Lecture 2: Unpredictability

- Pick up a copy of the syllabus if you don't have one already
- Lab 1 posted on <u>piazza.com</u>, due on gradescope.com on Monday 1/28 at 11pm

Bruce Schneier's 4 truths of computer security

1. Attackers have the advantage

- 2. Interconnections \rightarrow New vulnerabilities
- 3. Attacks scale

4. Defense requires smart people who know what to do


Source: www.schneier.com/essays/archives/2016/11/testimony_at_the_us_.html

"Complexity is the worst enemy of security, [and] the Internet is the most complex machine man has ever built by a lot."

"The more we connect things to each other, the more vulnerabilities in one thing affect other things."

"The Internet is a massive tool for making things more efficient. That's also true for attacking."

"Our computers are secure [only because] the engineers at Google, Apple, Microsoft spent a lot of time on this."

Cryptography the art of making codes

Schneier's law: Anyone, from the most clueless amateur to the best cryptographer, can create an algorithm that he himself can't break.

kryptos = secret, hidden

Cryptanalysis the art of breaking codes

Course outline

- 1. Protecting data at rest
- 3. Protecting data in transit
- 5. Protecting data during use

- 2. Attacking data at rest
- 4. Crypto law and policy
- 6. Design + cryptanalysis of crypto building blocks

"Cryptography is about communication in the presence of an adversary."

–Ron Rivest

Protecting data in transit

encrypt **C** = *E*(**K**, **M**)

message **M**

decrypt **M** = D(**K**, **C**)

???

Part 1: Protecting data at rest

encrypt C = E(K, M)

message **M**

decrypt M = D(K, C)

???

How can Alice encode messages so Eve can't read them?

- 1. Substitute each character with another one
- 2. Write in a foreign language
- 3. Make it hard for Eve to determine where Alice wrote her message

Caesar cipher

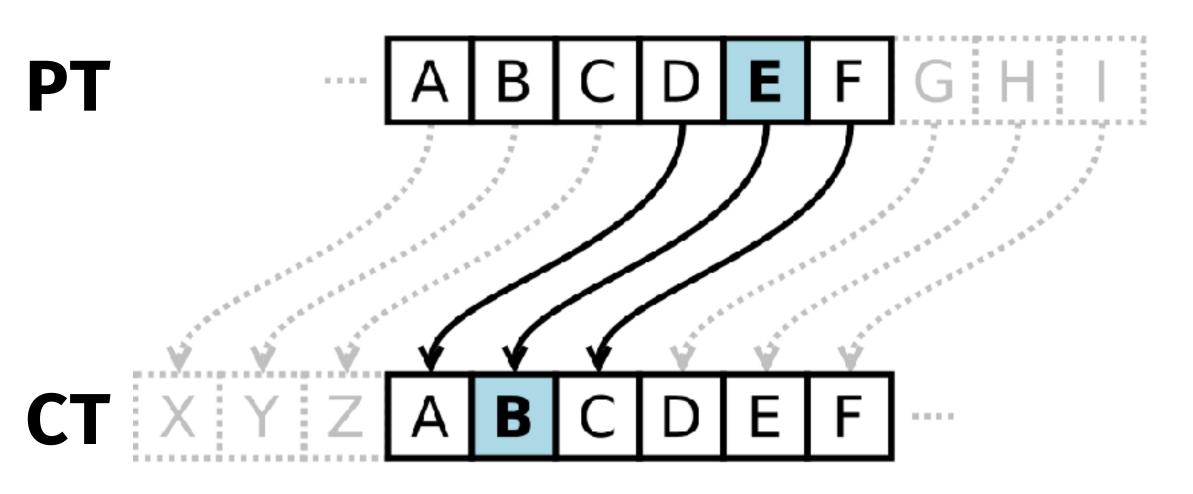


Image source: Wikipedia

- Encipher one character at a time
- Figure shows cipher with key K = 3
 - one → lkb
 - two \mapsto qtl
- Problem?
 - three \mapsto qeobb
- How to resolve?

