
PH 6140: Quantum Yang-Mills Theory

Lecture 7: Notes on path integral quantization of Maxwell field

theory

January 29, 2019

We recall that for a set of constrained degrees of freedom (gauge fields), {ϕi} the path integrals according
to the Faddeev-Popov ansatz is,

Z = N
∫ ∏

i

[dϕi] e
iI[{ϕi}] δ (F (x))

∣∣∣∣δF (x)

δα(y)

∣∣∣∣
F=0

where the delta function enforces the gauge fixing condition is,

F ({ϕi}) = 0

and the corresponding gauge fixing determinant is,∣∣∣∣δF (x)

δα(y)

∣∣∣∣
F=0

with α(x) being the gauge transformation parameter. Here we will use this Faddeev-Popov ansatz and
quantize the Maxwell field theory in Coulomb and Lorenz gauge. The Maxwell field theory is defined by the
action,

I [Aµ] =

∫
d4x

(
−1

4
FαβF

αβ

)
, Fαβ = ∂αAβ − ∂βAα.

This theory has a gauge symmetry,
Aµ → A′µ → Aµ + ∂µα(x),

the symmetry parameter, α(x) being an arbitrary function of spacetime.

1 Coulomb gauge

Coulomb gauge is a full gauge fix, i.e. it removes all redundant degrees of freedom, namely the temporal and
longitudinal polarization and keeps only the physical degrees of freedom, namely the transverse polarizations.
We will see how to implement this in the path integral via Faddeev-Popov ansatz. The Coulomb gauge is
given by two gauge fixing conditions, namely

F1(x) = A0(x) = 0,

F2(x) =∇ ·A = 0.

So the Faddeev-Popov ansatz for the path integral in the Coulomb gauge is,

Z = N
∫ ∏

µ

[dAµ] eiI[Aµ] δ (F1(x))

∣∣∣∣δF1(x)

δα(y)

∣∣∣∣
F1=0

δ (F2(x))

∣∣∣∣δF2(x)

δα(y)

∣∣∣∣
F2=0
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To make progress with evaluating the path integral we first have to determine the gauge fixing determinants.
Under a gauge transformation by a parameter α(x),

F1(x)→ Fα1 (x) = F1(x) + ∂0α(x)

⇒ δFα1 (x)

δα(y)
= ∂0δ

4(x− y).

Similarly, one can show,
δFα2 (x)

δα(y)
=∇2δ4(x− y).

So for both gauge fixing determinants aka Jacobians are independent of α(x) or Aµ(x) (which means these
can be taken out the of the path integral as they are independent of the integration variable)! So the path
integral is,

Z = N
∫ ∏

µ

[dAµ] eiI[Aµ] δ
(
A0
)
δ (∇ ·A) ∂0δ

4(x− y)∇2δ4(x− y)

= N ′
∫ ∏

µ

[dAµ] eiI[Aµ] δ
(
A0
)
δ (∇ ·A) . (1)

In the second step we have taken the gauge fixing determinants out of the integral and absorbed them into
the normalization constant, N ′.

Recall that the action is,

I [Aµ] =

∫
d4x

(
−1

4
FαβF

αβ

)
, Fαβ = ∂αAβ − ∂βAα

= −1

2

∫
d4x (∂αAβ)

(
∂αAβ

)
+

1

2

∫
d4x (∂αAβ)

(
∂βAα

)

= −1

2

∫
d4x (∂αAβ)

(
∂αAβ

)
+

1

2

∫
d4x (∂αA

α)
(
∂βAβ

)
+

��
���

���
���

���:
0∫

d4x (total derivative terms)

= −1

2

∫
d4x

[(
∂αA

0
) (
∂αA0

)
+ (∂αA) · (∂αA)−

(
Ȧ0 +∇ ·A

)2]
Using this expression for the action in the path integral (1), one has,

Z = N ′
∫ ∏

µ

[dAµ] exp

(
− i

2

∫
d4x

[(
∂αA

0
) (
∂αA0

)
+ (∂αA) · (∂αA)−

(
Ȧ0 +∇ ·A

)2])
δ
(
A0
)
δ (∇ ·A)

The A0 path integration can be readily done due to the delta function δ(A0), and then one is left with,

Z = N ′
∫ [

d3A
]

exp

(
− i

2

∫
d4x

[
(∂αA) · (∂αA)− (∇ ·A)

2
])

δ (∇ ·A) (2)

To make further progress one makes a change of variables in the path integral variables, i.e. A. Instead of
resolving A into its Cartesian components A1, A2, A3, we split up A into a longitudinal part, namely, A‖
and a transverse part, namely, A⊥ in the usual manner,

A = A‖ + A⊥,

with,
∇·A⊥ = 0, ∇×A‖ = 0.

