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Bitcoin: A Peer-to-Peer Electronic Cash System

• From Database and Distributed Computing Perspective

• Identities and Signatures
• Public/Private key pair

• Ledger
• The balance of each identity (saved in the blockchain)

• Transactions
• Move bitcoins from one identity to another
• Concurrency control to serialize transactions (Mining and PoW)
• Typically backed by a transactions log (blockchain)

• Log is persistent (replicated across the network nodes)
• Log is immutable and tamper-free (PoW and Hash pointers)

DSL



Digital Signatures

DSL



Digital Signatures

• Pk, Sk Keygen(keysize)
Pk Sk

DSL



Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)
Pk Sk

DSL



Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)

• Your Sk is your signature (password)

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private
Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

DSL



Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

Used for Authentication not privacy
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Digital Signatures

• Unique to the signed document

• Mathematically hard to forge

• Mathematically easy to verify 

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid
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Hashing H(x)

• Signatures and public keys are combined using Hashing 

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

• Efficiently computable.

• Satisfies:
• Collision Free: no two x, y s.t. H(x) = H(y)

• Message digest.

• Hiding: Given H(x) infeasible to find x (one-way hash function)
• Commitment: commit to a value and reveal later

• Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such 
that:  H(ID | x) ε Y

SignatureAlice-Bob Pk-Diana
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Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control
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I took her car

I took his ring
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Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20 
coins to Diana

Wasn’t spent 
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!
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Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

• What incentives network nodes to maintain the ledger? 
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The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block 
chain should be made very hard, How?
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• Types of systems:  synchronous and asynchronous

• Problem statement:  given n processes and one leader:
• Agreement:  all correct processes agree on the same value
• Validity:  If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

• Synchronous systems:  
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n
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(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11],  etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

• Leader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication
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• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

• Also, Paxos has high network overhead
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Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary 
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds 
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

• quorums have at least 2f+1 replicas
• quorums intersect in f+1, hence have at least one correct replica

• Strong cryptography
• Only for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B
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Algorithm
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(1) A client sends a request for a service to the primary
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Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMMIT message
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replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client
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replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result
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PBFT Consensus

• Tolerates Byzantine (Malicious) failures
• To make progress, at least 2/3 of the participants should be correct

• Progress is not guaranteed (FLP impossibility)

• However, PBFT is Permissioned
• All participants should be known a priori

• Also, PBFT has high network overhead O(N2) [number of messages]
• Every node multi-casts their responses to every other node
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Nakamoto’s Consensus

• Intuitively, network nodes race to solve a puzzle

• This puzzle is computationally expensive

• Once a network node finds (mines) a solution:
• It adds its block of transactions to the blockchain

• It multi-casts the solution to other network nodes

• Other network nodes accept and verify the solution
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• TXreward is self signed (also called coinbase transaction)
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block
• Incentives network nodes to mine 
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• D: dynamically adjusted difficulty

• Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits
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Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

• Difficulty decreases if actual > expected, otherwise, increases
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• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

• What happens when 2 nodes concurrently mine a block? Fork
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• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS ( Transactions per second) - average of  3 to 7 TPS

• New block added every 10 minutes. 
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How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

• Requires more storage space and verification time

• Leads to higher number of forks
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Bitcoin NG (Next Generation)

• Bitcoin is retrospective: a block encases transactions from preceding 
10 minutes.

• Bitcoin NG is forward-looking: elect a leader every 10 minutes and 
the leader vets for future transactions as they occur.

Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.
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Observation: In Bitcoin, 
blocks provide two 

purpose:
consensus and

txn verification

Keyblocks: 
Used for Leader 

Election and created 
using Proof-of-work

Microblocks: 
Contains txns and is 

generated by the epoch 
leader, signed by 

leader's private key

Bitcoin NG: Keyblocks and Microblocks
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Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees40% 60%

• Encourages next leader to mine on top of the latest microblock
• Current leader should be motivated to add more microblocks instead of 

‘hiding’ them

DSL



Forks in BitcoinNG

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

PK(B)

A3

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

PK(B)
B1 B2

A4A3

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

A4A3

Intentional forks by 
malicious leader!!

