (9.13)

Persistence in time of the subsidiary conditions χA1 = 0 now requires that 2

χ̇A1 ≈ {χA1 , H
(1)}+ ξB1{χA1 ,Ω

(1)
B1

} ≈ 0 .

Because of (9.11), it follows that the gauge parameters are determined:

ξA1 ≈ −
∑

B1

∆−1
A1B1

{χB1 , H
(1)} .

We therefore have that
ḟ ≈ {f,Hgf} , (9.14)

where
Hgf = H(1) −

∑

A1,B1

Ω
(1)
A1

∆−1
A1B1

{χB1 , H
(1)} (9.15)

is the gauge fixed Hamiltonian. Hence in the gauge invariant sector the equa-
tions (9.14) are equivalent to (9.7), with the parameters ξA1 fixed by the gauge
conditions χA1 = 0. These gauge conditions select from all possible trajecto-
ries one representative from each gauge orbit (assuming there exists no Gribov
ambiguity [Gribov 1978]). We now prove the following theorem :

Theorem:

In the gauge invariant sector the equations of motion (9.8) are completely equiv-
alent to the set

ḟ ≈ {f,H}D∗ ; Φr = 0 , ∀r (9.16)

2The weak equality now includes all the constraints and gauge conditions, Φr = 0.
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where
{A,B}D∗ = {A,B} −

∑

r,s

{A,Φr}Q∗−1
rs {Φs, B} , (9.17)

Q∗
rs = {Φr,Φs} , (9.18)

and
Φr := (χ,Ω(1),Ω(2)) .

Note that now the Dirac bracket involves all the constraints as well as gauge
conditions, which together form a second class system.

Proof

We first show that the equations of motion (9.14) are fully equivalent to

ḟ = {f, H̄E} , Φr = 0 , ∀r (9.19)

where
H̄E = H + ηA2Ω

(2)
A2

+ ξA1Ω
(1)
A1

+ ζA1χA1 (9.20)

is now the fully extended Hamiltonian, which includes all constraints and gauge
conditions (multiplied by Lagrange multipliers). To prove the above claim we
examine the implications of the consistency conditions Φ̇r = 0, where the time
evolution is now generated by H̄E :

a) Ω̇
(1)
A1

≈ {Ω(1)
A1
, χB1}ζB1 ≈ 0 ,

b) Ω̇
(2)
A2

≈ {Ω(2)
A2
, H}+ {Ω(2)

A2
,Ω

(2)
B2

}ηB2 + {Ω(2)
A2
, χB1}ζB1 ≈ 0 ,

c) χ̇A1 ≈ {χA1 , H}+ {χA1 ,Ω
(2)
B2

}ηB2 + {χA1,Ω
(1)
B1

}ξB1 + {χA1 , χB1}ζB1 ≈ 0 .

In a) we used the fact that the Poisson bracket of Ω
(1)
A1

with each of the first

three terms on the rhs of (9.20) vanishes on the constrained surface. 3 From
a) and (9.11) it follows, that

ζB1 ≈ 0 . (9.21)

Hence the term ζA1χA1 in HE does not contribute to the equations of motion
(9.19). It then follows from b) that

ηA2 ≈ −
∑

B2

Q−1
A2B2

{Ω(2)
B2
, H} , (9.22)

3Recall that the constraints Ω
(1)
A1

and Ω
(2)
A2

were generated by the Dirac algorithm which

involves the total Hamiltonian constructed from the canonical Hamiltonian and the primary

constraints only. Hence the Ω
(1)
A1

’s satisfy, in particular, the following equations of motion:

Ω̇
(1)
A1

≈ {Ω(1)
A1
,HT } ≈ {Ω(1)

A1
, H} ≈ 0.
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where QA2B2 has been defined in (9.3). With (9.21) and (9.22), c) reduces to

{χA1 , H
(1)}+ {χA1,Ω

(1)
B1

}ξB1 ≈ 0 ,

with the solution
ξA1 ≈ −

∑

B1

∆−1
A1B1

{χB1 , H
(1)} , (9.23)

where ∆A1B1 has been defined in (9.10). Inserting the results (9.21), (9.22),
and (9.23) in (9.20), we see that H̄E can be effectively replaced by (9.15), thus
proving the equivalence of (9.14) with (9.19), and therefore also with (9.7)
within the gauge invariant sector.

