
CSE 569, Scholarship Skills, Week3a

1

Scholarship Skills

Andrew Black, David Maier 1 Lecture 3a

Scholarship Skills

Tim Sheard & Andrew Black
Portland State University

© 1996, 1997, 1999, 2000, 2018-19 David
Maier
© 2001 Todd Leen © 2006 Tim Sheard

LATEX and BibTEX

Scholarship Skills

Andrew Black, David Maier 2 Lecture 3a

LaTeX

LaTeX is a popular type-setting tool used
by many computer scientists and
mathematicians

•  It has great support for type-setting mathematics
(including a sophisticated macro system)

•  It comes with supporting tools for managing
bibliographic information – BibTeX

•  Source is text and can be managed with Revision
Control Systems such as SVN and CVS

•  Since source is text, tools can easily create input for
tables and figures.

•  It’s open-source, and free.

•  Web-based versions available: ShareLaTeX, Overleaf

CSE 569, Scholarship Skills, Week3a

2

Scholarship Skills

Andrew Black, David Maier 3 Lecture 3a

Resources for LaTeX

•  The most common version of LaTeX is pdflatex.

•  Online help for Latex

–  http://www.emerson.emory.edu/services/latex/latex2e/latex2e_toc.html
–  http://tug.org/texlive/
–  http://www.giss.nasa.gov/tools/latex/
–  http://nwalsh.com/tex/texhelp/LaTeX.html
–  https://www.math.ucsd.edu/~wcheung/texforwindows.html

–  TeX & LaTeX for mathematicians on windows!

•  Free online book on LaTeX
“The Not So Short Introduction to LaTeX2e”
By Tobias Oetiker. Hubert Partl, Irene Hyna and Elisabeth Schlegl
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

Scholarship Skills

Andrew Black, David Maier 4 Lecture 3a

Markup Commands

•  LaTeX is a markup language
–  Text and commands are interspersed in the same

document
–  Commands are alpha-strings preceded by a backslash
–  Commands can have arguments and options

•  Arguments appear inside { } . If a command has
arguments you must supply them.

•  Options appear inside [] . Options need not be supplied
(they have default values)

–  Examples
\alpha
\begin{document}
\documentstyle[twoside]{report}
\begin{array}[t]{cl}

– Many commands come in pairs
\begin{centering}
\end{centering}

CSE 569, Scholarship Skills, Week3a

3

Scholarship Skills

Andrew Black, David Maier 5 Lecture 3a

Basic Setup

\documentclass[12pt]{article}

\begin{document}

\title{LaTeX for Scholarship Skills}
\author{
Tim Sheard\\
Computer Science Department\\
Maseeh College of Engineering and
Computer Science\\
Portland State University\\
}

\maketitle

\section{Introduction}

This document is an introduction to the use
of LaTeX for Scholarship Skills class members.
In it I will try and outline the basic operations
available in LaTeX.
\end{document}

Scholarship Skills

Andrew Black, David Maier 6 Lecture 3a

Structure

\documentclass[12pt]{article}

\begin{document}

\title{LaTeX for Scholarship Skills}
\author{
Tim Sheard\\
Computer Science Department\\
Maseeh College of Engineering and

Computer Science\\
Portland State University\\
}

\maketitle

\section{Introduction}

This document is an introduction to

the use of LaTeX for Scholarship
Skills class members. In it I will
try and outline the basic
operations available in LaTeX.

\end{document}

Specifies what type of
document and the default font

size.

Every document begins
with \begin{document}
and ends with
\end{document}

Title and author are specified
with \title{ …} and \author{ …}

\maketitle tells where in the
document the title should

appear.

The \section{ … } command
introduces a new section

whose name is …

CSE 569, Scholarship Skills, Week3a

4

Scholarship Skills

Andrew Black, David Maier 7 Lecture 3a

Separating commands from text

In a LaTeX source file only certain characters are
allowed. All other characters are created in the output
by using commands.

Allowed Characters
Upper Case Alpha: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Lower Case Alpha: abcdefghijklmnopqrstuvwxyz
Digits: 0123456789
Punctuation: .:;,?!`’()[]-/*@

Unless these characters are inside commands: if they are in
the input, they will appear in the output.