DSL



Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

A4A3

A6A5

Intentional forks by 
malicious leader!!
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Bitcoin-NG review

• Does not provide strong consistency guarantees 

• Does not eliminate selfish mining by a malicious leader

• Still has delay in commitment

• But provides key insight in increasing throughput and 
reducing latency due to block separation
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SOLUTION 2

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand
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ByzCoin
Enhancing Bitcoin Security & Performance With Strong Consistency 
via Collective Signing

ByzCoin = Practical Byzantine Fault Tolerance + Collective Signing

To commit Bitcoin transactions irreversibly(strong consistency) 
within seconds

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective 
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.
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Strawman Design: PBFTCoin

- Naïve, unrealistic but 
simple: PBFT + Bitcoin

- TRUSTEES: 3f+1 replicas, at 
max f faulty

- Trustees run PBFT to 
decide next block

- COMMUNICATION 
COMPLEXITY : O(n2 )

1
Leader

2

34

5
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Using PBFT for Bitcoin's open membership

• Fixed size dynamically changing sliding SHARE window

• Incentive = new block’s transaction fee split by consensus group

• Voting power of miner = No. of blocks the miner has successfully 
mined in the current window

• Last miner is leader. Leader proposes the block

Step 1: Opening the Consensus Group
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Step 2: Decoupling Txn Verification from 
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW
• PBFT is used to obtain consensus on Micro blocks
• To avoid race condition, separate keyblock chain from microblock chain

Set of transactions + 
Collective signature

Hashes to last micro 
and key block

Key

Proof-of-work

New public key 
added to trustees
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Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

• Leader requests that statements be publicly validated and co-signed 
by decentralized group of witnesses 

• Optimize Schnorr multi-signatures using communication trees

• Communication complexity: O(N)

SYTA, E., TAMAS, I., VISHER, D., WOLINSKY, D. I., L., GAILLY, N., KHOFFI, I., AND FORD, B. Keeping Authorities “Honest 
or Bust” with Decentralized Witness Cosigning. In 37th IEEE Symposium on Security and Privacy (May 2016). 
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Step 4: Using CoSi to achieve PBFT

• PBFT is made scalable to thousands of nodes by clubbing with CoSi

• Need two-third super majority signatures in each phase

• Double spending by malicious leader circumvented due to overlap in 
the two phases on CoSi
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ByzCoin design

L

Share window of size 3

Each block is 
collectively signed by 
the trustees

trustees
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Dealing with Keyblock conflicts and Selfish 
Mining

• Forks in microblock chain not possible due to PBFT

• But forks possible in keyblock chain

How to resolve keyblock conflicts? 

• Deterministic function to decide on one of the contending 
forks
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H0 H1 H2 Hn-2 Hn-1

Hash

i = h mod (n)

Hashes of 
Contending 
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SOLUTION 3

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand
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Elastico
A Secure Sharding Protocol For Open Blockchains 

Scale Bitcoin-like cryptocurrency by adapting ‘shards’

Uniformly partitions the mining network into smaller 
committees, each of which processes a disjoint set of txns (or 
‘shards’) 

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference 
on Computer and Communications Security. ACM, 2016.
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Shard 1 Shard 2 Shard 3 Disjoint set of txns
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Naïve Strawman Solution

Assumptions:

• The list of nodes is known 
for each epoch

• Common random coin
H(coin || PK)

BFT Protocol

Shard 1 Shard 2 Shard 3Broadcast all shards
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Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

Random 
seed for 

PoW

IP and 
Public 

Key
Difficulty

The last s bits of ID specifies which (s-bit) committee id 
the node belongs to 
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• Naïve solution:  Broadcast to all

Complexity O(n2)

• A special committee: Directories of size c

Complexity O(nc)
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Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

• Run classical Byzantine agreement protocol
• Members agree and sign on one set of txns
• # of messages O(c2)
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Step 4: Final Committee

• A special committee to finalize on the next block

• Why??