It is now an easy matter to prove the equivalence with (9.16). To this effect
we write (9.20) in the compact form

H̄E = H + ρrΦr , (9.24)

where ρ = (η, χ, ζ). The consistency equations for the constraints and gauge
conditions read

Φ̇r ≈ {Φr, H̄E} ≈ 0 .

Since the constraints {Φr = 0} form a second class system with det{Φr,Φs} =
0, we have

ρr ≈ −
∑

r′

Q∗−1
rr′ {Φr′, H} .

Inserting this expression in (9.24) one is immediately led to (9.16), which is
now a suitable starting point for making the transition to the quantum theory.
Indeed, since all constraints and gauge conditions are now implemented strongly
by the D∗-bracket, the transition to the quantum theory is effected by replacing
the D∗-bracket, multiplied by ih̄, by the corresponding commutator,

[Â, B̂] = ih̄ ̂{A,B}D∗ .

Clearly the form of the equation of motion will depend on the chosen gauge.
On the other hand, the equation of motion for observables, i.e. those func-
tions whose Poisson bracket with the first class constraints vanish weakly, are
independent of the choice of gauge.

9.3.1 Example: the free Maxwell field in the
Coulomb gauge

We now illustrate the above procedure by an example. Consider once more
the free Maxwell field. As we have seen in example 4 of chapter 3, this theory
only possesses two first class constraints (one primary and one secondary). In
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order to fix the gauge completely we therefore need two subsidiary conditions
satisfying the requirement (9.11). Since we want to realize the Coulomb gauge,

one of these conditions is clearly ~∇ · ~A = 0. For the other condition we choose
A0 = 0. 4 This leads to a non-vanishing determinant for the matrix (9.10).
Let us label the constraints and gauge conditions as follows:

Φ1 ≡ π0 = 0 , Φ2 ≡ ∂jπj = 0 ,

Φ3 ≡A0 = 0 , Φ4 ≡ ∂jA
j = 0 .

These conditions form a second class system of constraints. The non-vanishing
matrix elements Q∗

rr′ defined in (9.18) are then given by

Q∗
13(~x, ~y) = −Q∗

31(~y, ~x) = −δ(~x− ~y) ,
Q∗

24(~x, ~y) = −Q∗
42(~y, ~x) = −∇2

xδ(~x− ~y) .

The inverse of the matrix Q∗
rr′(~x, ~y) is defined by

∑

r”

∫
d3z Q∗−1

rr” (~x, ~z)Q
∗
r”r′(~z, ~y) = δrr′δ(~x− ~y) .

The non-vanishing matrix elements of Q∗−1 are easily calculated to be

Q∗−1
13 (~x, ~y) = −Q∗−1

31 (~y, ~x) = δ(~x− ~y) ,

Q∗−1
24 (~x, ~y) = −Q∗−1

42 (~y, ~x) =
1

∇2
δ(~x− ~y) , (9.25)

where 1
∇2 is defined by

1

∇2
f(~x) ≡

∫
d3z G(~x, ~z)f(~z) ,

with G(~x, ~z) the Green function of the Laplace operator,

∇2G(~x, ~y) = δ(~x− ~y) .

Consider now, e.g., the D∗-bracket (9.17), generalized to a system with an
infinite number of degrees of freedom. We have

{Ai(~x, t), πj(~y, t)}D∗ = {Ai(~x, t), πj(~y, t)}

−
∑

rr′

∫
d3zd3z′{Ai(~x, t),Φr(~z, t)}Q∗−1

rr′ (~z, ~z
′){Φr′(~z′.t), πj(~y, t)} .

