Lecture 6: Hash functions + intro to encryption

Posted on piazza.com

- Week 3 reading (no reading for the discussion section)

• Lab 3: due on Monday 2/11 at 11pm (re-download if you got it before Wed night)

One *public* function

Family of functions indexed by *private* key

n = out mutation)	in > out	in = ∞
odebook	Compression function	Hash function/ random oracle
ock cipher	Message	

n = out mutation)	in > out	in = ∞
odebook	Compression function	Hash function/ random oracle
ock cipher	Message auth code	
OM	AC	

Hash function

- "Compresses" long messages into short digests
- Cannot invert!
- Difficult to find two messages with the same digest
- Runtime of brute force attack is given by birthday bound

E[# hash evals until collision] \approx 1

 $/\frac{\pi}{-L}$

Hash function strength

For all definitions, the adversary has the code of H: $\{0,1\}^* \rightarrow \{0,1\}^{out}$

- Preimage resistance: given y = H(x), tough to find any preimage x'
- 2nd preimage resistance: given x,
 tough to find new x' s.t. H(x') = H(x')
- Target collision resistance: same as
 CR, except x chosen before H known
 - Collision resistance: given only H,
 difficult to find two different inputs x and x' s.t. H(x') = H(x') faster than a birthday bound search

Hash functions used in TLS (2017)

SHA1, 8.3%

SHA256, 91.7%

Source: <u>blog.cloudflare.com/how-expensive-is-crypto-anyway/</u>

bu.edu login page (2017)

Obsolete Connection Settings

The connection to this site uses an obsolete protocol (TLS 1.0), an obsolete key exchange (RSA), and an obsolete cipher (3DES_EDE_CBC with HMAC-SHA1).

Uses of hash functions

<u>Privacy</u>

- Build block ciphers [Even-Mansour]
- Generate random numbers
- Protect passwords
- Forward secrecy of keys

<u>Authenticity</u>

•

- Detect data modification
- Consensus via proof of work
- Digital signature and MAC (via HMAC)

Merkle-Damgård paradigm

Build a variable-length input hash function from two primitives:

- A fixed-length, compressing random-looking function 1.
- A mode of operation that iterates this function multiple times in a smart manner 2.

Questions about Merkle-Damgård

- 1. Vulnerable to length extension \rightarrow HMAC adds a "finalization" step
- 2. How to pad messages in a sensible way?

Mihir Bellare's constraints for collision-free padding

- 1. Message M is always a prefix of pad(M)
- 2. If |M1| = |M2|, then |pad(M1)| = |pad(M2)|
- 3. If $|M1| \neq |M2|$, then last block of pad(M1) \neq last block of pad(M2)

One convention: write string length as the sole contents of final block

Why Bellare's padding suffices

- **Thm.** If C: $\{0,1\}^{2\eta} \rightarrow \{0,1\}^{\eta}$ is collision-resistant, then H: $\{0,1\}^* \rightarrow \{0,1\}^{\eta}$ resulting from any fixed number of iterations of Merkle-Damgard is too.
- **Proof sketch.** Show that collision in $H \Rightarrow$ collision in C.
- If $|M| \neq |M'|$: Collision in the final steps: C(something || L) and C(something || L') • If |M| = |M'|: State after each C start out different, become identical somewhere!

HMAC [Bellare Canetti Krawczyk 97]

- Compute *H*(key || message)
- Finalize by applying C with (a function of) the key again

Our progress so far

Public crypto Symmetric crypto

Today: Encryption via enciphering

<u>Algorithms</u> **Protocols Key evolution** Signal: messaging Key encapsulation TLS: internet **PGP: email** Confidential (see CS 558) Protected communication

Symmetric crypto

Public crypto

Part 1: Protecting data at rest

encode C = E(K, P)

message **P**

decode **P** = D(**K**, **C**)

???

•

Alice's integrity + confidentiality goals

- Data authenticity: if Eve tampers with C, then Alice can detect the change
- Entity authenticity: future Alice knows that she previously created C
- Privacy: Eve cannot learn P

Warning!

Confidentiality xor authenticity is not possible. If you don't have both, often you don't have either. – Prof. Matthew Green, Johns Hopkins

Lack of confidentiality can impact integrity

Deirdre Connolly @durumcrustulum

Follow

But 'nobody cared'. No one reported on in. "No one cares unless you actually lose thousands of votes".

Deirdre Connolly @durumcrustulum

Follow

Only impacted confidentiality, not integrity (even though you cannot guarantee integrity if your votes will be known).

Lack of integrity can impact confidentiality

If you have to perform any cryptographic operation before verifying the MAC on a message you've received, it will somehow inevitably lead to doom!

Moxie Marlinspike,"Cryptographic Doom Principle"

S IS

Nevertheless, let's press onward...

Recall Auguste Kerchkoffs' principles

- The system must be practically, if not 1. mathematically, *indecipherable*
- It should *not require secrecy*, and it should 2. not be a problem if it falls into enemy hands

 $\bullet \bullet \bullet$

- It must be possible to communicate and 3. *remember the key* without using written notes, and correspondents must be able to *change or modify it at will*
- The system must be easy to use and should **not be stressful to use** or require its 6. users to know and comply with a long list of rules

Does a cipher give us confidential communication?

- First reaction: Yes! The cipher transforms X in a confusing way
- Full answer: Only works if Alice never enciphers the same block twice, and Eve knows that Alice wouldn't do this. Otherwise, Alice must prevent Eve from learning *frequency* of each block

cryptograms.org

Supporting longer messages

Questions

- What happens with multiple **P**s?
- How about a long **P**?
- What exactly is our goal here? How can we prove confidentiality?

Idea

- If each block cipher call introduces confusion, simply apply piecemeal
- This is *Electronic Codebook (ECB)* mode

ECB mode \Rightarrow sad Linux penguins

Raw image of Linux penguin

Image after ECB mode

What we want encryption to do

What if message blocks don't repeat?

key K

encode $C_i = B_K(P_i)$

•

private data $P_1, P_2, \dots P_e$

key K

decode $P_i = B_K^{-1}(C_i)$

What if message blocks don't repeat?

key K

encode $C_i = \Pi(P_i)$

•

777

private data $P_1, P_2, \dots P_e$

key K

decode $P_i = \Pi^{-1}(C_i)$

Question: How do we guarantee that message blocks don't repeat?

Lessons learned

- **Randomness matters:** We can confuse Eve! Just need to design a mode of operation that guarantees each enciphered block is unique.
- Definitions matter: Our argument leveraged the concept that a block cipher "looks like" a random permutation from Eve's point of view.

private **P** nonce N — Mode ciphertext **C**

Cipher block chaining (CBC) mode

Two differences from CBC-MAC:

- 1. All blocks are output
- 2. First block is protected by a public, randomly chosen *initialization vector*

Counter (CTR) mode

Encryption in practice

<u>bu.edu</u> homepage (2017)

Obsolete connection settings

The connection to this site uses TLS 1.0 (an obsolete protocol), RSA (an obsolete key exchange), and AES_256_CBC with HMAC-SHA1 (an obsolete cipher).

www.amazon.com

Secure connection

The connection to this site is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE_RSA with P-256 (a strong key exchange), and AES_128_GCM (a strong cipher).