
Lecture 3: Block ciphers
Posted on piazza.com 

• Week 2 reading 

• Lab 2 (due on Monday 2/4 at 11pm) 

• Lab 1 answers

http://piazza.com


Part 1: Protecting data at rest

message	M

???

key	K key	K

decrypt	M	=	D(K,	C)

encrypt	C	=	E(K,	M)



Randomness ⇒ Unpredictability ⇒ Secrecy



Block cipher = Huge family of codebooks



Structure of 1 codebook
• Codebook is a random-looking function B : {0,1}in → {0,1}out 

• So far we have considered input length == output length 

• As a result, can insist that B is invertible 

• Will explore other options starting on Thursday

X Y
aba nrq
abs mbk
ace ybd
act wxv
add jen
ado hhg
aft uxv
age zmx
ago dgs
aha ase
aid ktf

⋮ ⋮

zip cyu
zoo dux



Today’s plan
1. Formally state the guarantees we want from a block cipher 

2. Design a block cipher from a single, public, “perfect” codebook 

3. Instantiate a “good enough” approximation of a perfect codebook



Block cipher
• Family of permutations, indexed by a secret key 

• Design goals 

1. Simple - built from native CPU operations  
like XOR, cyclic shifts, and table lookups 

2. Makes no sense - unpredictable 

3. Simple to see why it makes no sense - we have simple, convincing 
arguments that the cipher is unpredictable (remember Schneier’s law!)
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Security game
• Let Π = truly random + secret permutation 

• BK is strongly pseudorandom if every resource-bounded adversary can 
only distinguish the real cipher Π from with very small probability ε

B$ Π

B$ Π-1 -1



Block cipher details
Parameters 

• μ = block length = log(length of a book) 

• λ = key length = log(# books in library) 

Algorithms 

• KeyGen: Randomly choose a key K of 
length λ, often uniformly from {0,1}λ 

• Encipher: Given input X ∈ {0,1}μ, 
outputs BK(X) → Y, where Y ∈ {0,1}μ too 

• Decipher: Given Y ∈ {0,1}μ, outputs 
BK-1(Y) → X, where X ∈ {0,1}μ too

Assume for now that there is a “good” 
method to generate a random key. 
Will explore later in the course: 

• How to generate random numbers 

• Crypto designs that withstand not-
so-great sources of randomness 



Block cipher details
Parameters 

• μ = block length = log(length of a book) 

• λ = key length = log(# books in library) 

Algorithms 

• KeyGen: Randomly choose a key K of 
length λ, often uniformly from {0,1}λ 

• Encipher: Given input X ∈ {0,1}μ, 
outputs BK(X) → Y, where Y ∈ {0,1}μ too 

• Decipher: Given Y ∈ {0,1}μ, outputs 
BK-1(Y) → X, where X ∈ {0,1}μ too

Guarantees 

• Performance: All 3 algorithms are 
efficiently computable 

• Correctness: For every K ∈ {0,1}λ and X 
∈ {0,1}μ, it holds that 

• (q, t, ε)-strong pseudorandomness: 
For every adversary A that makes ≤ q 
queries and executes in time ≤ t, 
 
 
over the choices of key K ∈ {0,1}λ and 
permutation Π : {0,1}μ → {0,1}μ 

| Pr[ABK, B−1
K = 1] − Pr[AΠ, Π−1 = 1] | < ε

B−1
K (BK(X)) = X



Notational shorthand for this claim 

Block cipher details
Guarantees 

• Performance: All 3 algorithms are 
efficiently computable 

• Correctness: For every K ∈ {0,1}λ and X 
∈ {0,1}μ, it holds that 

• (q, t, ε)-strong pseudorandomness: 
For every adversary A that makes ≤ q 
queries and executes in time ≤ t, 
 
 
over the choices of key K ∈ {0,1}λ and 
permutation Π : {0,1}μ → {0,1}μ 

| Pr[ABK, B−1
K = 1] − Pr[AΠ, Π−1 = 1] | < ε

B−1
K (BK(X)) = X

ABK, B−1
K ≈(q,t,ε) AΠ, Π−1



Pseudorandomness !-> Claude Shannon’s goals

• Confusion: uncertainty within each entry of a codebook 

• Diffusion: uncertainty between entries of a codebook

Source: Claude Shannon’s (many) papers 
- Communication Theory of Secrecy Systems 
- A Mathematical Theory of Communication 
- A Mathematical Theory of Cryptography



Confusion: Uncertainty within a row
• Uncertainty of K !-> cannot 

predict Y given X or vice-versa 

• Tough even to correlate X and Y 

• Ideal: Prob[correlation] so small 
that attacker is better off with a 
brute force attack

> from Cryptodome.Cipher import AES 

> key = 16 * ‘\x00' 

> B = AES.new(key, AES.MODE_ECB) 

> B.encrypt(‘abcdefghijklmnop’) 