Special Characters
Used only inside LaTeX commands: #$%&~_^\{}
Used in Math Formulas: +=|<>

Scholarship Skills

Andrew Black, David Maier 8 Lecture 3a

LaTeX Sources

\documentclass[12pt]
{article}

\begin{document}

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

.:;,?!`’()[]-/*@

\# \$ \% \& _ \{ \}
\verb+~+
 \verb+^+ \verb+\+

\end{document}

Special characters
require special

commands to produce.

CSE 569, Scholarship Skills, Week3a

5

Scholarship Skills

Andrew Black, David Maier 9 Lecture 3a

Itemized lists

My favorite things (in no
special order) include:

\begin{itemize}
\item Red Cats.
\item Blue Pajamas
\item Pink Elephants
\end{itemize}

But, if I had to place them
in order, it would have to
be:

\begin{enumerate}
\item Pink Elephants
\item Red Cats.
\item Blue Pajamas
\end{enumerate}

Scholarship Skills

Andrew Black, David Maier 10 Lecture 3a

Labels and references
\documentclass[12pt]{article}

\begin{document}

\section{In the beginning}\label{alpha}

You have to start some where,
otherwise you'll never get to the end.
More about this in Section \ref{omega}.

\section{At the end}\label{omega}

When all is said and done, Id rather be
at the beginning (see Section
\ref{alpha}) than at the end.

\end{document}

CSE 569, Scholarship Skills, Week3a

6

Scholarship Skills

Andrew Black, David Maier 11 Lecture 3a

Footnotes

\documentclass[14pt]{article}

\begin{document}

There are lots of thing I
never learned in Scholarship
Skills \footnote{But, using
LaTex wasn't one of them.}
that I haven't used since.
But I do not regret taking
the course\footnote{I
\emph{do} regret losing my
class notes!}.

\end{document}

Scholarship Skills

Andrew Black, David Maier 12 Lecture 3a

Sectioning
\section{The Biggest Stuff}\label{A}
Sections are the largest
parts of an article.

\subsection{The Next Stuff}\label{B}
Sub-sections are slightly
smaller.

\subsubsection{Down A Bit More}\label{C}
Sub-sub-sections really divide
the text.

\paragraph{About at the bottom.}
Only sentences\\ are smaller
than paragraphs.

\section{Discussion}

Biggest in Section \ref{A}.\\
Next in Subsection \ref{B}.\\
Down in Subsubsection \ref{C}.\\

CSE 569, Scholarship Skills, Week3a

7

Scholarship Skills

Andrew Black, David Maier 13 Lecture 3a

Tables

\begin{tabular}{l|c|r|} \hline
left & centered & right\\ \hline
big & little & small \\
Thomas & Richard & Harrison \\ \hline
\end{tabular}

Scholarship Skills

Andrew Black, David Maier 14 Lecture 3a

Try it without vertical rules:

\begin{tabular}{lcr}
left & centered & right\\ \hline
big & little & small \\
Thomas & Richard & Harrison \\
\end{tabular}

left centered right
big little small
Thomas Richard Harrison

CSE 569, Scholarship Skills, Week3a

8

Scholarship Skills

Andrew Black, David Maier 15 Lecture 3a

Mathematics
\documentclass[14pt]{article}

\begin{document}
\[x' + 2x^{2+y} =
 \frac{z_{i-1} * w^{j+1}}
 {\sqrt{3m}} \]
\end{document}

Scholarship Skills

Andrew Black, David Maier 16 Lecture 3a

Inline Mathematics

Consider the coefficients a,
b and c in\\
the equation $ax^2 + bx + c =
$

Consider the coe�cients a, b and c in

the equation ax

2
+ bx+ c =

Don’t use $word$ for italics. (Why?)