Binary representation of data

Quantities

- bit $\in \{0,1\}$
- byte $\in \{0,1\}^8$

Formats

- Raw bits (some of which are ASCII printable)
- Hex characters

Reminder: Keep track of the format of a string during the labs!

If you compute an output whose length is double what you expected, then you almost surely operated over a hex encoding rather than the raw string.

Dec	Hx	Oct	Html	Ch
65	41	101	∝#64; ∝#65;	A
		102 103	B C	
68 69 70	44 45	$104 \\ 105$	D E F	D E

One time pad

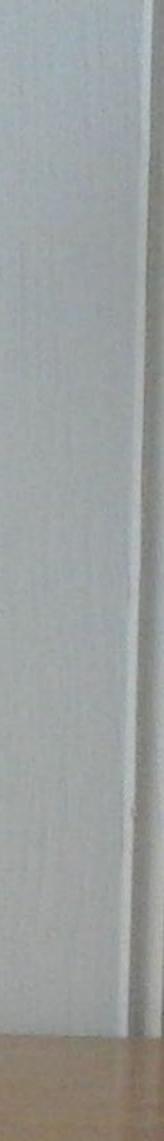
- XOR function measures whether 2 inputs are identical
- OTP "masks" the message by app Caesar cipher independently to e

- XOR is a "lossless" function, so it invertible (XOR is its own inverse)
- Drawbacks?
 - Key length == plaintext message ler
 - No integrity: easy to manipulate ciphertext

\oplus	0	1
0	0	1
1	1	0

olying a		message	0110	0110	1001
each bit	<u>XOR</u>	key	0011	1100	1110
		cipher	0101	1010	0111
z is					
2)		cipher	0101	1010	0111
	XOR	key	0011	1100	1110
		message	0110	0110	1001
ngth					

How can Alice encode messages so Eve can't read them?


- 1. Substitute each character with another one
- 2. Write in a foreign language
- 3. Make it hard for Eve to determine where Alice wrote her message