The terminology (longitudinal and transverse) become clear when one moves to momentum/ Fourier space
whereby these conditions look like,

k̂·A⊥ = 0, k̂×A‖ = 0.
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Due to these equations, one can check that the combined number of degrees of freedom of A‖,A⊥ is still 3
i.e. same as the original A. Thus due to the change of variables we have the measure of the path integral,[

d3A
]

=
[
dA‖

]
[dA⊥]

while the term in the action,

(∂αA) · (∂αA) = (∂αA⊥) · (∂αA⊥) + 2 (∂αA⊥) ·
(
∂αA‖

)
+
(
∂αA‖

)
·
(
∂αA‖

)
,

and the term,
∇ ·A =∇ ·A‖.

Note that ∇ ·A = 0 implies in Fourier space k ·A = |k||A‖| = 01. Now we plug back everything in the path
integral expression (2) and rewrite it in Fourier space

Z = N ′
∫ [

dA‖(x)
]
[dA⊥(x)] exp

(
− i
2

∫
d4x

[
(∂αA⊥) · (∂αA⊥) + 2 (∂αA⊥) ·

(
∂αA‖

)
+
(
∂αA‖

)
·
(
∂αA‖

)
−
(
∇ ·A‖

)2])
δ
(
∇ ·A‖

)
= N ′

∫ [
dA‖(k)

]
[dA⊥(k)]

exp

(
− i
2

∫
d4k

(2π)4

[
(ikαA⊥) · (−ikαA⊥) + 2 (ikαA⊥) ·

(
−ikαA‖

)
+
(
ikαA‖

)
·
(
−ikαA‖

)
+
(
|k||A‖|

)2]) δ
(
|A‖|

)
|k|

Now one can easily do the A‖ integration to set to zero all terms involving A‖ and then move back to
position space to obtain,

Z = N ′′
∫

[dA⊥] exp

(
− i

2

∫
d4x [(∂αA⊥) · (∂αA⊥)]

)
. (3)

Thus in the final expression for the path integral, one only has physical transverse modes of the Maxwell field,
A⊥. This is guaranteed to produce the Coulomb gauge propagator 〈T (Ai(x)Aj(y))〉 obtained previously
using Dirac method.

Homework 1: Check that you indeed reproduce the Coulomb gauge propagator by comput-
ing the path integral! Hint : It is best to work in Fourier space and read off the Feynman
rule/factor for the propagator i.e. 1

2A
−1
ij from the path integral (3).

2 Lorenz Gauge

Next we work in Lorenz gauge, F = ∂µA
µ = 0, which we already know is only a partial/incomplete gauge

fix. The Faddeev-Popov ansatz for this case is,

Z = N
∫ ∏

µ

[dAµ] eiI[Aµ] δ (F (x))

∣∣∣∣δF (x)

δα(y)

∣∣∣∣
F=0

Under a gauge transformation by a gauge parameter α(x),

F (x)→ Fα(x) = ∂µ (Aµ + ∂µα)

= F (x) + �α(x)

⇒ δFα(x)

δα(y)
= �δ4(x− y).

1Also, recall that in Fourier space the transverse component is expressed as

A⊥ = A−A‖

= A(k)−
(A · k)k
k · k

⇒ Ai⊥ =

(
δij −

kikj

k2

)
Aj .
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Thus again in this case the gauge fixing determinant is independent of the gauge field, Aµ. In fact this is
not at all surprising and this will always be so whenever the gauge fixing condition is a linear function of
Aµ. Since the gauge fixing determinant is independent of the path integration variable Aµ, just as in the
case of Coulomb case we will take it out of the path integral and absorb it into the normalization constant,
N . Thus, the path integral now looks like,

Z = N ′
∫ ∏

µ

[dAµ] eiI[Aµ] δ (∂µA
µ)

= N ′
∫ ∏

µ

[dAµ] exp

[
− i

2

∫
d4x (∂αAβ)

(
∂αAβ

)
+
i

2

∫
d4x (∂αA

α)
(
∂βAβ

)]
δ (∂µA

µ)

= N ′
∫ ∏

µ

[dAµ] exp

[
−1

2

∫
d4x (∂αAβ)

(
∂αAβ

)]
δ (∂µA

µ) (4)

However we cannot make any further progress as one cannot get rid of the delta function by performing an
integral over ∂µA

µ and it is also not possible to split Aµ into components parallel to kµ and orthogonal to
kµ as we are dealing with 4 vectors instead of 3 vectors. So to make progress we will adopt a different route/
alter our starting point i.e. Lorenz gauge condition. We work with a modified gauge condition,

∂µA
µ = c(x).

Here c(x) is a Lorentz scalar. This is still a Lorentz invariant gauge condition, just as Lorenz gauge is. Given
this gauge fixing condition,

G(x) = ∂µA
µ(x)− c(x) = 0.

