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Let’s consider a theory in which the degrees of freedom are N complex scalar fields,
Φi, i = 1, 2, . . . , N . If they are all independent, then the action would be,

I [{Φi(x)}] =

∫
d4x

∑
i

[
(∂µΦi)

∗ ∂µΦi −m2
iΦ
∗
iΦi − V i (Φ∗iΦi)

]
.

In particular the global U(1) symmetry of a single complex scalar field is is now turned
into a symmetry group which is a direct product (multiple copies) of N independent
U(1) factors, i.e. U(1)× U(1)× . . .× U(1) = U(1)N ,

Φi → Φ′i = ei eiα
i

Φi,

where the i-th scalar has charge ei. Following the gauge principle we can turn this
global U(1)N symmetry into a local/gauge symmetry by introducing a gauge field for
each scalar, a different Maxwell field, Aiµ(x), and then replacing the respective partial
derivative by the covariant derivative,

∂µΦi → DµΦi = ∂µΦi + i eAiµΦi.

The combined gauge transformation for all sets of fields is then,

Φi → Φ′i = ei eiα
i(x)Φ

Aiµ →
(
A′µ
)i

= Aiµ + ∂µα
i(x)

But this system does not give rise to any new phenomenon compared to the case of a
single complex scalar (this system is just a collection of N decoupled scalar fields with
their own/individual Maxwell field). However, some new interesting physics emerges
when we consider the special case when the mass parameters of the scalar fields become
identical, mi = m,∀ i. Especially consider the case when the scalars are free i.e.
Vi = 0,∀ i. It is clear that in this case all the scalars can be gathered together in a
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column vector, Φ =


Φ1

Φ2

...
ΦN

 and the action can be expressed in a very compact form,

I [{Φi(x)}] =

∫
d4x

[
(∂µΦ)† ∂µΦ−m2

iΦ
†Φ
]
.

It is now evident that the action is now invariant under a larger group/matrix trans-
formation, namely

Φ→ Φ′ = UΦ,

where, U ∈ U(N), i.e. N × N rank unitary matrices. One can now add a potential
term which will respect this unitary symmetry of the free theory, namely,

I [Φ] =

∫
d4x

[(
∂µΦ†

)
(∂µΦ)−m2Φ†Φ− V (Φ†Φ)

]
. (1)

Compared to the previous case we see that not only are the mass parameters are
identical now, but their are interactions between the different scalar components, Φi’s.
Just like the U(1) case here the set of all possible U(N) symmetry transformations form
a group under the operation of matrix multiplication. (One can convince oneself easily
that product of two unitary matrices, U1 and U2 is also unitary, identity matrix, IN is
also unitary and the inverse of an unitary matrix is also unitary). However compared
to the U(1) case there is a crucial distinction - two successive distinct U(N) symmetry
transformations do not commute in general since matrix multiplication is in general
non-commutative,

U1 U2 6= U2 U1

In general, such symmetry groups are dubbed Nonabelian symmetry groups. An-
other example of an nonabelian symmetry group is the group of rotations in three space
dimensions, namely, SO(3) - we are familiar with the fact that final configuration of
a system after two successive rotations around distinct axes differs depends on the
sequence in which the two rotations are carried out.

1 Continuous Groups, Lie Groups, Generators, Lie

Algebras

Recall that a global U(1) transformation is multiplication by a phase factor

U(α) = eieα,

where e is a quantum of the charge of the scalar field and α is the symmetry parameter.
The symmetry parameter is a continuous variable taking any real value i.e. α ∈ R.
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Since α is a continuous variable, the group elements, U(α), being a function of a con-
tinuous variable is itself continuous. Such groups whose group elements are continuous
functions of some real valued variables (in this case the symmetry parameter α) are
called continuous groups. They contain infinite number of elements. In addition this
group (U(1)) is a Lie Group, i.e. the group elements are an analytic functions of the
symmetry parameter α. This is evident because the exponential can be expanded in a
power series,

U(α) = eieα =
∑
n

(ieα)n

n!
.