• To avoid forks

• To verify if each committee block is signed by enough 
committee members

• To generate random values for next epoch
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SOLUTION 4

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand
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Algorand
Scaling Byzantine Agreements for Cryptocurrencies

A new Byzantine Agreement protocol (BA*) to reach consensus 
on the next set of txns

To commit txns with low latency and scale to many users by 
avoiding forks 

Gilad, Yossi, et al. "Algorand: Scaling byzantine agreements for cryptocurrencies." Proceedings of the 26th 
Symposium on Operating Systems Principles. ACM, 2017.
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Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability
→ Use of BA*: Runs consensus on a small set of nodes

• Resilient to denial of service
→ Randomly choose committee using Cryptographic Sortition 

based on weight

→ Replace participants after each round

DSL
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Algorand: Assumptions

• Honest majority of money $$

• An adversary cannot manipulate the network at large scale

• Strong synchrony
Tolerates temporary asynchronous network but must be followed by a 
longer synchronous network
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• Gossip protocol
• Each node collects pending txns
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Tx6
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• Provides proof of selection and 

priority for each block 1

Cryptographic 
Sortition

Yes! Here is the 
proof and priority 

for your block!
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Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of 

users selected based on their weights
• Provides proof of selection and 

priority for each block

• Agreement using BA*

1

Gossip
Tx1

Tx2

Proof Priority
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BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

• Each committee member will broadcast their vote for their block
• Vote for highest priority block
• All users can see this message

• Users that receive more than a threshold of votes for a block will 
hold onto that block
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Atomic Swaps

• Allow transactions to span multiple blockchains
• E.g., swap Bitcoin with Ethereum

• The goal:
• Swap assets across multiple blockchains

• If all parties conform to the protocol:
• All swaps take place

• If some coalition deviates from the protocol, then no conforming party ends 
up worse off

• No coalition has an incentive to deviate from the protocol

TierNolan, Atomic swap using cut and choose, https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949 (2013)
Herlihy, Maurice. "Atomic cross-chain swaps." PODC 2018

DSL
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Atomic Swaps

• Exchanges enable trading among different cryptocurrenices
• Usually happens through USD ($)

• Exchanges make the system centralised

• Atomic swaps allow trading different assets without an arbiter

• Atomic swaps use:
• Smart Contracts

• Hashlocks

• Timelocks

DSL



Smart Contracts

• Digital self-executing contract

• Stores rules for negotiating the terms of an agreement

• Automatically verifies fulfillment, and then executes the agreed terms

• E.g., move 10 Bitcoins from Alice to Bob if Bob provides a secret (s)

• Contracts are published in the blockchain

• Contracts are executed if its conditions are met
• Bob provides secret (s) to the contract

DSL



Example

• Landowner wants to rent out her place to a tenant

• Send house unlock code to Tenant if they transfer funds to landowner

Landowner Tenant
[Locked till transfer of funds 
takes place]
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Hashlocks and Timelocks

• Hashlock h 
• Transfer X Bitcoins from Alice to Bob if Bob provides a secret s such that h = 

H(s)

• H is a cryptographic one-way hash function

• The contract irrevocably transfers ownership of X  Bitcoins from Alice to Bob

• Timelock t
• If Bob fails to produce that s before time t elapses, then X Bitcoins are 

refunded to Alice 
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Atomic Swap Example

• Alice wants to trade Bitcoin for Ethereum with Bob
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• Calculate its hash h = H(s)
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Bob Alice

• Create a secret s
• Calculate its hash h = H(s)

s and h

DSL



Atomic Swap Example

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

T1  Move X bitcoins to Bob if 
Bob provides secret s | h = H(s)
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• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

T1  Move X bitcoins to Bob if 
Bob provides secret s | h = H(s)

Bitcoin blockchain
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Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

DSL



Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

T2  Move Y Ethereum to Alice if 
Alice provides secret s | h = H(s)

DSL



Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

T2  Move Y Ethereum to Alice if 
Alice provides secret s | h = H(s)

DSL
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• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

T2  Move Y Ethereum to Alice if 
Alice provides secret s | h = H(s)