CSE 569, Scholarship Skills, Week3a

9

Scholarship Skills

Andrew Black, David Maier 17 Lecture 3a

\[
x' + 2x^{2+y} =
 \frac{z_{i-1} * w^{j+1}}
 {\sqrt{3m}}
\]

Begin typesetting math

End typesetting math

Exponentiation by
superscripting

subscripting

The top part of a fraction

The bottom part of a fraction

Scholarship Skills

Andrew Black, David Maier 18 Lecture 3a

Floating Figures
\section{Weather on Mars}
\begin{figure}
\hspace*{1in}
\begin{tabular}{|l||c|c|c|} \hline
 & Today & Yesterday & Tomorrow \\ \hline \hline
A & 356 & 22 & 18 \\ \hline
B & 851 & 456 & 129 \\ \hline
\end{tabular}
\caption{Temperature in degrees K, at sites A and B on Mars.}
\label{mars} \hrule
\end{figure}

In Figure \ref{mars} we report the temperature at A and B.

CSE 569, Scholarship Skills, Week3a

10

Scholarship Skills

Andrew Black, David Maier 19 Lecture 3a

Figures can be imported
\section{An Alternative to Textual Error
Messages}
We have built a plugin for the Eclipse
environment that addresses the problems
with error messages that were revealed by
the formative study.
The plugin is called Refactoring
Annotations, …
In general, Refactoring Annotations can be
thought of as graphical error messages;
specifically, the current plugin displays
violated preconditions for the
\refacName{Extract Method} refactoring.

\begin{figure}
 \centering
 \includegraphics[scale=\figureScale]
{annsOk}
 \caption{Refactoring Annotations overlaid
on program text.

 The programmer has selected two
lines (between the dotted lines) to
extract. Refactoring Annotations show
how the variables will be used:
 \texttt{front} and \texttt{rear} will be
parameters, as indicated by the
arrows into the code to be extracted,
and \texttt{trued} will be returned, as
indicated by the arrow out of the code
to be extracted.\label{fig:annsOk}}
\end{figure}

In file
annsOK:

File in same directory as .tex file, or
declare “graphicspath”

Scholarship Skills

Andrew Black, David Maier 20 Lecture 3a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. T, MONTH YEAR 3

is based on our review of 16 refactoring tools in 2005 [8,
p 3].

In this formative study, we observed eleven programmers
perform a number of EXTRACT METHOD refactorings.
Six of the programmers were Ph.D. students and two
were professors from Portland State University; three were
commercial software developers. We asked the participants
to use the Eclipse EXTRACT METHOD tool to refactor parts
of several large, open-source projects:

• Vuze, a peer-to-peer file-sharing client (http://azureus.
sourceforge.net);

• GanttProject, a project scheduling application (http://
ganttproject.biz);

• JasperReports, a report generation library (http://
jasperforge.org);

• Jython, a Java implementation of the Python program-
ming language (http://www.jython.org); and

• the Java 1.4.2 libraries (http://java.sun.com/j2se/1.4.2/
download.html).

We chose these projects because of their size and maturity.
Programmers were free to refactor whatever code they
thought necessary; they were allowed to use a tool to
help find long methods, which can be good candidates
for refactoring. Each refactoring session was limited to 30
minutes; programmers successfully extracted between 2 and
16 methods during that time.

We made the following conjectures based on our obser-
vations of programmers struggling with refactoring error
messages during this study:

• Many programmers encounter refactoring errors. In
all, 9 out of 11 programmers experienced at least
one error message while trying to extract code. The 2
exceptions performed some of the fewest extractions in
the group, so were among the least likely to encounter
errors. Furthermore, these 2 exceptions were among
the most experienced programmers in the group, and
seemed to avoid code that might possibly generate
error messages.

• Some programmers encounter errors frequently. For
example, one programmer attempted to extract 34
methods and encountered errors during 23 of these
attempts.

• Programmers encounter refactoring errors from a vari-
ety of sources. In the study, programmers encountered
errors regarding invalid or inappropriate selections,
multiple assignments, and control flow.

• Error messages are insufficiently descriptive. Program-
mers, especially refactoring tool novices, may not
understand an error message that they have not seen
before. When we asked what an error message was
saying, several programmers were unable to explain
the problem correctly.