These ideas carry forward to the nonabelian case as well, let’s say when the sym-
metry group is U(N). One is familiar with the fact that any N × N unitary matrix,
U , can be expressed as exponential of an N ×N hermitian matrix, H,

U = eiH .

Thus the space of all possible N × N unitary matrices is obtained from the vector
space of all possible N × N hermitian matrices. Further one can expand any N × N
hermitian matrix, H in a basis of N2 hermitian matrices, namely, Ta, a = 1, ..., N2,

H = αa Ta

where the αa’s are the basis expansion coefficients and they can each take real values,
i.e. αa ∈ R. We are following the Einstein summation convention whereby repeated
indices are summed over. The unitary group element is thus expressed in the form,

U = exp (iαa Ta) .

The basis matrices, Ta’s, are called the generators of the Lie group. The total number
of generators is the dimension of the Lie algebra. In the present case, i.e. the Lie
algebra u(N), the dimension is N2. (Although we are discussing at present the U(N)
group the discussion extends to all Lie groups). We can identify the αa’s as the con-
tinuous symmetry parameters while the hermitian matrix basis elements Ta’s as the
counterparts for charge quantum, e. Just as different values of e represent different
particles (representations of the U(1) group), different representations i.e. matrices of
different sizes correspond to different non-abelian charges/particles. In particular, the
scalar Φ transforms in the fundamental or defining representation of the u(N) i.e. it
gets multiplied from the left by an N ×N unitary matrix under the symmetry,

Φ→ Φ′ = U Φ

Thus for each continuous symmetry parameter, αa, there is a conserved Noether cur-
rent, Jµa . It is evident from the Noether current expression computed from the action,

Jµa = i
(
∂µΦ†TaΦ−Φ†Ta∂

µΦ
)
, a = 1, ..., N2.
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An important consequence of closure under the matrix multiplication of matrices,
U = exp(iαaTa) i.e. demanding that,

exp (iαa Ta) exp
(
iαb Tb

)
= exp (iαc Tc)

is that the Ta’s must obey a commutation relation of the type,

[Ta, Tb] = if c ab Tc. (2)

Such an algebra of the generators of a Lie group is called the Lie algebra of the group,
denoted by a lower case letter, u(N). From the defining equation, (2), it is evident that
the constants, f cab are real and antisymmetric in the lower pair of indices, ab. These
constants are called the structure constants of the Lie algebra. Another important
property of a Lie algebra is the Jacobi identity:

[[Ta, Tb] , Tc] + [[Tb, Tc] , Ta] + [[Tc, Ta] , Tb] = 0. (3)

In terms of the structure constants the Jacobi identity is expressed as,

fd ab f
e
cd + fd bc f

e
ad + fd ca f

e
bd = 0. (4)

1.1 Adjoint Representation

The structure constants of a Lie algebra themselves provide a representation is the
adjoint or regular representation which is given by the explicit form of the matrix
elements of the generators, (

T
Adj
b

)a
c = ifa bc (5)

Here the upper left index is a row index and the bottom right index is a column index.
It can easily be verified that these elements defined by (5) satisfy the relations (2) and
(3). Since the row and column index go over the dimension of the Lie algebra, the
generators of the Lie algebra in the adjoint representation are N2 × N2 matrices for
the case of u(N). For a general nonabelian Lie group, the adjoint representation are
dim(g)× dim(g) matrices, where dim(g) is the dimension of the lie algebra.

A field in the adjoint representation, say V transforms as,

V ′ = exp
(
iαa TAdj

a

)
V ≈

(
I + iαa TAdj

a

)
V +O

(
α2
)
.

Displaying the indices this infinitesimal version equation looks like,

V ′a =

(
δac + iαb

(
T

Adj
b

)a
c

)
V c

= V a + iαb (ifa bc)V
c

= V a + fa bcV
bαc. (6)
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2 Nonabelian gauge symmetry

We have seen in the complex scalar case which has an abelian U(1) global symmetry,
turning the global symmetry U(1) into a local/gauge symmetry using the gauge prin-
ciple or the principle of minimal coupling leads to coupling of the complex scalar to
some form of massless vector field (Maxwell) . Here we try to do this for the non-
abelian symmetry, U(N) i.e. attempt to turn the U(N) into local (gauge symmetry)
and see what kinda massless vector field does this N -component scalar couple to. For
the scalar electrodynamics case we this covariant derivative can be defined using a
minimal coupling form by introducing a vector field Aµ,

DµΦ ≡ (∂µ − i e Aµ) Φ.