T2
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Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s 
smart contract

T2

DSL



Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s 
smart contract

T2

DSL



Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in 
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Bob’s Y Ethereum are locked in T2’s 
smart contract

T2

DSL



Atomic Swap Example

• Revealing s, executes T2. Now s is public in Ethereum’s blockchain

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s 
smart contract

T2
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Atomic Swap Example

• Now, Bob uses s to execute T1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s 
smart contract

T2
s
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Atomic Swap Example

• Now, Bob uses s to execute T1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in 
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s 
smart contract

T2
s
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• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1
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Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

• Bob sees T1 but refuses to insert T2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the 

protocol
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Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

• Bob sees T1 but refuses to insert T2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the 

protocol

• Prevention
• Use timelocks to expire a contract

• Specify that an expired contract is refunded to the creator of this contract
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Atomic Swap Example: Timelocks

Bob Alice
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Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if 
Bob provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does 
not execute T1 before 48 hours
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Bob Alice

T1: Move X bitcoins to Bob if 
Bob provides secret s | h = H(s)
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T3: Refund T1 to Alice if Bob does 
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not execute T2 before 24 hours
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Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if 
Bob provides secret s | h = H(s)

T2: Move Y Ethereum to Alice if 
Alice provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does 
not execute T1 before 48 hours

T4: Refund T2 to Bob if Alice does 
not execute T2 before 24 hours

How to determine the time period of a timelock?
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Timelocks

• Timelocks are set to prevent any conforming party to end up worse off

• If Alice sets her timelock to 12 hours and Bob to 24 hours
• Alice can wait until her contract expires (gets a refund)

• Then, Alice executes T2 claiming T2’s Ethereum coins

Bob Alice

T1: Move X bitcoins to Bob if Bob provides 
secret s | h = H(s)

T2: Move Y Ethereum to Alice if Alice 
provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does not 
execute T1 before 12 hours

T4: Refund T2 to Bob if Alice does not 
execute T2 before 24 hours
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Timelocks

• Bob’s timelock should be set to achieve the following:
• Forces Alice to reveal s before Alice’s contract expires

• Allows enough time for Bob to execute T1 after Alice executes T2

• If Alice does not reveal s, both contracts should expire and be refunded

Bob Alice

T1: Move X bitcoins to Bob if Bob provides 
secret s | h = H(s)

T2: Move Y Ethereum to Alice if Alice 
provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does not 
execute T1 before 12 hours

T4: Refund T2 to Bob if Alice does not 
execute T2 before 24 hours
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Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)
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• Every party is rational 
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Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

• Vertices V are parties and arcs A are proposed asset transfers

• Assumptions:
• Every party is rational 

• E.g., Bob sets his timelock to 6 hours instead of 24 hours

• The directed graph must be strongly connected
• There is a path between any two pairs of nodes

• There is known time bound Δ
• Δ should be enough for one party to publish a contract to a blockchain and for a second 

party to confirm that the contract has been published
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Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin
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Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B
Contract Creation
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• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum
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Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B
Contract Redemption
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Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin
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Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

• Diam(D) is the diameter of Graph D
• Longest path from one node to another (including itself)

• Diam(D) = 3

• Hashlock on (u,v) = 2 . (D(v, v’) + 1) . Δ

• D(v, v’) + 1 [path from u to v’] creation path

• D(v, v’) + 1 [path from v’ to u] redemption path
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• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ
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• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ
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Multi-party Atomic Swap Example

C
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B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ

• Hashlock on B-C = (3 + 1 + 1) . Δ = 5Δ

• Hashlock on C-A = (3 + 0 + 1) . Δ = 4Δ
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What is Lightning Network?

“Lightning is a decentralized network using smart contract functionality 
in the blockchain to enable instant payments across a network of 
participants.”

https://lightning.network/

DSL
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The Setting: Two-party transactions

● Alice and Bob frequently need to transact with each other:

○ Alice ➔ Bob:  $x 

○ …

○ Bob ➔ Alice: $y

○ ….
● Each of the above transaction can be put on-chain.