• Programmers have difficulty assessing the amount of
work required to resolve an error. This was because
even if multiple precondition violations existed during
a particular application of the tool, Eclipse reported
only a single violation.

• Programmers confuse error messages. All the errors
were presented as graphically-identical text boxes with
identically formatted text. At times, programmers in-
terpreted one error message as an unrelated error
message because the errors appeared identical at a
quick glance. Improving the message text would not
solve this problem: the clarity of the message text is
irrelevant when the programmer does not take the time
to read it.

• Error messages discourage programmers from refac-
toring at all. For instance, if the tool said that a
method could not be extracted because there were
multiple assignments to local variables (Figure 2), the
next time a particular programmer came across any
assignments to local variables, the programmer did not
try to refactor, even if no precondition was violated.

This study shows that there is room for two kinds of
improvement to EXTRACT METHOD tools. First, to prevent
a large number of mis-selection errors, programmers need
support in making a valid selection; an implementation of
this is described and evaluated in our ICSE paper [10].
Second, to help programmers recover successfully from
violated preconditions, programmers need expressive, dis-
tinguishable, and understandable feedback that conveys the
meaning of precondition violations; this is the focus of the
remainder of this article.

3 AN ALTERNATIVE TO TEXTUAL ERROR
MESSAGES
We have built a plugin for the Eclipse environment that ad-
dresses the problems with error messages that were revealed
by the formative study. The plugin is called Refactoring
Annotations, and can be downloaded from http://multiview.
cs.pdx.edu/refactoring/refactoring annotations. In general,
Refactoring Annotations can be thought of as graphical
error messages; specifically, the current plugin displays vio-
lated preconditions for the EXTRACT METHOD refactoring.

The programmer starts using the Refactoring Annotations
tool by selecting some program text. Refactoring Annota-
tions overlay the program text to express control- and data-
flow information about the programmer’s selection. Each
variable is assigned a distinct color, and each occurrence
of the variable is highlighted, as shown in Figure 3. Across
the top of the selection, an arrow points to the first use of
a variable whose value that will have to be passed as an
argument into the extracted method. Across the bottom, an
arrow points from the last assignment of a variable whose
value will have to be returned. L-values have black boxes
around them, while r-values do not. An arrow to the left of
the selection indicates that control flows from beginning to
end.

These annotations are intended to be most useful when
preconditions are violated, as shown in Figure 4. When the
selection contains assignments to more than one variable,
multiple arrows are drawn leaving the bottom, showing
multiple return values (Figure 4, top). When a selection
contains a conditional return, an arrow is drawn from the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. T, MONTH YEAR 4

Fig. 3. Refactoring Annotations overlaid on program
text. The programmer has selected two lines (between
the dotted lines) to extract. Refactoring Annotations
show how the variables will be used: front and rear
will be parameters, as indicated by the arrows into the
code to be extracted, and trued will be returned, as
indicated by the arrow out of the code to be extracted.

Fig. 4. Refactoring Annotations display a variety of
violated preconditions.

return statement to the left, crossing the beginning-to-end
arrow (Figure 4, middle). When the selection contains a
branch (break or continue) statement, a line is drawn
from the branch statement to its corresponding target (Fig-
ure 4, bottom). In each case, Xs are displayed over the
arrows, indicating the location of the violated precondition.

When code violates a precondition, Refactoring Annota-
tions are intended to give the programmer an idea of how
to correct the violation. Often the programmer can enlarge
or reduce the selection to allow the extraction of a method.
Other solutions include changing program logic to eliminate
break and continue statements; this is another kind of
refactoring.

Refactoring Annotations are intended to scale well as the
amount of code to be extracted increases. For code blocks
of tens or hundreds of lines, only a few values are typically
passed in or returned, and only the variables holding those
values are colored. In the case when a piece of code uses or
assigns to many variables, the annotations become visually
complex. However, we reason that this is desirable: the
more values that are passed in or returned, the less cohesive
the extracted method. Thus, we feel that code with visually
complex Refactoring Annotations should probably not have
EXTRACT METHOD performed on it. As one programmer
has commented, Refactoring Annotations visualize a useful
complexity metric.