However we have witnessed in the previous section that for nonabelian symmetry, the
charge e must be replaced by the generator Ta. Hence balancing indices one can propose
a gauge covariant derivative for a nonabelian gauge symmetry to be of the form,

DµΦ =
(
∂µ − iTaAaµ

)
Φ, (7)

i.e. corresponding to each generator Ta, we introduce a vector (spin 1) gauge field with
the same index, Aaµ. Then, covariance of this new derivative under the local U(N)
which deliver us the transformation law for the gauge field(s) as follows, (to reduce
cumber we stop displaying the functional dependence of Φ and U on x),

D′µΦ
′ = U DµΦ

⇒
(
∂µ − iTa A′aµ

)
(U Φ) = U

(
∂µ − Ta Aaµ

)
Φ

⇒ ∂µ (U Φ)− iTa A′aµU Φ = U∂µΦ− iU Ta A
a
µ Φ

⇒ (∂µU) Φ− iTa A′aµ U Φ = −i U TaAaµ Φ

⇒ iTa A
′a
µ U Φ = iU TaA

a
µΦ + (∂µU) Φ

⇒ iTa A
′a
µU Φ =

(
i U TaA

a
µ U
−1)U Φ + (∂µU) U−1 U Φ.

Since this holds for arbitrary Φ and U , we must have,

i TaA
′a
µ = i U TaAµ U

−1 + (∂µU) U−1

which upon a bit of algebraic simplification gives,

TaA
′a
µ = U TaA

a
µ U
−1 − i (∂µU) U−1. (8)

Thus the matrix-valued vector field Aµ ≡ TaA
a
µ introduced for the case of U((N) or

SU(N) is a generalization of the 4-vector potential of electrodynamics (aka the Maxwell
field) and is referred to as a non-abelian gauge field. Specifically for the case when the
symmetry is SU(N), i.e. the group of unitary matrices with unit determinant, the
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gauge field is called Yang-Mills gauge field. in index free notation, the transformation
law for the gauge field is expressed as,

A′µ = UAµU
−1 − i (∂µU) U−1. (9)

It in instructive to consider the special case when the gauge transformation is close
to identity, i.e. the infinitesimal form,

U ≈ I + iαaTa.

Substituting in (8), one has the infinitesimal version of the transformation law of the
gauge field component,

A′aµ = Aaµ + ∂µα
a + fa bcA

b
µ α

c +O(α2). (10)

Comparing this expression to that of the abelian U(1) case, i.e. for the Maxwell field,
namely

A′µ = Aµ + ∂µα,

we observe that in this expression for the infinitesimal form of the nonabelian gauge
field, one has, in addition to the derivative of α term, another piece proportional to the
structure constants of the Lie group. What is the physical significance of this piece?
Notice that in the special case when the symmetry goes global, i.e. αa’s are constants,
i.e. they take the same value at all spacetime points, then infinitesimal transformation
rule (10) becomes,

A′aµ = Aaµ + fa bcA
b
µ α

c. (11)

This is new compared to the U(1) case when the gauge field did not transform at all
in the global limit of the gauge transformation. This implies that the non-abelian
gauge field is charged under the global U(N) symmetry while the U(1) gauge field
(Maxwell) is neutral.

Since the nonabelian gauge field transforms nontrivially under the global subgroup
of the local symmetry, it is natural to ask which representation (tensor) of the group
does it transform like. Recalling the infinitesimal version of transformation of a field
in the adjoint representation, Eq. (6), we conclude that the nonabelian gauge field
transforms like the adjoint representation .

3 Kinetic Term for the Gauge field

Via minimmal coupling i.e. replacing the partial derivatives of the scalar field, ∂µΦ
by DµΦ, we have successfully coupled the multicomponent complex scalar field to a
matrix-valued vector field, Aµ, i.e. the gauge field.