Clearly the gauge fixing determinant/ Jacobian remains unchanged, same as that in Lorenz gauge,

δGα(x)

δα(y)
= �δ4(x− y).

So the path integral is now,

Z = N
∫ ∏

µ

[dAµ] eiI[Aµ] δ (G(x))

∣∣∣∣δG(x)

δα(y)

∣∣∣∣
F=0

= N
∫ ∏

µ

[dAµ] eiI[Aµ] δ (∂µA
µ − c) �δ4(x− y)

= N ′
∫ ∏

µ

[dAµ] eiI[Aµ] δ (∂µA
µ − c) . (5)

In the last we have taken the gauge fixing determinant out of the path integral as it is independent of the
path integration variable, Aµ. Next comes the crucial step, we will average over all possible functions,
c(x) with weight peaked symmetrically around c(x) = 0, to be specific a Gaussian weight,

Nce−
iλ
2

∫
d4x c2(x)

where Nc is a normalization factor for the Gaussian distribution. The parameter λ which represents the
(inverse) standard deviation/ spread of the Gaussian distribution and is completely arbitrary. Why is this
justified? This is justified because if the theory is gauge-invariant, then the path integrals expression for the
usual Lorenz gauge Eq. (4) and the path integral expression for the more general Lorentz invariant gauge (5)
must be the same, since they represent the same theory. Thus averaging over all Lorentz invariant gauges
functions c(x) should produce the same result.

Z ′ = Nc
∫

[dc]e−
iλ
2

∫
d4x c2(x)

(
N ′
∫ ∏

µ

[dAµ] eiI[Aµ] δ (∂µA
µ − c)

)
.
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Switching order of integration,

Z ′ = N ′Nc
∫ ∏

µ

[dAµ] eiI[Aµ]
(∫

[dc]e−
1λ
2

∫
d4x c2(x) δ (∂µA

µ − c)
)

= N ′′
∫ ∏

µ

[dAµ] eiI
′[Aµ], I ′ [Aµ] =

∫
d4x

(
−1

4
FµνF

µν − λ

2
(∂µA

µ)
2

)
. (6)

Thus, we have succeeded in getting rid of the gauge fixing delta function! However the cost we have to pay is
that we have a modified action, I ′ [Aµ], which is highly ambiguous to the presence of an arbitrary constant
parameter, λ.

Another equivalent way of doing things to observe that since c(x) is a Lorentz invariant gauge function,
the path integral result (5), whatever if might be after dealing with the delta function, should be independent
of c(x). After observing this we multiply the path integral (5) by a unity, by means of a normalized Gaussian
path integral, namely,

Nc
∫

[dc]e−
iλ
2

∫
d4x c2(x) = 1.

Then,

Z = (1)×N ′
∫ ∏

µ

[dAµ] eiI[Aµ] δ (∂µA
µ − c)

=

(
Nc
∫

[dc]e−
iλ
2

∫
d4x c2(x)

)
×N ′

∫ ∏
µ

[dAµ] eiI[Aµ] δ (∂µA
µ − c)

= N ′Nc
∫ ∏

µ

[dAµ] eiI[Aµ]
(∫

[dc]e−
1λ
2

∫
d4x c2(x) δ (∂µA

µ − c)
)

= N ′′
∫ ∏

µ

[dAµ] eiI
′[Aµ], I ′ [Aµ] =

∫
d4x

(
−1

4
FµνF

µν − λ

2
(∂µA

µ)
2

)
.

In class I followed this second way of deriving the Lorenz gauge Maxwell path integral.

Homework 2: From the Lorentz gauge path integral for the Maxwell field (6), deduce the
Feynman propagator of the Maxwell field in Lorentz gauge, namely, 〈T (Aµ(x)Aν(y))〉. You
should get the same expression as you did in the Gupta-Bleuler covariant quantization of the
Maxwell field. Hint : Going to Fourier space will make life easier.

Homework 3: Follow the Noether method to derive the expression for the Noether currents
for complex scalar n-tuple field theory described by the action,

I [Φ] =

∫
d4x

[
(∂µΦ)

†
(∂µΦ)−m2Φ†Φ− V (Φ†Φ)

]
which is invariant under global U(N) symmetry:

Φ→ Φ′ = U Φ,

where U is an n × n unitary matrix which can be expressed in the exponential form in terms
of its hermitian generators, Ta, a = 1, ...., N2, as

U = exp (iαaTa) .

αa’s are the continuous symmetry parameters, one corresponding to each generator, Ta. Hint:
The final expression has already been presented in the lecture, Jµa = i

(
∂µΦ†TaΦ− Φ†Ta∂

µΦ
)
.
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