Refactoring Annotations are intended to assist the pro-
grammer in resolving precondition violations in two ways.
First, because Refactoring Annotations can indicate multi-
ple precondition violations simultaneously, the annotations
give the programmer an idea of the severity of the problem.
Correcting a conditional return alone will be easier than
correcting a conditional return, and a branch, and multi-
ple assignments. Likewise, correcting two assignments is
likely to be easier than correcting six assignments. Second,
Refactoring Annotations give specific, spatial cues that can
help programmers to diagnose the violated preconditions.

Refactoring Annotations are similar to a variety of prior
visualizations. Our control flow annotations are visually
similar to Control Structure Diagrams [6]. However, unlike
Control Structure Diagrams, Refactoring Annotations de-
pend on the programmer’s selection, and visualize only the
information that is relevant to the refactoring task. Variable
highlighting is like the highlighting tool in Eclipse, where
the programmer can select an occurrence of a variable,
and every other occurrence is highlighted. Unlike Eclipse’s
variable highlighter, Refactoring Annotations distinguish
between variables by color; moreover, the variables relevant
to the refactoring are highlighted automatically. In Refac-
toring Annotations, the arrows drawn on parameters and
return values are similar to the arrows in the DrScheme
environment [3], which draws arrows between a variable
declaration and each variable reference. Unlike the arrows
in DrScheme, Refactoring Annotations automatically draw
a single arrow for each parameter and for each return value.
Finally, Refactoring Annotations’ data-flow arrows are like
the code annotations drawn in a program slicing tool built
by Ernst [2], where arrows and colors display the input

CSE 569, Scholarship Skills, Week3a

11

Scholarship Skills

Andrew Black, David Maier 21 Lecture 3a

Citations

\documentclass[14pt]{article}
\begin{document}

We studied four papers in lecture. The first, by Scott

\cite{Scott92}, is a book. Then second, by Cambers
and Leavens\cite{Chambers95}, is a journal paper. The
third, by Heiler and Rosenthal\cite{Heiler85}, is a
paper in a proceedings. The last paper, by Dayal and
Smith\cite{Dayal85}, is in a collection of papers.

\bibliographystyle{plain}
\bibliography{myBib}

\end{document}

Scholarship Skills

Andrew Black, David Maier 22 Lecture 3a

Result

CSE 569, Scholarship Skills, Week3a

12

Scholarship Skills

Andrew Black, David Maier 23 Lecture 3a

References

References in LaTeX are kept in a .bib file.

Use BibTeX to create the text that goes in the

reference section of the paper

The Mantra is:

latex paper
bibtex paper
latex paper
latex paper

ShareLaTeX and Overleaf manage this process.

Creates the .aux file with a list of all citation keys

Finds the references in .bib and creates text

Inserts text for references

Gets the cross references right, the second time.

Scholarship Skills

Andrew Black, David Maier 24 Lecture 3a

Bibliographies with LaTeX

The bibfile stores all the data about individual papers.
Every paper is given a key.
The key used in the \cite command. This appears in the

text of the paper.
\cite{key}

Black recommends the natbib package; natbib is a
reimplementation of the LATEX \cite command, to
work with both author-year and numerical citations. It
is compatible with the standard bibliographic style
files, such as plain.bst, as well as with those for
harvard, apalike, chicago, astron, authordate.

Load with \usepackage[options]{natbib}.

CSE 569, Scholarship Skills, Week3a

13

Scholarship Skills

Andrew Black, David Maier 25 Lecture 3a

\cite* commands

The natbib package has two basic citation commands,
\citet and \citep for textual and parenthetical
citations, respectively. There are also starred versions \citet*
and \citep* that print the full author list, and not just the
abbreviated one. All of these may take one or two
optional arguments to add text before and after the
citation.

Scholarship Skills

Andrew Black, David Maier 26 Lecture 3a

The bib file

The bib file stores all the data about individual
papers.

Every paper is given a key, which is used in the
\cite{…} command.