DµΦ
†DµΦ = ∂µΦ

†∂µΦ− i g
(
Φ†Aµ

†∂µΦ− ∂µΦ†AµΦ
)

+ g2Φ†A†µA
µΦ. (12)
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Clearly, the first term represents the kinetic energy term for the scalars while the
two other terms represent the scalar coupling to the gauge field. However, we are
yet to write down a kinetic energy term for this gauge field itself. Recall the case
of the U(1) gauge field, Aµ again. The naive kinetic term for the U(1) gauge field,
namely, (∂µAν)(∂

µAν) does not work because it is not invariant under U(1) gauge
(local) symmetry. Instead, the proper kinetic term was given by,

LEM = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ,

which was arrived upon by noticing that one might consider a term which is quadratic
in derivatives of the gauge fields, as well as transforming like a tensor under U(1) gauge
transformation, namely,

e Fµν φ ≡ i [Dµ, Dν ]φ (13)

It is evident that the right hand side transforms covariantly under a gauge transfor-
mation and it is quadratic in the derivative of the gauge fields as well. Then one
might suggest that a similar construction be carried out for the nonabelian gauge field.
Indeed working out the steps one finds

i [Dµ, Dν ] Φ = Ta F
a
µνΦ, (14)

where
F a
µν = ∂µA

a
ν − ∂νAaµ + fa bcA

b
µA

c
ν (15)

is the a-th component of the field strength tensor, F µν = Ta F
a
µν . In index-free notation,

F µν = ∂µAν − ∂νAµ − i [Aµ,Aν ] . (16)

From the lhs of (14), it is evident that this field strength tensor should transform
as a tensor under a local U(N) transformation. But it is instructive to check the
transformation properties of the rhs anyway. It can be checked that,

F ′µν = UF µνU
−1. (17)

Now it is easy to write down a gauge invariant kinetic term for the gauge field in terms
of the field strength tensor similar to the Maxwell case,

Lkin[Aµ] = K Tr (F µνF
µν) (18)

where K is a proportionality constant. The trace is crucial for the term to be gauge
invariant as can be seen explicitly,

Tr
(
F ′µνF

′µν) = Tr
(
U F µνF

µν U−1
)

= Tr
(
F µνF

µν U−1 U
)

= Tr (F µνF
µν) . (19)

We can simplify the kinetic term for the gauge field a little bit more by writing it in
component notation,

Lkin
[
Aaµ
]

= K Tr (F µνF
µν) = K Tr

(
F b
µνTb F

cµνTc
)

= K Tr (Tb Tc)F
b
µνF

cµν .
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Since Ta’s can be any arbitrary representation, the value of the coefficient Tr (Tb Tc) is
different in each representation. This is a bit of an issue because then the kinetic term
normalization becomes dependent on the particular representation chosen. One gets
around this by choosing the constant K be also different for each representation that
the value of the product is same i.e. independent of the representation. This product
is given by the convention,

KAdj = −1

2
, Tr

(
TAdj
a T

Adj
b

)
= gab

Thus we have the representation independent kinetic term for the nonabelian gauge
field to be,

Lkin
[
Aaµ
]

= −1

2
gab F

a
µνF

bµν (20)

The coefficient gab plays the role of the metric in the space of the generators (Lie alge-
bra) and is known as the Cartan-Killing metric.

Homework Exercises

1. Check that the proposed adjoint representation generators defined by eq.(5) in-
deed satisfies the necessary conditions for the Lie agebra, namely Eq.s (2) and (3).

2 The Lie algebra su(2) is commonly cited as

[Ja, Jb] = i εabc Jc.

where the indices a, b, c take values 1, 2, 3. From this we can easily identify the
structure constants to be,

f c ab = εabc.

You are already familiar with the fundamental representation wherein, Ja = σa
2

,
where the σa’s are the Pauli matrices. Now using (6) to construct the su(2)
generators (matrices) in the adjoint representation.

3. Check that the nonabelian field strength tensor defined by (14) transforms in
the adjoint representation. Hint: Begin with the index free version of the field
strength (16) and first prove eq.(17) using the transformation law for the gauge
field (9) and then express the infinitesimal version of (17) in component form.
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