
Database and Distributed Computing
Fundamentals of Blockchains

Sujaya Maiyya, Victor Zakhary, Divyakant Agrawal, Amr El Abbadi

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

• Log is persistent

DSL

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

• Log is persistent
• Log is immutable and tamper-free (end-users trust this)

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Bitcoin

DSL

Bitcoin

DSL

Bitcoin

DSL

Bitcoin: A Peer-to-Peer Electronic Cash System

• From Database and Distributed Computing Perspective

• Identities and Signatures
• Public/Private key pair

• Ledger
• The balance of each identity (saved in the blockchain)

• Transactions
• Move bitcoins from one identity to another
• Concurrency control to serialize transactions (Mining and PoW)
• Typically backed by a transactions log (blockchain)

• Log is persistent (replicated across the network nodes)
• Log is immutable and tamper-free (PoW and Hash pointers)

DSL

Digital Signatures

DSL

Digital Signatures

• Pk, Sk Keygen(keysize)
Pk Sk

DSL

Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)
Pk Sk

DSL

Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)

• Your Sk is your signature (password)

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private
Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

DSL

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

Used for Authentication not privacy

DSL

Digital Signatures

• Unique to the signed document

• Mathematically hard to forge

• Mathematically easy to verify

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

DSL

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

Valid

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureBob-Diana

SignatureAlice-Bob

DSL

A Bitcoin Big Picture

DSL

A Bitcoin Big Picture

Signature…-Alice

DSL

A Bitcoin Big Picture

Signature…-Alice Pk-Bob

DSL

A Bitcoin Big Picture

Signature…-Alice Pk-Bob

Sk-Alice Sign()

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign()

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

DSL

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

DSL

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

DSL

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What is double spending
and how to prevent it?

DSL

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

DSL

Hashing H(x) SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

• Signatures and public keys are combined using Hashing

SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

• Signatures and public keys are combined using Hashing

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

• Signatures and public keys are combined using Hashing

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

• Efficiently computable.

• Satisfies:
• Collision Free: no two x, y s.t. H(x) = H(y)

• Message digest.

• Hiding: Given H(x) infeasible to find x (one-way hash function)
• Commitment: commit to a value and reveal later

• Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such
that: H(ID | x) ε Y

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) =
0a2432a1e349d8fdb9bfca91bba9e9f2836990fe937193d84deef26c6f3b8f76

DSL

What About's?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

DSL

What About's?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob

SignatureAlice-Bob

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty Sk-Bob

Sign()

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

DSL

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

I took her car

I took his ring

DSL

Double Spending Prevention

• Centralized

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

SignatureTrent-Bob

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

DSL

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!

DSL

Double Spending Prevention

• Decentralized

DSL

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

DSL

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

DSL

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

DSL

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

DSL

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

• What incentives network nodes to maintain the ledger?

DSL

What is the Ledger?

DSL

What is the Ledger?

• Blockchain

DSL

What is the Ledger?

• Blockchain

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

DSL

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

DSL

The Ledger’s What About's?

DSL

The Ledger’s What About's?

• Where is the ledger stored?

DSL

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

DSL

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?

DSL

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

Hash() Hash() Hash()

DSL

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering with the content of any block can easily be detected (is this enough? NO)

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Consistent Blockchain

Inconsistent Blockchain

DSL

The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

DSL

The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block
chain should be made very hard, How?

DSL

Network Nodes Big Picture

DSL

Network Nodes Big Picture

DSL

Network Nodes Big Picture

DSL

Making Progress

DSL

Making Progress

• The ledger is fully replicated to all network nodes

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

• Network nodes need to agree on the next block to be added to the blockchain

DSL

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

• Network nodes need to agree on the next block to be added to the blockchain

Consensus

DSL

Consensus

• Types of systems: synchronous and asynchronous

DSL

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

DSL

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

DSL

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:

DSL

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

DSL

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

• Synchronous systems:
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n

DSL

(Multi-) Paxos

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:

A

Majority

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

Leader
Election

A

Majority

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

A

Majority

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

Replication

A

Majority

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

Replication Replication

A

Majority

DSL

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

• Leader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication

A

Majority

DSL

Can Network Nodes Use Paxos?

DSL

Can Network Nodes Use Paxos?

DSL

Can Network Nodes Use Paxos?

DSL

Paxos Consensus

DSL

Paxos Consensus

• All participants should be known a priori

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

DSL

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

• Also, Paxos has high network overhead

DSL

Practical Byzantine Fault Tolerance (PBFT)

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

DSL

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

• quorums have at least 2f+1 replicas
• quorums intersect in f+1, hence have at least one correct replica

• Strong cryptography
• Only for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(1) A client sends a request for a service to the primary

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(2) The primary multicasts the request to the backups

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(3) Backups multicast PREPARE message

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMMIT message

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result

DSL

PBFT Consensus

• Tolerates Byzantine (Malicious) failures
• To make progress, at least 2/3 of the participants should be correct

• Progress is not guaranteed (FLP impossibility)

• However, PBFT is Permissioned
• All participants should be known a priori

• Also, PBFT has high network overhead O(N2) [number of messages]
• Every node multi-casts their responses to every other node

DSL

DSL

DSL

DSL

DSL

DSL

……

DSL

……

DSL

……

DSL

……

DSL

……

DSL

Nakamoto’s Consensus

• Intuitively, network nodes race to solve a puzzle

• This puzzle is computationally expensive

• Once a network node finds (mines) a solution:
• It adds its block of transactions to the blockchain

• It multi-casts the solution to other network nodes

• Other network nodes accept and verify the solution

DSL

Mining Details

DSL

Mining Details

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• TXreward is bitcoin’s way to create new coins

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block
• Incentives network nodes to mine