● Is there an alternative?
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The Idea of Lightening

● Frequent two-party interactions can be modeled as off-chain 
transactions.

● On-chain interaction only to establish payment channels between Alice 
and Bob.

● The key challenge:

○ Off-chain interactions must remain honest, i.e.,  prevent Alice or Bob trying to 
cheat each other.
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Outline of the protocol

1. Open a bidirectional channel
a. Both parties make deposits to a shard on-chain wallet

2. Initiate a transaction by making a contract
a. Signed by both parties

3. Update the contract when making more transactions
a. Keep exchanging the updated contract off-chain

4. Push the most updated contract to the blockchain to withdraw
a. Thus the bidirectional channel is closed
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Building Block #1: Transactions
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Building Block #2: Double Spend 
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Building Block #3:  Multi-signature (2-of-2)
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Building Block #4: TimeLock
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Building Block #5: Hash Values & Secrets
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Lightning Network <high level protocol>

Alice Bob

Wallet

On-Chain
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Lightning Network <high level protocol>

Alice Bob

Wallet

On-Chain

10 BTC
Alice 
Bob

Local wallet Local wallet

5 5
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Lightning Network <high level protocol>

Alic
e Bob

Wallet

On-Chain

Local wallet Local wallet

5 5

Alice wants to send Bob 2 
BTC

10 BTC
Alice 
Bob
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Alice ➔ Bob: $2.0

● Alice sends $3.0 to herself, 

● $7.0 to a multisig address:

○ can be unlocked by Bob on his own, but after 1000 blocks have been mined

○ Or, it can be opened by Alice on her own, but only if she includes the S of H(S) 
from Bob.

● Alice signs her end of this commitment transaction, and gives it to Bob.

● Bob does the same: $7.0 to himself; and $3.0 to multisig address with 
TimeLock & HashLock.
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Alice ➔ Bob: $2.0 (contd.)

● Both Alice and Bob could sign and broadcast the half-valid transaction.

● If Alice does:

○ Bob gets $7.0 immediately but Alice must wait for 1000 blocks

● If Bob does:

○ Alice get $3.0 immediately but Bob must wait

➔ Therefore, neither sign and broadcast their half of the transaction.
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Updating the Payment Channel: Bob ➔ Alice: $1.0

● Bob:

○ $4.0 to multisig address (with TimeLock+HashLock)

○ $6.0 to himself

● Alice:

○ $ 4.0 to herself

○ $6.0 to multisig address (with TimeLock+HashLock)

● Alice & Bob hand each other their first secrets
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Can Bob be dishonest?

● What is stopping Bob from broadcasting the first transaction and 
benefiting with $7.0 instead of $6.0?

● Bob is prevented from this because he has revealed the first secret to 
Alice:

○ Broadcasting will require him to wait 1000 blocks

○ Alice will have enough time to beat Bob and claim $7.0 for herself.
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Lightening Networks

● Closure of payment channel in Lightning Networks

● Extending the lightning networks from two-parties to multiple-parties:

○ Option 1: 

■ N parties ➔ N2 payment channels 

○ Option 2: 

■ Transitivity of Transactions via intermediaries

■ Alice ➔ Carol:  (i) Alice ➔ Bob && (ii) Bob ➔ Carol 
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Open Problems and Criticism
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Questions and Open Discussion

DSL



……

DSL



Blockchain: Panacea for all our data problems?

• Resource cost:
• Proof-of-work consumes resources at 

the planetary scale

• Mythical notion of democratization:
• Handful of miners control the progress 

of Bitcoin blockchain

• False notion of security:
• An Individual vulnerable to the 

security of his/her key

• Extreme distribution:
• is it really worth it?

• Extreme redundancy:
• is it really necessary?

• Social consequences:
• Are we comfortable if this technology 

is used for dark causes?
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Contact Us

• Sujaya Maiyaa: sujaya_maiyya@ucsb.edu

• Victor Zakhary: victorzakhary@ucsb.edu

• Divyakant Agrawal: divyagrawal@ucsb.edu

• Amr El Abbadi: elabbadi@ucsb.edu
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