‘c3af71addfe4fcac6941286a76ddedc2’



Diffusion: Uncertainty between rows
• 1 bit ΔX → huge ΔY 

• Partial knowledge of input 
doesn’t help to learn output 

• Ideal goal is avalanching: each 
bit of output depends on all 
input bits 

• Note: confusion ↛ diffusion 

• Combine 2 functions 

• Can be confusing but not diffusing

> from Cryptodome.Cipher import AES 

> key = 16 * ‘\x00' 

> B = AES.new(key, AES.MODE_ECB) 

> B.encrypt(‘abcdefghijklmnop’) 

‘c3af71addfe4fcac6941286a76ddedc2’ 

> B.encrypt(‘abcdefghijklmnoq’) 

‘b5c180bcf80baae8ac0de2673370450c’
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Today’s plan
1. Formally state the guarantees we want from a block cipher 

2. Design a block cipher from a single, public, “perfect” codebook 

3. Instantiate a “good enough” approximation of a perfect codebook



A crypto “Manhattan project”
• Imagine society spends an enormous effort to make a single codebook 

R and its inverse (so Alice can decipher her original message later) 

• Can Alice use this codebook to protect her messages from Eve? 

• Intuitively: no! 

• Eve can use the codebook too 

• Codebook is too large for Alice to carry around 

• Codebook’s input + output lengths may not suffice to encode Alice’s message 

• Actually: yes! We can address all of these concerns



R

⊕ 0 1
0 0 1
1 1 0

+   !=>



Flashback: The Data Encryption Standard (DES)
History 

• 1972: NIST* seeks standard mechanism to protect 
US federal gov “sensitive but unclassified” info 

• 1st request: Rejected all submissions 

• 2nd request: accepted the Lucifer cipher by 
Horst Feistel & others at IBM 

Lengths of DES components 

• Block length: 8 bytes 

• Key length: 7 bytes 

NSA changes:  ▲ cryptanalytic strength 
NSA changes:  ▼ key length 8 → 7 bytes

DES

X

Y

KDES



Crypto war 1: key length
Question: how to increase key length  
without making a new standard? 

Solutions 

• 2DES: Run DES twice 

• 3DES: Run DES three times

DES

X

Y

KDES

DES

Y

KDES’

DES

Y

KDES



Crypto war 1: key length
Question: how to increase key length  
without making a new standard? 

Solutions 

• 2DES: Run DES twice 

• 3DES: Run DES three times 

• DESX (Rivest 84): mask input + output  
Resulting key = 15 bytes 

Benefits of DESX 

• Fast: 1 block cipher call, quick re-keying 

• Available: RSA Security had in their BSAFE software  
since the late 1980s (before the rise of open source crypto software)

DES

X

Y

KDES KMASK



Random permutation → block cipher
Question: What is the simplest possible 
construction of a block cipher that has a 
formal proof of security? DES

X

Y

KDES KMASK



Random permutation → block cipher
Question: What is the simplest possible 
construction of a block cipher that has a 
formal proof of security? 

Even & Mansour 91: Rivest’s idea applies to 
any “public, random-looking permutation” 

Theorems 
1. Resulting block cipher is strongly 

pseudorandom …even if R is public 
2. Construction is minimal in the 

sense that nothing can be removed
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Proof of pseudorandomness
Thm. Construction is strongly pseudorandom. 

Proof. 
• Before the adversary         makes any queries, 

all choices of KMASK are equally likely 

• To reduce the set of possible KMASK, adversary must 
find collisions between Π and R, which are unlikely 

• For each (X, Y) and (A, B) pair, label the keys (X ⊕ A) 
and (Y ⊕ B) as bad; q queries yield only 2q2 bad keys 

• All good keys are equally likely: they all fail to cause 
collisions anywhere 

• Same argument applies to the inverse direction
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= Y ⊕ KMASK



Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed. 

Proof.
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Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed. 

Proof. 

• Removing either ⊕ allows adversary  
to learn the key with one X/Y pair  
and one query to R.
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KMASK Π
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Proof of minimality
Thm. Construction is minimal in the 
sense that nothing can be removed. 

Proof. 

• Removing either ⊕ allows adversary  
to learn the key with one X/Y pair  
and one query to R. 

• Removing R leaves the identity function.
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R

⊕ 0 1
0 0 1
1 1 0

+   !=>

?



Today’s plan
1. Formally state the guarantees we want from a block cipher 

2. Design a block cipher from a single, public, “perfect” codebook 

3. Instantiate a “good enough” approximation of a perfect codebook



–Jon Katz and Yehuda Lindell, Introduction to Modern Cryptography

“If an adversary A has not explicitly queried a [perfect 
codebook] R on some point X, then the value of R(X) is 
completely random… at least as far as A is concerned.” 



Great, let’s build a block cipher!
Problems? 
1. Hmm, how do we go about building  

a single random permutation R? 