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty
256 bits

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty
256 bits

Difficulty bits

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty

• Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits

DSL

Difficulty

DSL

Difficulty

• Adjust difficulty every 2016 blocks

DSL

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

DSL

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

DSL

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

DSL

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

• Difficulty decreases if actual > expected, otherwise, increases

DSL

Mining Big Picture

DSL

Mining Big Picture

DSL

Mining Big Picture

DSL

Mining Big Picture

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

DSL

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

• What happens when 2 nodes concurrently mine a block? Fork

DSL

Forks

DSL

Forks

DSL

Forks

• Transactions in the forked blocks might have conflicts

DSL

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending

DSL

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending

Bob tries to double spend
the same coin twice in two

transactions

DSL

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending
• Forks have to be eliminated

Bob tries to double spend
the same coin twice in two

transactions

DSL

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending
• Forks have to be eliminated

DSL

Forks

DSL

Forks

DSL

Forks

DSL

Forks

DSL

Forks

DSL

Forks

DSL

Forks

• Miners join the longest chain to resolve forks

DSL

Forks

DSL

Forks

• Transactions in this block have to be resubmitted

DSL

Forks

• Transactions in this block have to be resubmitted

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

DSL

Selfish Mining

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining power on an

obsolete block
• Start mining the next block (Advantage)
• If an honest miner finds a block, a selfish miner

immediately announces their found block
• This splits the power of honest miners

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL

Limitations of Bitcoin

DSL

Limitations of Bitcoin

• High transaction-confirmation latency

DSL

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

DSL

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS (Transactions per second) - average of 3 to 7 TPS

DSL

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS (Transactions per second) - average of 3 to 7 TPS

• New block added every 10 minutes.

DSL

How to scale Bitcoin?

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

• Why they don’t work?

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

• Requires more storage space and verification time

DSL

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

• Requires more storage space and verification time

• Leads to higher number of forks

DSL

Bitcoin Alternatives

DSL

Overview
DSL

Overview
• All solutions want to increase txn throughput by reducing consensus

amongst all nodes to smaller set of nodes

DSL

Overview
• All solutions want to increase txn throughput by reducing consensus

amongst all nodes to smaller set of nodes

Mine once, publish txns many times BitcoinNG

DSL

Overview
• All solutions want to increase txn throughput by reducing consensus

amongst all nodes to smaller set of nodes

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

DSL

Overview
• All solutions want to increase txn throughput by reducing consensus

amongst all nodes to smaller set of nodes

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

DSL

Overview
• All solutions want to increase txn throughput by reducing consensus

amongst all nodes to smaller set of nodes

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand

DSL

SOLUTION 1

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand

DSL

Bitcoin NG (Next Generation)

DSL

Bitcoin NG (Next Generation)

• Bitcoin is retrospective: a block encases transactions from preceding
10 minutes.

DSL

Bitcoin NG (Next Generation)

• Bitcoin is retrospective: a block encases transactions from preceding
10 minutes.

• Bitcoin NG is forward-looking: elect a leader every 10 minutes and
the leader vets for future transactions as they occur.

DSL

Bitcoin NG (Next Generation)

• Bitcoin is retrospective: a block encases transactions from preceding
10 minutes.

• Bitcoin NG is forward-looking: elect a leader every 10 minutes and
the leader vets for future transactions as they occur.

Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.

DSL

Bitcoin NG: Keyblocks and Microblocks

DSL

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Bitcoin NG: Keyblocks and Microblocks

DSL

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Bitcoin NG: Keyblocks and Microblocks

DSL

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Keyblocks:
Used for Leader

Election and created
using Proof-of-work

Bitcoin NG: Keyblocks and Microblocks

DSL

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Keyblocks:
Used for Leader

Election and created
using Proof-of-work

Bitcoin NG: Keyblocks and Microblocks

DSL

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Keyblocks:
Used for Leader

Election and created
using Proof-of-work

Microblocks:
Contains txns and is

generated by the epoch
leader, signed by

leader's private key

Bitcoin NG: Keyblocks and Microblocks

DSL

Keyblocks and Microblocks

DSL

Keyblocks and Microblocks

PK(A)

DSL

Keyblocks and Microblocks

PK(A)

DSL

Keyblocks and Microblocks

PK(A)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A) Sign(A)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A) Sign(A)

PK(B)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A) Sign(A)

PK(B)
Sign(B)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A) Sign(A)

PK(B)
Sign(B) Sign(B)

DSL

Keyblocks and Microblocks

PK(A)
Sign(A) Sign(A)

PK(B)
Sign(B) Sign(B)

DSL

Remuneration

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees40% 60%

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees40% 60%

• Encourages next leader to mine on top of the latest microblock

DSL

Remuneration

PK(A)

A1 A2 A3

PK(B)

B1

Fees40% 60%

• Encourages next leader to mine on top of the latest microblock
• Current leader should be motivated to add more microblocks instead of

‘hiding’ them

DSL

Forks in BitcoinNG

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

PK(B)

A3

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

PK(B)
B1 B2

A4A3

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

A4A3

Intentional forks by
malicious leader!!

DSL

Forks in BitcoinNG

• Since microblocks generated cheaply and quickly by the leader

➔ leads to forks on most leader switches causing double spending

PK(A)
A1 A2

A4A3

A6A5

Intentional forks by
malicious leader!!

