
Lecture 3: Block ciphers
Posted on piazza.com

• Week 2 reading

• Lab 2 (due on Monday 2/4 at 11pm)

• Lab 1 answers

http://piazza.com

Part 1: Protecting data at rest

message	M

???

key	K key	K

decrypt	M	=	D(K,	C)

encrypt	C	=	E(K,	M)

Randomness ⇒ Unpredictability ⇒ Secrecy

Block cipher = Huge family of codebooks

Structure of 1 codebook
• Codebook is a random-looking function B : {0,1}in → {0,1}out

• So far we have considered input length == output length

• As a result, can insist that B is invertible

• Will explore other options starting on Thursday

X Y
aba nrq
abs mbk
ace ybd
act wxv
add jen
ado hhg
aft uxv
age zmx
ago dgs
aha ase
aid ktf

⋮ ⋮

zip cyu
zoo dux

Today’s plan
1. Formally state the guarantees we want from a block cipher

2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook

Block cipher
• Family of permutations, indexed by a secret key

• Design goals

1. Simple - built from native CPU operations  
like XOR, cyclic shifts, and table lookups

2. Makes no sense - unpredictable

3. Simple to see why it makes no sense - we have simple, convincing 
arguments that the cipher is unpredictable (remember Schneier’s law!)

BK

X

Y

BK

Y

X

-1
encipher decipher

Security game
• Let Π = truly random + secret permutation

• BK is strongly pseudorandom if every resource-bounded adversary can
only distinguish the real cipher Π from with very small probability ε

B$ Π

B$ Π-1 -1

Block cipher details
Parameters

• μ = block length = log(length of a book)

• λ = key length = log(# books in library)

Algorithms

• KeyGen: Randomly choose a key K of
length λ, often uniformly from {0,1}λ

• Encipher: Given input X ∈ {0,1}μ,
outputs BK(X) → Y, where Y ∈ {0,1}μ too

• Decipher: Given Y ∈ {0,1}μ, outputs
BK-1(Y) → X, where X ∈ {0,1}μ too

Assume for now that there is a “good”
method to generate a random key.
Will explore later in the course:

• How to generate random numbers

• Crypto designs that withstand not-
so-great sources of randomness

Block cipher details
Parameters

• μ = block length = log(length of a book)

• λ = key length = log(# books in library)

Algorithms

• KeyGen: Randomly choose a key K of
length λ, often uniformly from {0,1}λ

• Encipher: Given input X ∈ {0,1}μ,
outputs BK(X) → Y, where Y ∈ {0,1}μ too

• Decipher: Given Y ∈ {0,1}μ, outputs
BK-1(Y) → X, where X ∈ {0,1}μ too

Guarantees

• Performance: All 3 algorithms are
efficiently computable

• Correctness: For every K ∈ {0,1}λ and X
∈ {0,1}μ, it holds that

• (q, t, ε)-strong pseudorandomness: 
For every adversary A that makes ≤ q
queries and executes in time ≤ t, 
 
 
over the choices of key K ∈ {0,1}λ and
permutation Π : {0,1}μ → {0,1}μ

| Pr[ABK, B−1
K = 1] − Pr[AΠ, Π−1 = 1] | < ε

B−1
K (BK(X)) = X

Notational shorthand for this claim

Block cipher details
Guarantees

• Performance: All 3 algorithms are
efficiently computable

• Correctness: For every K ∈ {0,1}λ and X
∈ {0,1}μ, it holds that

• (q, t, ε)-strong pseudorandomness: 
For every adversary A that makes ≤ q
queries and executes in time ≤ t, 
 
 
over the choices of key K ∈ {0,1}λ and
permutation Π : {0,1}μ → {0,1}μ

| Pr[ABK, B−1
K = 1] − Pr[AΠ, Π−1 = 1] | < ε

B−1
K (BK(X)) = X

ABK, B−1
K ≈(q,t,ε) AΠ, Π−1

Pseudorandomness !-> Claude Shannon’s goals

• Confusion: uncertainty within each entry of a codebook

• Diffusion: uncertainty between entries of a codebook

Source: Claude Shannon’s (many) papers
- Communication Theory of Secrecy Systems
- A Mathematical Theory of Communication
- A Mathematical Theory of Cryptography

Confusion: Uncertainty within a row
• Uncertainty of K !-> cannot

predict Y given X or vice-versa

• Tough even to correlate X and Y

• Ideal: Prob[correlation] so small
that attacker is better off with a
brute force attack

> from Cryptodome.Cipher import AES

> key = 16 * ‘\x00'

> B = AES.new(key, AES.MODE_ECB)

> B.encrypt(‘abcdefghijklmnop’)

‘c3af71addfe4fcac6941286a76ddedc2’