Russian OLLINS

Rumänisch

Französisch - Deutsch Deutsch - Französisch

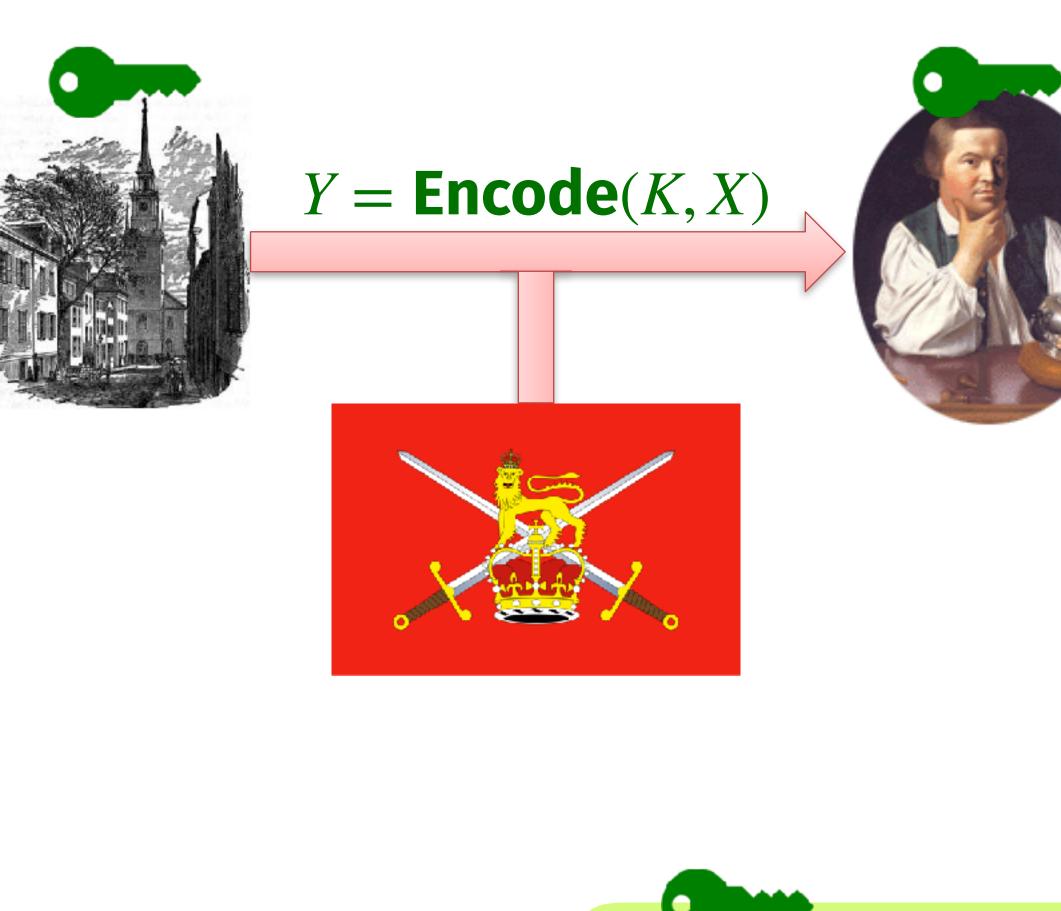
Goal 1: Unintelligible to Eve

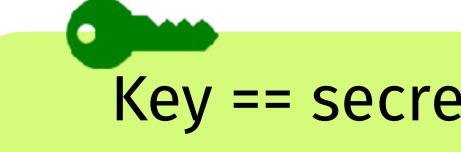
	Plain word	Encoded word
	aba	nrq
	abs	mbk
	ace	ybd
	act	WXV
	add	jen
	ado	hhg
	aft	uxv
	age	zmx
	ago	dgs
	aha	ase
	aid	ktf
	•	
] zip	суи
A	Z00	dux
	3-letter words	3 characters from random.org

Goal 2: Simple for Alice

- Fast + easy to compute X Slow
- Secret key is small 🗶 Big and easy to change
- Infinitely reusable **×** Frequency

Note that Alice chose her encoded words to be distinct. Why?


Is Alice's custom codebook secure?


abanrqabsmbkaceybdactwxvaddjenadohhgaftuxvagezmxagodgsahaaseaidktf::	X	Y
aceybdactwxvaddjenadohhgaftuxvagezmxagodgsahaase	aba	nrq
actwxvaddjenadohhgaftuxvagezmxagodgsahaase	abs	mbk
addjenadohhgaftuxvagezmxagodgsahaase	ace	ybd
adohhgadohhgaftuxvagezmxagodgsahaase	act	WXV
aftuxvagezmxagodgsahaase	add	jen
agezmxagodgsahaase	ado	hhg
ago dgs aha ase	aft	uxv
aha ase	age	zmx
	ago	dgs
aid ktf :	aha	ase
	aid	ktf
	• • •	• •
zip cyu	zip	cyu
zoo dux	Z00	dux

- Alice has secret message X*, sends Y* = Encode(X*)
- Question: can Eve recover X* when given:
 - 1. Only Y*
 - 2. Above, plus many (X_i, Y_i) pairs chosen at random
 - 3. Above, plus many (X_i, Y_i) pairs for X_i of Eve's choice
 - 4. Above, plus Eve can choose the X_i one at a time, and adapt her choices based on the Y_i responses she receives
 - 5. Above, plus Eve can also decipher Y_i of her choice

Upshot: security depends on the adversary's powers

When can we get away with a short key?

Two options:

•	Plain word	Encoded word
	land	1
	sea	2

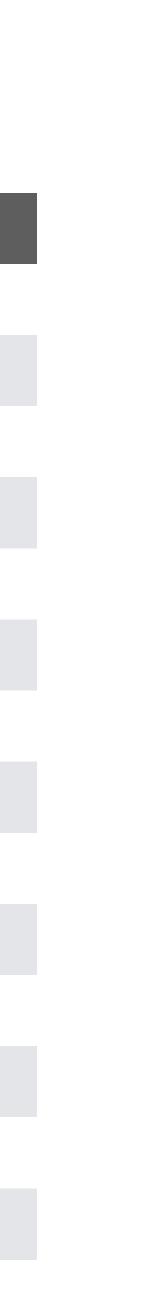
Plain word	Encoded word
land	2
sea	1

Key == secret + unpredictable

Randomness \Rightarrow Unpredictability \Rightarrow Secrecy

Unpredictability

Suppose that Eve can adaptively make *q* queries into our codebook.


