

Show ALL work to receive full credit.

- 1. In part (a), if the statement is always true, circle True. If the statement is sometimes false, circle False. In both parts, write a careful and clear justification or counterexample.
 - (a) In the standard basis \mathcal{B} for \mathbb{R}^2 , $[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$.

False

$$\vec{X} = x' \begin{bmatrix} a \\ i \end{bmatrix} + x^{5} \begin{bmatrix} i \\ e \end{bmatrix}$$

you remove an element from a basis, It stays linearly indep, but no longer spans.

2. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Let $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$.

Find $[x]_{\mathcal{B}}$. [3] = c, [0] + c, [0] \ \ \] $\Rightarrow \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\Rightarrow [x]_B = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$

3. Assume that A is row equivalent to B. Find bases for Nul A and Col

$$A = \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

basis for

Col A 15 Exercal columns of A}

Show ALL work to receive full credit.

- 1. In part (a), if the statement is always true, circle True. If the statement is sometimes false, circle False. In both parts, write a careful and clear justification or counterexample.
 - (a) In the standard basis \mathcal{B} for \mathbb{R}^2 , $[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$.

True

False

- (b) Provide a **counterexample** for the *false* statement: A basis is a linearly independent set that is as small as possible.
- 2. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Let $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$. Find $[x]_{\mathcal{B}}$.

3. Assume that A is row equivalent to B. Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$.

$$A = \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3-2-1 Survey

3. List (up to) 3 concepts that you learned this week.
2. List (up to) 2 concepts that were not clear.
1. What 1 thing would you like to see as a follow up to this week's lessons?
What I thing would you like to see as a follow up to this week's lessons?
2. List (up to) 2 concepts that were not clear.

3. List (up to) 3 concepts that you learned this week.