Diffusion: Uncertainty between rows
• 1 bit ΔX → huge ΔY

• Partial knowledge of input
doesn’t help to learn output

• Ideal goal is avalanching: each
bit of output depends on all
input bits

• Note: confusion ↛ diffusion

• Combine 2 functions

• Can be confusing but not diffusing

> from Cryptodome.Cipher import AES

> key = 16 * ‘\x00'

> B = AES.new(key, AES.MODE_ECB)

> B.encrypt(‘abcdefghijklmnop’)

‘c3af71addfe4fcac6941286a76ddedc2’

> B.encrypt(‘abcdefghijklmnoq’)

‘b5c180bcf80baae8ac0de2673370450c’

X2

B2

Y2

X1

B1

Y1

Today’s plan
1. Formally state the guarantees we want from a block cipher

2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook

A crypto “Manhattan project”
• Imagine society spends an enormous effort to make a single codebook

R and its inverse (so Alice can decipher her original message later)

• Can Alice use this codebook to protect her messages from Eve?

• Intuitively: no!

• Eve can use the codebook too

• Codebook is too large for Alice to carry around

• Codebook’s input + output lengths may not suffice to encode Alice’s message

• Actually: yes! We can address all of these concerns

R

⊕ 0 1
0 0 1
1 1 0

+ !=>

Flashback: The Data Encryption Standard (DES)
History

• 1972: NIST* seeks standard mechanism to protect
US federal gov “sensitive but unclassified” info

• 1st request: Rejected all submissions

• 2nd request: accepted the Lucifer cipher by 
Horst Feistel & others at IBM

Lengths of DES components

• Block length: 8 bytes

• Key length: 7 bytes

NSA changes: ▲ cryptanalytic strength 
NSA changes: ▼ key length 8 → 7 bytes

DES

X

Y

KDES

Crypto war 1: key length
Question: how to increase key length  
without making a new standard?

Solutions

• 2DES: Run DES twice

• 3DES: Run DES three times

DES

X

Y

KDES

DES

Y

KDES’

DES

Y

KDES

Crypto war 1: key length
Question: how to increase key length  
without making a new standard?

Solutions

• 2DES: Run DES twice

• 3DES: Run DES three times

• DESX (Rivest 84): mask input + output  
Resulting key = 15 bytes

Benefits of DESX

• Fast: 1 block cipher call, quick re-keying

• Available: RSA Security had in their BSAFE software  
since the late 1980s (before the rise of open source crypto software)

DES

X

Y

KDES KMASK

Random permutation → block cipher
Question: What is the simplest possible
construction of a block cipher that has a
formal proof of security? DES

X

Y

KDES KMASK

Random permutation → block cipher
Question: What is the simplest possible
construction of a block cipher that has a
formal proof of security?

Even & Mansour 91: Rivest’s idea applies to
any “public, random-looking permutation”

Theorems
1. Resulting block cipher is strongly

pseudorandom …even if R is public
2. Construction is minimal in the 

sense that nothing can be removed

X

Y

KMASK Π

X

Y

A

B

R

A

B

R

R

Proof of pseudorandomness
Thm. Construction is strongly pseudorandom.

Proof.
• Before the adversary makes any queries, 

all choices of KMASK are equally likely

• To reduce the set of possible KMASK, adversary must
find collisions between Π and R, which are unlikely

• For each (X, Y) and (A, B) pair, label the keys (X ⊕ A)
and (Y ⊕ B) as bad; q queries yield only 2q2 bad keys

• All good keys are equally likely: they all fail to cause
collisions anywhere

• Same argument applies to the inverse direction

X

Y

KMASK Π

X

Y

A

B

R

A

B

R

R

= X ⊕ KMASK

= Y ⊕ KMASK

Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed.

Proof.

X

Y

KMASK Π

X

Y

A

B

R

A

B

R

R

Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed.

Proof.

• Removing either ⊕ allows adversary  
to learn the key with one X/Y pair  
and one query to R.

X

Y

KMASK Π

X

Y

A

B

R

A

B

R

R

= X

Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed.

Proof.

• Removing either ⊕ allows adversary  
to learn the key with one X/Y pair  
and one query to R.

• Removing R leaves the identity function.

X

Y

KMASK Π

X

Y

A

B

R

A

B

R

R

⊕ 0 1
0 0 1
1 1 0

+ !=>

?

Today’s plan
1. Formally state the guarantees we want from a block cipher

2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook

–Jon Katz and Yehuda Lindell, Introduction to Modern Cryptography

“If an adversary A has not explicitly queried a [perfect
codebook] R on some point X, then the value of R(X) is
completely random… at least as far as A is concerned.”

Great, let’s build a block cipher!
Problems?
1. Hmm, how do we go about building  

a single random permutation R?

2. Isn’t the truth table for R huge?

X

Y

KMASKR

Great, let’s build a block cipher!
Problems?
1. Hmm, how do we go about building  

a single random permutation R?

2. Isn’t the truth table for R huge?

Solution to 1: multiple rounds

• Let’s make life easier: what if we make ρ
that is somewhat random?

