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Chapter 4 Supplementary Exercises

b. If v v spans , then spans .

c. If v v is linearly independent, then so is .

d. If is linearly independent, then is a basis for .

e. If Span , then some subset of is a basis for .

f. If dim and Span , then cannot be linearly

dependent.

g. A plane in is a two-dimensional subspace.

h. The nonpivot columns of a matrix are always linearly

dependent.

i. Row operations on a matrix can change the linear

dependence relations among the rows of .

j. Row operations on a matrix can change the null space.

k. The rank of a matrix equals the number of nonzero rows.

l. If an matrix is row equivalent to an echelon ma-

trix and if has nonzero rows, then the dimension

of the solution space of x 0 is .

m. If is obtained from a matrix by several elementary

row operations, then rank rank .

n. The nonzero rows of a matrix form a basis for Row .

o. If matrices and have the same reduced echelon form,

then Row Row .

p. If is a subspace of , then there is a matrix

such that Col .

q. If is and rank , then the linear transfor-

mation x x is one-to-one.

r. If is and the linear transformation x x is

onto, then rank .

s. A change-of-coordinates matrix is always invertible.

t. If b b and c c are bases for a

vector space , then the th column of the change-of-

coordinates matrix is the coordinate vector c .

2. Find a basis for the set of all vectors of the form

(Be careful.)

3. Let u , u , b , and

Span u u . Find an implicit description of ; that

is, find a set of one or more homogeneous equations that

characterize the points of . [Hint: When is b in

4. Explain what is wrong with the following discussion: Let

f and g , and note that g f .

Then f g is linearly dependent because g is a multiple of f.

5. Consider the polynomials p , p ,

p , p , and p , and

let be the subspace of spanned by the set

p p p p p . Use the method described in the

proof of the Spanning Set Theorem (Section 4.3) to produce

a basis for . (Explain how to select appropriate members

of .)

6. Suppose p , p , p , and p are specific polynomials that span

a two-dimensional subspace of . Describe how one can

find a basis for by examining the four polynomials and

making almost no computations.

7. What would you have to know about the solution set of a

homogeneous system of 18 linear equations in 20 variables

in order to know that every associated nonhomogeneous

equation has a solution? Discuss.

8. Let be an -dimensional subspace of an -dimensional

vector space . Explain why .

9. Let be a linear transformation.

a. What is the dimension of the range of if is a one-to-

one mapping? Explain.

b. What is the dimension of the kernel of (see Section 4.2)

if maps onto ? Explain.

10. Let be a maximal linearly independent subset of a vector

space . That is, has the property that if a vector not in

is adjoined to , then the new set will no longer be linearly

independent. Prove that must be a basis for . [Hint: What

if were linearly independent but not a basis of

11. Let be a finite minimal spanning set of a vector space .

That is, has the property that if a vector is removed from

, then the new set will no longer span . Prove that must

be a basis for .

Exercises 12–17 develop properties of rank that are sometimes

needed in applications. Assume the matrix is .

12. Show from parts (a) and (b) that rank AB cannot exceed the

rank of or the rank of . (In general, the rank of a product of

matrices cannot exceed the rank of any factor in the product.)

a. Show that if is , then rank AB rank . [Hint:

Explain why every vector in the column space of AB is in

the column space of .]

b. Show that if is , then rank AB rank . [Hint:

Use part (a) to study rank AB .]

13. Show that if is an invertible matrix, then

rank rank . [Hint: Apply Exercise 12 to and

.]

14. Show that if is invertible, then rank rank . [Hint:

Use Exercise 13 to study rank .]

15. Let be an matrix, and let be an matrix

such that AB . Show that rank rank . [Hint:

One of the four subspaces Nul , Col , Nul , and Col

is contained in one of the other three subspaces.]

16. If is an matrix of rank , then a rank factorization

of is an equation of the form , where is an

matrix of rank and is an matrix of rank .

Such a factorization always exists (Exercise 38 in Section