DSL

Bitcoin-NG review

DSL

Bitcoin-NG review

• Does not provide strong consistency guarantees

DSL

Bitcoin-NG review

• Does not provide strong consistency guarantees

• Does not eliminate selfish mining by a malicious leader

DSL

Bitcoin-NG review

• Does not provide strong consistency guarantees

• Does not eliminate selfish mining by a malicious leader

• Still has delay in commitment

DSL

Bitcoin-NG review

• Does not provide strong consistency guarantees

• Does not eliminate selfish mining by a malicious leader

• Still has delay in commitment

• But provides key insight in increasing throughput and
reducing latency due to block separation

DSL

……

DSL

……

DSL

SOLUTION 2

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand

DSL

ByzCoin
Enhancing Bitcoin Security & Performance With Strong Consistency
via Collective Signing

DSL

ByzCoin
Enhancing Bitcoin Security & Performance With Strong Consistency
via Collective Signing

To commit Bitcoin transactions irreversibly(strong consistency)
within seconds

DSL

ByzCoin
Enhancing Bitcoin Security & Performance With Strong Consistency
via Collective Signing

ByzCoin = Practical Byzantine Fault Tolerance + Collective Signing

To commit Bitcoin transactions irreversibly(strong consistency)
within seconds

DSL

ByzCoin
Enhancing Bitcoin Security & Performance With Strong Consistency
via Collective Signing

ByzCoin = Practical Byzantine Fault Tolerance + Collective Signing

To commit Bitcoin transactions irreversibly(strong consistency)
within seconds

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.

DSL

Strawman Design: PBFTCoin

DSL

Strawman Design: PBFTCoin

- Naïve, unrealistic but
simple: PBFT + Bitcoin1

Leader

2

34

5

DSL

Strawman Design: PBFTCoin

- Naïve, unrealistic but
simple: PBFT + Bitcoin

- TRUSTEES: 3f+1 replicas, at
max f faulty

1
Leader

2

34

5

DSL

Strawman Design: PBFTCoin

- Naïve, unrealistic but
simple: PBFT + Bitcoin

- TRUSTEES: 3f+1 replicas, at
max f faulty

- Trustees run PBFT to
decide next block

1
Leader

2

34

5

DSL

Strawman Design: PBFTCoin

- Naïve, unrealistic but
simple: PBFT + Bitcoin

- TRUSTEES: 3f+1 replicas, at
max f faulty

- Trustees run PBFT to
decide next block

- COMMUNICATION
COMPLEXITY : O(n2)

1
Leader

2

34

5

DSL

Using PBFT for Bitcoin's open membership
DSL

Using PBFT for Bitcoin's open membership

Step 1: Opening the Consensus Group

DSL

Using PBFT for Bitcoin's open membership

• Fixed size dynamically changing sliding SHARE window

Step 1: Opening the Consensus Group

DSL

Using PBFT for Bitcoin's open membership

• Fixed size dynamically changing sliding SHARE window

• Incentive = new block’s transaction fee split by consensus group

Step 1: Opening the Consensus Group

DSL

Using PBFT for Bitcoin's open membership

• Fixed size dynamically changing sliding SHARE window

• Incentive = new block’s transaction fee split by consensus group

• Voting power of miner = No. of blocks the miner has successfully
mined in the current window

Step 1: Opening the Consensus Group

DSL

Using PBFT for Bitcoin's open membership

• Fixed size dynamically changing sliding SHARE window

• Incentive = new block’s transaction fee split by consensus group

• Voting power of miner = No. of blocks the miner has successfully
mined in the current window

• Last miner is leader. Leader proposes the block

Step 1: Opening the Consensus Group

DSL

Step 1. ByzCoin’s blockchain

DSL

Step 1. ByzCoin’s blockchain

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

L

trustees

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

L

trustees

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

L

trustees

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

L

trustees

DSL

Step 1. ByzCoin’s blockchain

Share window of size 8

L

trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Key

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Key

Proof-of-work

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

• Key blocks are created by mining PoW

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW

Set of transactions +
Collective signature

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW

Set of transactions +
Collective signature

Hashes to last micro
and key block

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW
• PBFT is used to obtain consensus on Micro blocks

Set of transactions +
Collective signature

Hashes to last micro
and key block

Key

Proof-of-work

New public key
added to trustees

DSL

Step 2: Decoupling Txn Verification from
Leader Election
• 2 different kinds of blocks:

Micro

• Key blocks are created by mining PoW
• PBFT is used to obtain consensus on Micro blocks
• To avoid race condition, separate keyblock chain from microblock chain

Set of transactions +
Collective signature

Hashes to last micro
and key block

Key

Proof-of-work

New public key
added to trustees

DSL

Signing microblocks
DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

• Leader requests that statements be publicly validated and co-signed
by decentralized group of witnesses

DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

• Leader requests that statements be publicly validated and co-signed
by decentralized group of witnesses

• Optimize Schnorr multi-signatures using communication trees

DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

• Leader requests that statements be publicly validated and co-signed
by decentralized group of witnesses

• Optimize Schnorr multi-signatures using communication trees

• Communication complexity: O(N)

DSL

Signing microblocks

• Every microblock should be signed by a majority of current trustees

• Byzcoin adapts a leader-based approach – Collective Signing

• Leader requests that statements be publicly validated and co-signed
by decentralized group of witnesses

• Optimize Schnorr multi-signatures using communication trees

• Communication complexity: O(N)

SYTA, E., TAMAS, I., VISHER, D., WOLINSKY, D. I., L., GAILLY, N., KHOFFI, I., AND FORD, B. Keeping Authorities “Honest
or Bust” with Decentralized Witness Cosigning. In 37th IEEE Symposium on Security and Privacy (May 2016).