• Then we can use the 3DES trick

X

Y

KMASK

⋮	

ρ

Y

Kroundρ

Great, let’s build a block cipher!
Problems?
1. Hmm, how do we go about building  

a single random permutation R?

2. Isn’t the truth table for R huge?

Solution to 1: multiple rounds

• Let’s make life easier: what if we make ρ
that is somewhat random?

• Then we can use the 3DES trick

• (Nitpicky detail: each round needs a
different key to thwart slide attacks)

X

Y⋮	

ρ

Y

ρ

K0

K1

Kn-1

Kn

Great, let’s build a block cipher!
Problems?
1. Hmm, how do we go about building  

a single random permutation R?

2. Isn’t the truth table for R huge?

Solution to 2: simple round function ρ

• Linear functions are very simple!

• Err, perhaps too simple; we could then
solve for the key

• We need non-linearity somewhere

• But let’s keep its truth table small

X

Y⋮	

ρ

Y

ρ

K0

K1

Kn-1

Kn

Designing ρ: The substitution-permutation model

Permutation

State at beginning of round

Middle Middle…

S S S S… … ❶ Substitution box (S-box)
Provides confusion, but at a cost

❷ Linear permutation
Provides global diffusion

❸ AES-specific middle step
A linear operation that (somehow)
provides both diffusion and confusion

State at end of round

Block cipher design
Block cipher !<- Key alternation !<- Iterated rounds !<- Substitution-Permutation

B

X

Y

K

X

Y

K Π

X

Y⋮	

ρ

Y

K0

ρ
K1

Kr-1

Kr

Permutation

Input state

Middle Middle…

S S S S… …

Output state

Advanced Encryption Standard (AES) Competition

• NIST competition held 1997–2000

• Required good performance for

– 8-bit smartcard

– 32-bit software

– Dedicated hardware

• Well-run competition

– Many candidates: 15 initially, 5 finalists

– Included 3 conferences

• Winner: Rijndael

– Authors: Joan Daemen, Vincent Rijmen

“Algorithms will be judged on the extent to
which their output is indistinguishable from
a random permutation on the input block.”

General security 2 3 3 3 2

Simplicity to implement 3 3 2 1 1

Software performance 3 1 1 2 2

Smart card performance 3 3 2 1 1

Hardware performance 3 3 2 1 2

Design features 2 1 3 2 1

Total 16 14 13 10 9

Ri
jn

da
el

Se
rp

en
t

Tw
ofi

sh

M
AR

S

RC
6

Rijndael, aka AES

Key alternating structure

• 128, 192, or 256 bit initial key

• Expand into r + 1 round keys, each of
which is 128 bits long

• Invertible key schedule: 
given key i , can compute 
key i - 1 or key i +1

Iterated round structure

• 16 bytes of state

• Total of 10 to 14 rounds

• 3 invertible operations per round

– Final round is slightly different

• Only S-box is nonlinear

MixColumns

S-box

ShiftRows+ + … + + +

key0 key8 key9 key10key1
MixColumns

S-box

ShiftRows

S-box

ShiftRowsRound9 Round10Round1 output YInput X

AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❶ SubBytes
❶ Table lookup, one byte at a time

16 byte state

AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❷ ShiftRows
❶ Byte-wise transposition

16 byte state

AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❸ MixColumns
❶ Matrix multiplication in GF(256)

16 byte state

Speed of AES
• Intel’s AES-NI: Intel CPUs include 6

instructions to perform AES quickly

• Apple Secure Enclave: “Every iOS device
has a dedicated AES-256 crypto engine
built into the DMA path between the
flash storage and main system memory,
making file encryption highly efficient.”

• AMD’s Secure Memory Enc

Sources:
• www.apple.com/business/docs/iOS_Security_Guide.pdf
• amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

Claude Shannon’s two security goals for block ciphers

Confusion

Ideal: Prob[correlation] so small that
attacker is better off with a brute force
attack (takes 8 rounds in AES)

Diffusion

Ideal goal is avalanching: each bit of
output depends on all input bits 
(takes 2 rounds in AES)

Security margin = (# rounds in a cipher) – (# rounds we can break)

MixColumns

S-box

ShiftRowsInput output+ + … + + +

key0 key8 key9 key10key1
MixColumns

S-box

ShiftRows

S-box

ShiftRowsRound9 Round10Round1

2	rounds	to	avalanche	
(total	diffusion)

8	rounds	for	wide	trail	strategy	
(total	confusion)

Avalanching in AES

Source: slide 17 of summerschool-croatia.cs.ru.nl/2014/slides/Advanced Encryption Standard.pdf

Why do we think that AES is pseudorandom?

Theoretical 
science

Empirical art

will show it survives some  
types of cryptanalysis

because it survived a 4 year competition 
and 2 decades of use afterward

Cryptology