4On the Lagrangian level these subsidiary conditions would be inconsistent in the presence
of sources. Within a Hamiltonian formulation, however, this is an allowed choice, since on
the level of the extended Hamiltonian any choice of A0 can be absorbed by the Lagrange
multiplier associated with the secondary (Gauss law) constraint, to be determined by the
subsidiary conditions.
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Making use of (9.25) one verifies that

{Ai(~x, t), πj(~y, t)}D∗ = (δij −
∂i∂j
∇2

)δ(~x− ~y) . (9.26)

Note that the Coulomb gauge and the secondary constraint ∂iπi = 0 are im-
plemented strongly, as expected. In the same way one finds that

{Ai(~x, t), Aj(~y, t)}D∗ = 0 , {πi(~x, t), πj(~y, t)}D∗ = 0 .

Furthermore, any D∗-bracket involving A0 or π0 vanishes identically. On quan-
tum level, (9.26) translates to

[Âi(~x, t), π̂j(~y, t)] = ih̄(δij −
∂i∂j
∇2

)δ(~x − ~y) .

This commutator is of course well known, but was constructed here within the
Hamiltonian framework. 5

Summarizing we have: the commutators of the phase-space variables are de-
termined from the D∗-brackets constructed here from the first class constraints
and corresponding gauge conditions. These are thereby implemented strongly.
Hence the corresponding operators can be set equal to the null operator. In
general the realization of the operators satisfying the correct commutation re-
lations, as dictated by the D∗-brackets, may however be difficult, if not impos-
sible.

9.3.2 Concluding remark

So far we have considered second class systems, including the case of gauge fixed
mixed systems. The basis for their quantization was always provided by their
Dirac bracket formulation, where the constraints and gauge conditions were
implemented strongly. Apart from ordering problems and possible singularities,
this allowed for an operator realization of the equations of motion.

For observables, i.e. gauge invariant quantities, Dirac has proposed an alter-
native way of dealing with first class or mixed systems on operator level [Dirac
1964]. The first class constraints are imposed as conditions on the physical
states in the form 6

Ω̂
(1)
A1

|Ψ >= 0 . (9.27)

5For less trivial examples see e.g., [Girotti 1982, Kiefer 1985].
6If second class constraints are present then we assume that they have been strongly

implemented by replacing the Poisson brackets by Dirac brackets constructed from the second
class constraints.
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The states are therefore also gauge invariant. Hence observables as well as
states depend effectively only on gauge invariant combinations of the phase
space variables. This ensures on operator level, that for two gauge invariant
states |Ψ > and |Φ >

< Ψ|[Ô, Ω̂(1)
A1

]|Φ >= 0 , A1 = 1, · · · , N1 .

In the case of purely first class systems we then have a canonical Poisson bracket

structure. In Quantum Mechanics this means that the operators Ω̂
(1)
A1

can be

realized by making the substitution pi → h̄
i
∂
∂qi

in the corresponding classical

expression, so that the condition (9.27) takes the form

Ω̂
(1)
A1

(
q,
h̄

i
~∇
)
ψ(q, t) = 0 ,

where ψ(q, t) is the wave function in configuration space corresponding to the
state |Ψ >. This is a differential equation, whose solution is the family of all
gauge invariant wave functions.

The actual realization of Dirac’s method may however not be straight-

forward. Thus the definition of the operators Ω̂
(1)
A1

may be problematic due
to ordering problems. Furthermore one in general also seeks to preserve the
classical algebraic properties of the constraints, which may also be problematic.

Another method consists in quantizing only gauge invariant degrees of free-
dom constructed from the qi’s and pi’s, and all observables are expressed in
terms of these. Hence no gauge conditions are imposed. This reduced phase
space is endowed with the standard Poisson bracket structure. For a systematic
method of arriving at such a reduced phase space formulation of the dynam-
ics we refer the reader to the last section of chapter 4. Correlation functions
of observables (which only depend on the star-variables) will have the stan-
dard path integral representation for an unconstrained system. But the price
paid for such a formulation may be too high to be useful. For example, in
a gauge theory like the Maxwell theory, the star-variables are given by the
non-local (gauge invariant) expressions for the transverse potentials and their
corresponding conjugate momenta. It is therefore of interest to develop non-
operator methods based on functional techniques. This will be the subject of
the following three chapters.
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