2. Isn’t the truth table for R huge?

X

Y

KMASKR



Great, let’s build a block cipher!
Problems? 
1. Hmm, how do we go about building  

a single random permutation R? 

2. Isn’t the truth table for R huge? 

Solution to 1: multiple rounds 

• Let’s make life easier: what if we make ρ 
that is somewhat random? 

• Then we can use the 3DES trick
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Great, let’s build a block cipher!
Problems? 
1. Hmm, how do we go about building  

a single random permutation R? 

2. Isn’t the truth table for R huge? 

Solution to 1: multiple rounds 

• Let’s make life easier: what if we make ρ 
that is somewhat random? 

• Then we can use the 3DES trick 

• (Nitpicky detail: each round needs a 
different key to thwart slide attacks)
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Great, let’s build a block cipher!
Problems? 
1. Hmm, how do we go about building  

a single random permutation R? 

2. Isn’t the truth table for R huge? 

Solution to 2: simple round function ρ 

• Linear functions are very simple! 

• Err, perhaps too simple; we could then 
solve for the key 

• We need non-linearity somewhere 

• But let’s keep its truth table small
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Designing ρ: The substitution-permutation model

Permutation

State at beginning of round

Middle Middle…

S S S S… … ❶ Substitution box (S-box) 
Provides confusion, but at a cost

❷ Linear permutation 
Provides global diffusion

❸ AES-specific middle step 
A linear operation that (somehow) 
provides both diffusion and confusion

State at end of round



Block cipher design
Block cipher !<- Key alternation !<- Iterated rounds !<- Substitution-Permutation
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Permutation

Input state

Middle Middle…

S S S S… …

Output state



Advanced Encryption Standard (AES) Competition

• NIST competition held 1997–2000 

• Required good performance for 

– 8-bit smartcard 

– 32-bit software 

– Dedicated hardware 

• Well-run competition 

– Many candidates: 15 initially, 5 finalists 

– Included 3 conferences 

• Winner: Rijndael 

– Authors: Joan Daemen, Vincent Rijmen

“Algorithms will be judged on the extent to 
which their output is indistinguishable from 
a random permutation on the input block.”

General security 2 3 3 3 2

Simplicity to implement 3 3 2 1 1

Software performance 3 1 1 2 2

Smart card performance 3 3 2 1 1

Hardware performance 3 3 2 1 2

Design features 2 1 3 2 1

Total 16 14 13 10 9
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Rijndael, aka AES

Key alternating structure 

• 128, 192, or 256 bit initial key 

• Expand into r + 1 round keys, each of 
which is 128 bits long 

• Invertible key schedule: 
given key i , can compute 
key i - 1 or key i +1

Iterated round structure 

• 16 bytes of state 

• Total of 10 to 14 rounds 

• 3 invertible operations per round 

– Final round is slightly different 

• Only S-box is nonlinear

MixColumns

S-box

ShiftRows+ + … + + +

key0 key8 key9 key10key1
MixColumns

S-box

ShiftRows

S-box

ShiftRowsRound9 Round10Round1 output YInput X



AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❶ SubBytes 
❶ Table lookup, one byte at a time

16 byte state



AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❷ ShiftRows 
❶ Byte-wise transposition

16 byte state



AES components

ShiftRows

16 byte state

MixColumns MixColumns…

S S S S… …

❸ MixColumns 
❶ Matrix multiplication in GF(256)

16 byte state



Speed of AES
• Intel’s AES-NI: Intel CPUs include 6 

instructions to perform AES quickly 

• Apple Secure Enclave: “Every iOS device 
has a dedicated AES-256 crypto engine 
built into the DMA path between the 
flash storage and main system memory, 
making file encryption highly efficient.” 

• AMD’s Secure Memory Enc

Sources: 
• www.apple.com/business/docs/iOS_Security_Guide.pdf 
• amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf



Claude Shannon’s two security goals for block ciphers

Confusion 

Ideal: Prob[correlation] so small that 
attacker is better off with a brute force 
attack (takes 8 rounds in AES)

Diffusion 

Ideal goal is avalanching: each bit of 
output depends on all input bits 
(takes 2 rounds in AES)

Security margin = (# rounds in a cipher) – (# rounds we can break)

MixColumns

S-box

ShiftRowsInput output+ + … + + +

key0 key8 key9 key10key1
MixColumns

S-box

ShiftRows

S-box

ShiftRowsRound9 Round10Round1

2	rounds	to	avalanche	
(total	diffusion)

8	rounds	for	wide	trail	strategy	
(total	confusion)



Avalanching in AES

Source: slide 17 of summerschool-croatia.cs.ru.nl/2014/slides/Advanced Encryption Standard.pdf



Why do we think that AES is pseudorandom?

Theoretical 
science

Empirical art

will show it survives some  
types of cryptanalysis

because it survived a 4 year competition 
and 2 decades of use afterward

Cryptology