We call the codebook **unpredictabl** small chance to predict Enc(X*) for

Note:

- An unpredictable codebook is *almost* secure against an Eve that conducts attack #4 (choose X adaptively, get Y).
- But, we have not addressed frequency analysis yet. Unpredictability doesn't allow Eve to observe same X twice

le if Eve has a very	
r any unqueried X*.	

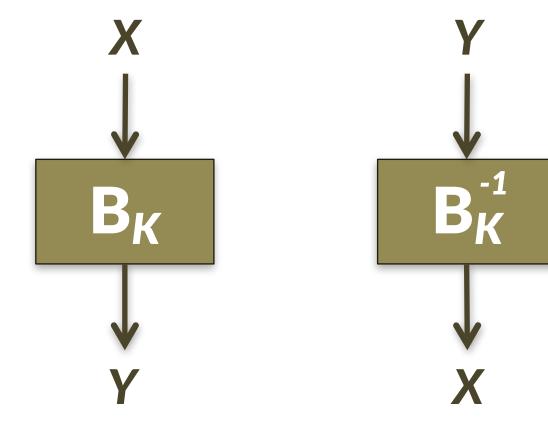
X	Y
aba	nrq
abs	mbk
ace	ybd
act	WXV
add	jen
ado	hhg
aft	UXV
age	zmx
ago	dgs
aha	ase
aid	ktf
• • •	• • •
zip	суи
Z00	dux
ado aft age ago aha aid : zip	hhg uxv zmx dgs ase ktf :

"If an adversary A has not **explicitly** queried a [perfect] codebook] **R** on some point X, then the value of R(X) is completely random... at least as far as A is concerned."

-Jon Katz and Yehuda Lindell, Introduction to Modern Cryptography

A crypto "Manhattan project"

- Can Alice use this codebook to protect her messages from Eve?
- Intuitively: no!
 - Eve can use the codebook too
 - Codebook is too large for Alice to carry around


• Imagine society spends an enormous effort to make a single codebook **R** and its inverse (so Alice can decipher her original message later)

• Codebook's input + output lengths may not suffice to encode Alice's message

Block cipher

- Family of invertible permutations, indexed by a secret key
- Design goals
 - 1. **Simple** built from native CPU operations like XOR, cyclic shifts, and table lookups
 - 2. Makes no sense unpredictable
 - 3. Simple to see that it makes no sense we have simple, convincing

arguments that the cipher is unpredictable (remember Schneier's law!)


Cryptanalysis via brute force

- There is a large (but not infinite!) universe of possible keys
 - Alice's key **c** identifies the cipher that she decided to use
- Brute force attack: Eve can try all possible keys and test against an observed (X, Y) pair
- Alice's objectives
 - Make brute forcing infeasibly difficult
 - Ensure that cipher cannot be broken faster than brute force search

Game	Search size	Solved?
Connect 4	10^13	\checkmark
Limit hold 'em	10^14	\checkmark
Checkers	10^20	\checkmark
Chess	10^50	
Modern crypto	~10^70	
No limit hold 'em	10^140	
Go (19 × 19)	10^171	

Security guarantee: pseudorandomness

• Let Π = truly random permutation made by a secret Manhattan project

• Goal: Eve cannot tell apart B_K and Π , so they are effectively the same

Security guarantee: strong pseudorandomness

- Let Π = truly random permutation made by a secret Manhattan project
- Goal: Eve cannot tell apart B_K and Π , so they are effectively the same

- ...even if Eve gets access to both enciphering and deciphering
- Question: How do we build something that looks truly chaotic but isn't?

A crypto "Manhattan project"

- Imagine society spends an enormous effort to make a single codebook
 R and its inverse (so Alice can decipher her original message later)
- Can Alice use this codebook to protect her messages from Eve?
- Intritively: no! Actually: Yes! (We can fix all of the problems below)
 - Eve can use the codebook too
 - Codebook is too large for Alice to carry around
 - Codebook's input + output lengths may not suffice to encode Alice's message