DSL

Step 3: Scaling PBFT using Collective Signing
DSL

Step 3: Scaling PBFT using Collective Signing

root

1

3 4

2

5 6

DSL

Step 3: Scaling PBFT using Collective Signing

root

1

3 4

2

5 6

Authority

DSL

Step 3: Scaling PBFT using Collective Signing

root

1

3 4

2

5 6

DSL

Step 3: Scaling PBFT using Collective Signing

root

1

3 4

2

5 6

Witness
Cosigners

DSL

Step 3: Scaling PBFT using Collective Signing

root

1

3 4

2

5 6

DSL

Step 3: Scaling PBFT using Collective Signing

Record 1 Record 2 Record 3

root

1

3 4

2

5 6

DSL

Step 3: Scaling PBFT using Collective Signing

Record 1 Record 2 Record 3

root

1

3 4

2

5 6

Each record collectively signed by
both authority and witnesses

DSL

root

1

3 4

2

5 6

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

root

1

3 4

2

5 6

Phase1:
Announcement

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

root

1

3 4

2

5 6

Phase1:
Announcement

Phase2:
Commitment

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

root

1

3 4

2

5 6

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

root

1

3 4

2

5 6

Phase3:
Challenge

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

root

1

3 4

2

5 6

Phase3:
Challenge

Phase4:
Response

Record 1 Record 2 Record 3 Record 4

CoSi – Collective Signing
DSL

Step 4: Using CoSi to achieve PBFT

DSL

Step 4: Using CoSi to achieve PBFT

Announcement

DSL

Step 4: Using CoSi to achieve PBFT

Announcement

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge Proof-of-acceptance

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge Proof-of-acceptance

Response

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge Proof-of-acceptance

Response

DSL

Step 4: Using CoSi to achieve PBFT

Announcement Pre-prepare

Commitment Prepare

Challenge Proof-of-acceptance

Response Commit

DSL

Step 4: Using CoSi to achieve PBFT

DSL

Step 4: Using CoSi to achieve PBFT

• PBFT is made scalable to thousands of nodes by clubbing with CoSi

DSL

Step 4: Using CoSi to achieve PBFT

• PBFT is made scalable to thousands of nodes by clubbing with CoSi

• Need two-third super majority signatures in each phase

DSL

Step 4: Using CoSi to achieve PBFT

• PBFT is made scalable to thousands of nodes by clubbing with CoSi

• Need two-third super majority signatures in each phase

• Double spending by malicious leader circumvented due to overlap in
the two phases on CoSi

DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
DSL

ByzCoin design
Share window of size 3

DSL

ByzCoin design

L

Share window of size 3

trustees

DSL

ByzCoin design

L

Share window of size 3

trustees

DSL

ByzCoin design

L

Share window of size 3

Each block is
collectively signed by
the trustees

trustees

DSL

Dealing with Keyblock conflicts and Selfish
Mining

DSL

Dealing with Keyblock conflicts and Selfish
Mining

• Forks in microblock chain not possible due to PBFT

DSL

Dealing with Keyblock conflicts and Selfish
Mining

• Forks in microblock chain not possible due to PBFT

• But forks possible in keyblock chain

DSL

Dealing with Keyblock conflicts and Selfish
Mining

• Forks in microblock chain not possible due to PBFT

• But forks possible in keyblock chain

How to resolve keyblock conflicts?

DSL

Dealing with Keyblock conflicts and Selfish
Mining

• Forks in microblock chain not possible due to PBFT

• But forks possible in keyblock chain

How to resolve keyblock conflicts?

• Deterministic function to decide on one of the contending
forks

DSL

Dealing with Keyblock conflicts and Selfish
Mining

DSL

Dealing with Keyblock conflicts and Selfish
Mining

H0 H1 H2 Hn-2 Hn-1

Hashes of
Contending
keyblocks

DSL

Dealing with Keyblock conflicts and Selfish
Mining

H0 H1 H2 Hn-2 Hn-1

Hash
Hashes of

Contending
keyblocks

DSL

Dealing with Keyblock conflicts and Selfish
Mining

H0 H1 H2 Hn-2 Hn-1

Hash

i = h mod (n)

Hashes of
Contending
keyblocks

DSL

……

DSL

……

DSL

SOLUTION 3

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand

DSL

Elastico
A Secure Sharding Protocol For Open Blockchains

DSL

Elastico
A Secure Sharding Protocol For Open Blockchains

Scale Bitcoin-like cryptocurrency by adapting ‘shards’

DSL

Elastico
A Secure Sharding Protocol For Open Blockchains

Scale Bitcoin-like cryptocurrency by adapting ‘shards’

Uniformly partitions the mining network into smaller
committees, each of which processes a disjoint set of txns (or
‘shards’)

DSL

Elastico
A Secure Sharding Protocol For Open Blockchains

Scale Bitcoin-like cryptocurrency by adapting ‘shards’

Uniformly partitions the mining network into smaller
committees, each of which processes a disjoint set of txns (or
‘shards’)

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016.

DSL

Sharding in Elastico

DSL

Sharding in Elastico

DSL

Sharding in Elastico

Network of nodes

DSL

Sharding in Elastico

DSL

Sharding in Elastico

DSL

Sharding in Elastico

DSL

Sharding in Elastico

Committees

DSL

Sharding in Elastico

Shard 1

DSL

Sharding in Elastico

Shard 1 Shard 2

DSL

Sharding in Elastico

Shard 1 Shard 2 Shard 3

DSL

Sharding in Elastico

Shard 1 Shard 2 Shard 3 Disjoint set of txns

DSL

Naïve Strawman Solution

DSL

Naïve Strawman Solution

Assumptions:

• The list of nodes is known
for each epoch

• Common random coin

DSL

Naïve Strawman Solution

Assumptions:

• The list of nodes is known
for each epoch

• Common random coin
H(coin || PK)

DSL

Naïve Strawman Solution

Assumptions:

• The list of nodes is known
for each epoch

• Common random coin
H(coin || PK)

DSL

Naïve Strawman Solution

Assumptions:

• The list of nodes is known
for each epoch

• Common random coin
H(coin || PK)

BFT Protocol

DSL

Naïve Strawman Solution

Assumptions:

• The list of nodes is known
for each epoch

• Common random coin
H(coin || PK)