There are many kinds of references
We will look at 4 common kinds

Book, journal article, proceedings paper, collection paper

Other interesting ones are
web page, thesis and tech report. There are many others.
Not every style file implements all kinds of reference.

CSE 569, Scholarship Skills, Week3a

14

Scholarship Skills

Andrew Black, David Maier 27 Lecture 3a

Example bib file
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/

@techreport{haines1993,

 Address = {Pittsburgh, Pennsylvania, United States},
 Author = {Nicholas Haines and Darrell Kindred and J. Gregory Morrisett and Scott M. Nettles and Jeannette M. Wing},
 Date-Added = {2011-05-02 08:46:26 -0700},
 Date-Modified = {2011-05-02 08:50:24 -0700},
 Institution = {School of Computer Science, CMU},
 Keywords = {transactions, threads, skeins, persistence, recovery, undoability, serializability, Standard ML, modules},
 Month = {December},
 Number = {CMU-CS-93-202},
 Title = {Tinkertoy Transactions},
 Year = {1993},
 Abstract = {We describe … }}

@book{silber2005,
 Author = {Abraham Silberschatz and Peter Baer Galvin and Greg Gagne},
 Booktitle = {Operating System Concepts},
 Date-Added = {2011-03-22 17:04:57 -0700},
 Date-Modified = {2011-03-22 17:12:35 -0700},
 Edition = {Seventh Edition},
 Pages = {xv+886},
 Publisher = {Wiley},
 Title = {Operating System Concepts},
 Url = {http://www.cetlylive.com/wp-content/uploads/2010/11/Operating-System-Concepts-7-th-Edition.pdf},
 Year = {2005}}

…

Scholarship Skills

Andrew Black, David Maier 28 Lecture 3a

Book

@Book{Scott92,
 author = "Marla Scott",
 title = "Effective
 Programming in {C}",
 year = "1992",
 publisher = "Addison-Wesley"
}

CSE 569, Scholarship Skills, Week3a

15

Scholarship Skills

Andrew Black, David Maier 29 Lecture 3a

Journal Article

@Article{Chambers95,
 author = "Craig Chambers and Gary T. Leavens",
 title = "Typechecking and Modules for
 Multimethods",
 journal = "ACM Transactions on
 Programming Languages
 and Systems",
 volume = "17",
 number = "6",
 pages = "805--843",
 month = nov,
 year = "1995"
}

Scholarship Skills

Andrew Black, David Maier 30 Lecture 3a

Proceedings paper

@InProceedings{Heiler85,
 author = "S. Heiler and A. Rosenthal",
 title = "{G}-Whiz, a Visual Interface for
 the Functional Model
 with Recursion",
 booktitle = "Proc. Int'l. Conf. on Very Large
 Data Bases",
 pages = "209",
 address = "Stockholm, Sweden",
 month = aug,
 year = "1985",
 keywords = "VLDB",
}

CSE 569, Scholarship Skills, Week3a

16

Scholarship Skills

Andrew Black, David Maier 31 Lecture 3a

Collections paper

@InCollection{Dayal85,
 title = "{PROBE}: {A} Knowledge-Oriented
 Database Management System",
 author = "Umeshwar Dayal and John Miles Smith",
 editor = "Michael L Brodie and John Mylopoulous"

 year = "1986",
 booktitle = "On knowledge base management systems:

integrating artificial intelligence and
database technologies",

 publisher = "Springer-Verlag",
 address = "New York",
 pages = "227--257",
}

Note that @inbook would not work, because it won’t allow both author

and editor. @inbook is for chapters of a book.

Scholarship Skills

Andrew Black, David Maier 32 Lecture 3a

LaTeX on the Macintosh

•  LaTeXIT — lets
you type
fragments of
math, typeset
them, and paste
into another
application, like
Keynote or
PowerPoint.

•  TeXShop — freeware dual-view text
editor and pdf previewer

CSE 569, Scholarship Skills, Week3a

17

Scholarship Skills

Andrew Black, David Maier 33 Lecture 3a

Scholarship Skills

Andrew Black, David Maier 34 Lecture 3a

Tex and LaTex for windows