BFT Protocol

Shard 1 Shard 2 Shard 3Broadcast all shards

DSL

Step 1: Identity establishment

DSL

Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

DSL

Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

Random
seed for

PoW

DSL

Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

Random
seed for

PoW

IP and
Public

Key

DSL

Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

Random
seed for

PoW

IP and
Public

Key
Difficulty

DSL

Step 1: Identity establishment

ID = H(epochRandomness || IP || PK || nonce) < D

Random
seed for

PoW

IP and
Public

Key
Difficulty

The last s bits of ID specifies which (s-bit) committee id
the node belongs to

DSL

Step 1: Committee assignment based on ID

DSL

Step 1: Committee assignment based on ID

Node ID

1 000001.....101

2 000001......110

3 000000......010

4 000001......001

DSL

Step 1: Committee assignment based on ID

Node ID

1 000001.....101

2 000001......110

3 000000......010

4 000001......001

DSL

Step 1: Committee assignment based on ID

Node ID

1 000001.....101

2 000001......110

3 000000......010

4 000001......001

000001.....101

000001.....001

DSL

Step 1: Committee assignment based on ID

Node ID

1 000001.....101

2 000001......110

3 000000......010

4 000001......001

000001.....101

000001.....001

DSL

Step 1: Committee assignment based on ID

Node ID

1 000001.....101

2 000001......110

3 000000......010

4 000001......001

000001.....101

000001.....001

000001.....110

000000.....010

DSL

Identify committee members

DSL

Identify committee members

How to identify other committee members?

DSL

Identify committee members

How to identify other committee members?

• Naïve solution: Broadcast to all

DSL

Identify committee members

How to identify other committee members?

• Naïve solution: Broadcast to all

Complexity O(n2)

DSL

Identify committee members

How to identify other committee members?

• Naïve solution: Broadcast to all

Complexity O(n2)

• A special committee: Directories of size c

DSL

Identify committee members

How to identify other committee members?

• Naïve solution: Broadcast to all

Complexity O(n2)

• A special committee: Directories of size c

Complexity O(nc)

DSL

Step 2: Directory committees

DSL

Step 2: Directory committees

First c identities become
directory servers

Directory server

Directory server

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

Directories send committee list
to nodes

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

Directories send committee list
to nodes

DSL

Step 2: Directory committees

First c identities become
directory servers

Latter nodes send IDs to
directories

Directory server

Directory server

Directories send committee list
to nodes

DSL

Step 3: Block Proposals Within Committees

DSL

Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

DSL

Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

• Run classical Byzantine agreement protocol

DSL

Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

• Run classical Byzantine agreement protocol
• Members agree and sign on one set of txns

DSL

Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

• Run classical Byzantine agreement protocol
• Members agree and sign on one set of txns

DSL

Step 3: Block Proposals Within Committees

Txns

Tx-11

Tx-21
…

Tx-n1

Txns

Tx-12

Tx-22
…

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

• Run classical Byzantine agreement protocol
• Members agree and sign on one set of txns
• # of messages O(c2)

DSL

Step 4: Final Committee

DSL

Step 4: Final Committee

• A special committee to finalize on the next block

DSL

Step 4: Final Committee

• A special committee to finalize on the next block

• Why??

DSL

Step 4: Final Committee

• A special committee to finalize on the next block

• Why??

• To avoid forks

DSL

Step 4: Final Committee

• A special committee to finalize on the next block

• Why??

• To avoid forks

• To verify if each committee block is signed by enough
committee members

DSL

Step 4: Final Committee

• A special committee to finalize on the next block

• Why??

• To avoid forks

• To verify if each committee block is signed by enough
committee members

• To generate random values for next epoch

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

Final
Committee

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

Final
Committee

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

Final
Committee

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Digest 1 Digest 2

Final
Committee

PBFT protocol

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Final
Committee

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Final
CommitteeFinal block Final block

DSL

Step 4: Final Committee Union of Blocks

Txns

Tx-11

Tx-21

Tx-n1

Txns

Tx-12

Tx-22

Tx-n2

Transactions in committee 1 Transactions in committee 2

Final
Committee

Final block Final block

DSL

……

DSL

……

DSL

SOLUTION 4

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

Using committees with Proof-of-stake Algorand

DSL

Algorand
Scaling Byzantine Agreements for Cryptocurrencies

DSL

Algorand
Scaling Byzantine Agreements for Cryptocurrencies

To commit txns with low latency and scale to many users by
avoiding forks

DSL

Algorand
Scaling Byzantine Agreements for Cryptocurrencies

A new Byzantine Agreement protocol (BA*) to reach consensus
on the next set of txns

To commit txns with low latency and scale to many users by
avoiding forks

DSL

Algorand
Scaling Byzantine Agreements for Cryptocurrencies

A new Byzantine Agreement protocol (BA*) to reach consensus
on the next set of txns

To commit txns with low latency and scale to many users by
avoiding forks

Gilad, Yossi, et al. "Algorand: Scaling byzantine agreements for cryptocurrencies." Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 2017.

DSL

Algorand: Goals

DSL

Algorand: Goals

• Prevents Sybil attacks

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability
→ Use of BA*: Runs consensus on a small set of nodes

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability
→ Use of BA*: Runs consensus on a small set of nodes

• Resilient to denial of service

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability
→ Use of BA*: Runs consensus on a small set of nodes

• Resilient to denial of service
→ Randomly choose committee using Cryptographic Sortition

based on weight

DSL

Algorand: Goals

• Prevents Sybil attacks
→ By using Weighted users proportional to money in their account

• Scalability
→ Use of BA*: Runs consensus on a small set of nodes

• Resilient to denial of service
→ Randomly choose committee using Cryptographic Sortition

based on weight

→ Replace participants after each round

DSL

Algorand: Assumptions

DSL

Algorand: Assumptions

• Honest majority of money $$

DSL

Algorand: Assumptions

• Honest majority of money $$

• An adversary cannot manipulate the network at large scale

DSL

Algorand: Assumptions

• Honest majority of money $$

• An adversary cannot manipulate the network at large scale

• Strong synchrony
Tolerates temporary asynchronous network but must be followed by a
longer synchronous network

DSL

Algorand: Overview

DSL

Algorand: Overview

• Gossip protocol

DSL

Algorand: Overview

• Gossip protocol

1 2 3

DSL

Algorand: Overview

• Gossip protocol

1 2 3

Gossip

DSL

Algorand: Overview

• Gossip protocol
• Each node collects pending txns

1 2 3

Gossip

DSL

Algorand: Overview

• Gossip protocol
• Each node collects pending txns

1 2 3

Tx1

Tx2

Tx6

Tx7

Gossip

Tx3

Tx4

Tx5

DSL

Algorand: Overview

• Gossip protocol

• Block proposal

DSL

Algorand: Overview

• Gossip protocol

• Block proposal

1

Cryptographic
Sortition

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights

1

Cryptographic
Sortition

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights

1

Cryptographic
Sortition

Can I
propose my

block?

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights

1

Cryptographic
Sortition

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights
• Provides proof of selection and

priority for each block 1

Cryptographic
Sortition

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights
• Provides proof of selection and

priority for each block 1

Cryptographic
Sortition

Yes! Here is the
proof and priority

for your block!

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights
• Provides proof of selection and

priority for each block 1

Gossip

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights
• Provides proof of selection and

priority for each block 1

Gossip
Tx1

Tx2

Proof Priority

DSL

Algorand: Overview

• Gossip protocol

• Block proposal
• Sortition ensures small fraction of

users selected based on their weights
• Provides proof of selection and

priority for each block

• Agreement using BA*

1

Gossip
Tx1

Tx2

Proof Priority

DSL

BA* Overview
DSL

BA* Overview
• Two phase protocol

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

• Each committee member will broadcast their vote for their block

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

• Each committee member will broadcast their vote for their block
• Vote for highest priority block

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

• Each committee member will broadcast their vote for their block
• Vote for highest priority block
• All users can see this message

DSL

BA* Overview
• Two phase protocol

• Phase 1: 2 steps
• Phase 2: 2 – 11 steps

• Each step calls Sortition to create a committee

• Each committee member will broadcast their vote for their block
• Vote for highest priority block
• All users can see this message

• Users that receive more than a threshold of votes for a block will
hold onto that block

DSL

……

DSL

……

DSL

ATOMIC SWAPS

DSL

……

DSL

……

DSL

Atomic Swaps

• Allow transactions to span multiple blockchains
• E.g., swap Bitcoin with Ethereum

• The goal:
• Swap assets across multiple blockchains

• If all parties conform to the protocol:
• All swaps take place

• If some coalition deviates from the protocol, then no conforming party ends
up worse off

• No coalition has an incentive to deviate from the protocol

TierNolan, Atomic swap using cut and choose, https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949 (2013)
Herlihy, Maurice. "Atomic cross-chain swaps." PODC 2018

DSL

https://bitcointalk.org/index.php?action=profile;u=28405
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

Atomic Swaps

• Exchanges enable trading among different cryptocurrenices
• Usually happens through USD ($)

• Exchanges make the system centralised

• Atomic swaps allow trading different assets without an arbiter

• Atomic swaps use:
• Smart Contracts

• Hashlocks

• Timelocks

DSL

Smart Contracts

• Digital self-executing contract

• Stores rules for negotiating the terms of an agreement

• Automatically verifies fulfillment, and then executes the agreed terms

• E.g., move 10 Bitcoins from Alice to Bob if Bob provides a secret (s)

• Contracts are published in the blockchain

• Contracts are executed if its conditions are met
• Bob provides secret (s) to the contract

DSL

Example

• Landowner wants to rent out her place to a tenant

• Send house unlock code to Tenant if they transfer funds to landowner

Landowner Tenant
[Locked till transfer of funds
takes place]

DSL

Example

Blockchain• Publish Contract in the blockchain

[Locked till transfer of funds
takes place]Landowner Tenant

DSL

Example

Blockchain• Tenant transfers funds to landowner

[Locked till transfer of funds
takes place]Landowner Tenant

Tenant transfers funds to landowner

DSL

Example

Blockchain• Contract terms are met

[Locked till transfer of funds
takes place]Landowner Tenant

Tenant transfers funds to landowner

DSL

Example

Blockchain• Contract terms are met

• Tenant receives unlock code to the
house

[Locked till transfer of funds
takes place]Landowner Tenant

Tenant transfers funds to landowner

DSL

Example

Blockchain• Contract terms are met

• Tenant receives unlock code to the
house

[Locked till transfer of funds
takes place]Landowner Tenant

Tenant transfers funds to landowner

DSL

Hashlocks and Timelocks

• Hashlock h

DSL

Hashlocks and Timelocks

• Hashlock h
• Transfer X Bitcoins from Alice to Bob if Bob provides a secret s such that h =

H(s)

• H is a cryptographic one-way hash function

• The contract irrevocably transfers ownership of X Bitcoins from Alice to Bob

DSL

Hashlocks and Timelocks

• Hashlock h
• Transfer X Bitcoins from Alice to Bob if Bob provides a secret s such that h =

H(s)

• H is a cryptographic one-way hash function

• The contract irrevocably transfers ownership of X Bitcoins from Alice to Bob

• Timelock t

DSL

Hashlocks and Timelocks

• Hashlock h
• Transfer X Bitcoins from Alice to Bob if Bob provides a secret s such that h =

H(s)

• H is a cryptographic one-way hash function

• The contract irrevocably transfers ownership of X Bitcoins from Alice to Bob

• Timelock t
• If Bob fails to produce that s before time t elapses, then X Bitcoins are

refunded to Alice

DSL

Atomic Swap Example

• Alice wants to trade Bitcoin for Ethereum with Bob

DSL

Atomic Swap Example

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

DSL

Atomic Swap Example

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

• Create a secret s
• Calculate its hash h = H(s)

DSL

Atomic Swap Example

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

• Create a secret s
• Calculate its hash h = H(s)

s and h

DSL

Atomic Swap Example

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

T1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

DSL

Atomic Swap Example

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

T1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Bitcoin blockchain

DSL

Atomic Swap Example

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

T1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Bitcoin blockchain

T1

DSL

Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

DSL

Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

T2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

DSL

Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

T2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

DSL

Atomic Swap Example

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

T2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

T2

DSL

Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2

DSL

Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2

DSL

Atomic Swap Example

• Now, for Alice to execute T2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2

DSL

Atomic Swap Example

• Revealing s, executes T2. Now s is public in Ethereum’s blockchain

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2

DSL

Atomic Swap Example

• Now, Bob uses s to execute T1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2
s

DSL

Atomic Swap Example

• Now, Bob uses s to execute T1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in
T1’s smart contract

Bitcoin blockchain

T1

Ethereum blockchain

Bob’s Y Ethereum are locked in T2’s
smart contract

T2
s

DSL

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

DSL

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

• Bob sees T1 but refuses to insert T2

DSL

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

• Bob sees T1 but refuses to insert T2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the

protocol

DSL

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through T1

• Bob sees T1 but refuses to insert T2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the

protocol

• Prevention
• Use timelocks to expire a contract

• Specify that an expired contract is refunded to the creator of this contract

DSL

Atomic Swap Example: Timelocks

Bob Alice

DSL

Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does
not execute T1 before 48 hours

DSL

Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

T2: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does
not execute T1 before 48 hours

T4: Refund T2 to Bob if Alice does
not execute T2 before 24 hours

DSL

Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

T2: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does
not execute T1 before 48 hours

T4: Refund T2 to Bob if Alice does
not execute T2 before 24 hours

DSL

Atomic Swap Example: Timelocks

Bob Alice

T1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

T2: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does
not execute T1 before 48 hours

T4: Refund T2 to Bob if Alice does
not execute T2 before 24 hours

How to determine the time period of a timelock?

DSL

Timelocks

• Timelocks are set to prevent any conforming party to end up worse off

• If Alice sets her timelock to 12 hours and Bob to 24 hours
• Alice can wait until her contract expires (gets a refund)

• Then, Alice executes T2 claiming T2’s Ethereum coins

Bob Alice

T1: Move X bitcoins to Bob if Bob provides
secret s | h = H(s)

T2: Move Y Ethereum to Alice if Alice
provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does not
execute T1 before 12 hours

T4: Refund T2 to Bob if Alice does not
execute T2 before 24 hours

DSL

Timelocks

• Bob’s timelock should be set to achieve the following:
• Forces Alice to reveal s before Alice’s contract expires

• Allows enough time for Bob to execute T1 after Alice executes T2

• If Alice does not reveal s, both contracts should expire and be refunded

Bob Alice

T1: Move X bitcoins to Bob if Bob provides
secret s | h = H(s)

T2: Move Y Ethereum to Alice if Alice
provides secret s | h = H(s)

T3: Refund T1 to Alice if Bob does not
execute T1 before 12 hours

T4: Refund T2 to Bob if Alice does not
execute T2 before 24 hours

DSL

Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

DSL

Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

• Vertices V are parties and arcs A are proposed asset transfers

DSL

Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

• Vertices V are parties and arcs A are proposed asset transfers

• Assumptions:
• Every party is rational

• E.g., Bob sets his timelock to 6 hours instead of 24 hours

DSL

Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

• Vertices V are parties and arcs A are proposed asset transfers

• Assumptions:
• Every party is rational

• E.g., Bob sets his timelock to 6 hours instead of 24 hours

• The directed graph must be strongly connected
• There is a path between any two pairs of nodes

DSL

Atomic Swap Modeling

• A cross-chain swap is modeled as a directed graph D = (V,A)

• Vertices V are parties and arcs A are proposed asset transfers

• Assumptions:
• Every party is rational

• E.g., Bob sets his timelock to 6 hours instead of 24 hours

• The directed graph must be strongly connected
• There is a path between any two pairs of nodes

• There is known time bound Δ
• Δ should be enough for one party to publish a contract to a blockchain and for a second

party to confirm that the contract has been published

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B
Contract Creation

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B
Contract Redemption

DSL

Multi-party Atomic Swap Example

• Alice wants to buy Carol’s car with Bitcoins

• Carol wants to sell her car for Ethereum

• Luckily, Bob wants to exchange Ethereum for Bitcoin

C

A

B

DSL

Multi-party Atomic Swap Example

C

A

B

DSL

Multi-party Atomic Swap Example

C

A

B

A-B

DSL

Multi-party Atomic Swap Example

C

A

B

A-B

DSL

Multi-party Atomic Swap Example

C

A

B

Δ
A-B

DSL

Multi-party Atomic Swap Example

C

A

B

Δ
A-B

B-C

DSL

Multi-party Atomic Swap Example

C

A

B

Δ
A-B

B-C

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ
A-B

B-C

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

4Δ

2Δ

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

• Diam(D) is the diameter of Graph D
• Longest path from one node to another (including itself)

• Diam(D) = 3

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

• Diam(D) is the diameter of Graph D
• Longest path from one node to another (including itself)

• Diam(D) = 3

• Hashlock on (u,v) = 2 . (D(v, v’) + 1) . Δ

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

• Diam(D) is the diameter of Graph D
• Longest path from one node to another (including itself)

• Diam(D) = 3

• Hashlock on (u,v) = 2 . (D(v, v’) + 1) . Δ

• D(v, v’) + 1 [path from u to v’] creation path

DSL

Multi-party Atomic Swap Example

C

A

B

6Δ

4Δ

2Δ

• v’ is the leader (A in this case)

• D(v, v’) the length of the longest path from node v to v’

• D(A, A) = 0, D(B, A) = 2, D(C, A) = 1

• Diam(D) is the diameter of Graph D
• Longest path from one node to another (including itself)

• Diam(D) = 3

• Hashlock on (u,v) = 2 . (D(v, v’) + 1) . Δ

• D(v, v’) + 1 [path from u to v’] creation path

• D(v, v’) + 1 [path from v’ to u] redemption path

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ

• Hashlock on B-C = (3 + 1 + 1) . Δ = 5Δ

DSL

Multi-party Atomic Swap Example

C

A

B

Δ Δ Δ Δ Δ Δ
A-B

B-C

C-A

6Δ

5Δ

4Δ

• Hashlock on (u,v) = (Diam(D) + D(v, v’) + 1) . Δ

• Hashlock on A-B = (3 + 2 + 1) . Δ = 6Δ

• Hashlock on B-C = (3 + 1 + 1) . Δ = 5Δ

• Hashlock on C-A = (3 + 0 + 1) . Δ = 4Δ

DSL

Lightning Network

DSL

……

DSL

……

DSL

What is Lightning Network?

“Lightning is a decentralized network using smart contract functionality
in the blockchain to enable instant payments across a network of
participants.”

https://lightning.network/

DSL

https://lightning.network/

The Setting: Two-party transactions

● Alice and Bob frequently need to transact with each other:

○ Alice ➔ Bob: $x

○ …

○ Bob ➔ Alice: $y

○ ….
● Each of the above transaction can be put on-chain.

● Is there an alternative?

DSL

The Idea of Lightening

● Frequent two-party interactions can be modeled as off-chain
transactions.

● On-chain interaction only to establish payment channels between Alice
and Bob.

● The key challenge:

○ Off-chain interactions must remain honest, i.e., prevent Alice or Bob trying to
cheat each other.

DSL

Outline of the protocol

1. Open a bidirectional channel
a. Both parties make deposits to a shard on-chain wallet

2. Initiate a transaction by making a contract
a. Signed by both parties

3. Update the contract when making more transactions
a. Keep exchanging the updated contract off-chain

4. Push the most updated contract to the blockchain to withdraw
a. Thus the bidirectional channel is closed

DSL

Building Block #1: Transactions

DSL

Building Block #2: Double Spend

DSL

Building Block #3: Multi-signature (2-of-2)

DSL

Building Block #4: TimeLock

DSL

Building Block #5: Hash Values & Secrets

DSL

Lightning Network <high level protocol>

Alice Bob

Wallet

On-Chain

DSL

Lightning Network <high level protocol>

Alice Bob

Wallet

On-Chain

10 BTC
Alice
Bob

Local wallet Local wallet

5 5

DSL

Lightning Network <high level protocol>

Alic
e Bob

Wallet

On-Chain

Local wallet Local wallet

5 5

Alice wants to send Bob 2
BTC

10 BTC
Alice
Bob

DSL

Alice ➔ Bob: $2.0

● Alice sends $3.0 to herself,

● $7.0 to a multisig address:

○ can be unlocked by Bob on his own, but after 1000 blocks have been mined

○ Or, it can be opened by Alice on her own, but only if she includes the S of H(S)
from Bob.

● Alice signs her end of this commitment transaction, and gives it to Bob.

● Bob does the same: $7.0 to himself; and $3.0 to multisig address with
TimeLock & HashLock.

DSL

Alice ➔ Bob: $2.0 (contd.)

● Both Alice and Bob could sign and broadcast the half-valid transaction.

● If Alice does:

○ Bob gets $7.0 immediately but Alice must wait for 1000 blocks

● If Bob does:

○ Alice get $3.0 immediately but Bob must wait

➔ Therefore, neither sign and broadcast their half of the transaction.

DSL

Updating the Payment Channel: Bob ➔ Alice: $1.0

● Bob:

○ $4.0 to multisig address (with TimeLock+HashLock)

○ $6.0 to himself

● Alice:

○ $ 4.0 to herself

○ $6.0 to multisig address (with TimeLock+HashLock)

● Alice & Bob hand each other their first secrets

DSL

Can Bob be dishonest?

● What is stopping Bob from broadcasting the first transaction and
benefiting with $7.0 instead of $6.0?

● Bob is prevented from this because he has revealed the first secret to
Alice:

○ Broadcasting will require him to wait 1000 blocks

○ Alice will have enough time to beat Bob and claim $7.0 for herself.

DSL

Lightening Networks

● Closure of payment channel in Lightning Networks

● Extending the lightning networks from two-parties to multiple-parties:

○ Option 1:

■ N parties ➔ N2 payment channels

○ Option 2:

■ Transitivity of Transactions via intermediaries

■ Alice ➔ Carol: (i) Alice ➔ Bob && (ii) Bob ➔ Carol

DSL

Open Problems and Criticism

DSL

Open Problems and Criticism
DSL

Open Problems and Criticism
DSL

Open Problems and Criticism
DSL

Open Problems and Criticism
DSL

Questions and Open Discussion

DSL

……

DSL

Blockchain: Panacea for all our data problems?

• Resource cost:
• Proof-of-work consumes resources at

the planetary scale

• Mythical notion of democratization:
• Handful of miners control the progress

of Bitcoin blockchain

• False notion of security:
• An Individual vulnerable to the

security of his/her key

• Extreme distribution:
• is it really worth it?

• Extreme redundancy:
• is it really necessary?

• Social consequences:
• Are we comfortable if this technology

is used for dark causes?

DSL

Contact Us

• Sujaya Maiyaa: sujaya_maiyya@ucsb.edu

• Victor Zakhary: victorzakhary@ucsb.edu

• Divyakant Agrawal: divyagrawal@ucsb.edu

• Amr El Abbadi: elabbadi@ucsb.edu

DSL

mailto:sujaya_maiyya@ucsb.edu
mailto:victorzakhary@ucsb.edu
mailto:divyagrawal@ucsb.edu
mailto:elabbadi@ucsb.edu

