Lecture 7: Symmetric encryption

Posted on piazza.com

e Lab 4: due on Monday 2/18 at 11pm

e Office hours change this week: Thursday at 9-10am and 3-4pm

http://piazza.com

Encryption via enciphering

Math Tools

Modular
arithmetic

Random(ish)
permutations

Primitives Algorithms

Auth key < Key evolution

exchange
>Key encapsulation
Hash P

functions ™ Confidential
Rrotected—
communication

Block |

ciphers

Symmetric crypto

Protocols

Signal: messaging

TLS: internet
PGP: emalil
(see CS 558)

Public crypto

Protecting privacy of data at rest

o key K

encrypt C = E(/(, P

encrypt P = D(K, C)

message P

2707

Bad attempt: Electronic Codebook (ECB) mode

Raw image of Image after What we want
Linux penguin ECB mode from encryption

What if message blocks don’t repeat?
key K key K

encode C; = By(P;) > '
P

decode P; = By (C))

private data
Py, P, ... P,

227

What if message blocks don’t repeat?
key K key K

encode C; = 1(P;) >
P

decode P; = 1T-1(C;)

private data
Py, P, ... P,

2?? Question: How do we

guarantee that message
blocks don’t repeat?

Encryption in practice

bu.edu homepage (2017) WWW.amazon.com
B} Obsolete connection settings B Secure connection
The connection to this site uses TLS 1.0 (an obsolete The connection 1o this site is encrypted and
protocol), RSA (an obsolete key exchange), and authenticated using TLS 1.2 (a strong protocol),
AES 256 CBC with HMAC-SHA1 (an obsolete ECDHE_RSA with P-256 (a strong key exchange), and

cipher). AES 128 GCM (a strong cipher).

http://bu.edu
http://www.amazon.com

Lessons learned

* Randomness matters: We can confuse Eve! pri V?te P
Just need to design a mode of operation that !
guarantees each enciphered block is unique. nonce N— m

- |

* Definitions matter: Our argument leveraged -

the concept that a block cipher “looks like” a ciphertext

random permutation from Eve’s point of view. C

Lessons learned

* Randomness matters: We can confuse Eve! pri V?te P
Just need to designh a mode of operation that !
guarantees each enciphered block is unique. nonce N— m

. |

* Definitions matter: Our argument leveraged -

the concept that a block cipher “looks like” a ciphertext

random permutation from Eve’s point of view. C

Cipher block chaining (CBC) mode

| v

/'IV—>

random ‘

string random
b
(for variety) ¢ (forS p';"ir\)/icy) A4 C1 Cz C3
Two differences from CBC-MAC:
1. All blocks are output

2. First block is protected by a public,
randomly chosen initialization vector

Apple's Common Crypto Library Defaults
to a Zero IV if One is not Provided

Today I was writing some guidelines about generating keys for mobile applications at work. While

providing code examples in Java and Obj-C for AES encryption I happened to look at Apple's Common

Crypto library . While going through the source code for CommonCryptor.c, I noticed that IV is
commented as /x optional initialization vector *x/ . This makes sense because not all ciphers use

[V and not all AES modes of operation (e.g. ECB mode). However; if an IV is not provided, the library
will default to a zero IV.

You can see the code here inside the function ccInitCryptor (search for defaultIV) source.
CC_XZEROMEM resets all bytes of IV to zero (that is 0x00):

static 1 CCCryptorStatus
(CCCryptor *ref, const xkey, key len, const xtweak_key, const

size_t blocksize = ccGetCipherBlockSize(ref);

uint8_t defaultIV[blocksize];

if(iv == NULL) {
CC_ XZEROMEM(defaultIV, blocksize);
iv = defaultlV;

rn kCCSuccess;

While I am told this is probably common behavior in crypto libraries, I think it's dangerous. I ended
up putting a comment in code examples warning developers about this behavior. So, heads up ;)

Source: parsiya.net/
blog/2014-07-03-apples-
common-crypto-library-
defaults-to-a-zero-iv-if-
one-is-not-provided/

CBC decryption

P
|

v

G, Iv

cC Iv
]

Lessons learned

* Randomness matters: We can confuse Eve! pri V?te P
Just need to design a mode of operation that !
guarantees each enciphered block is unique. nonce N— m

- |

* Definitions matter: Our argument leveraged -

the concept that a block cipher “looks like” a ciphertext

random permutation from Eve’s point of view. C

A new type of pseudorandomness

Block cipher Encryption scheme

B¢ looks like a truly random function, Similar, except even making the same
meaning nobody can tell them apart request twice yields different answers

Defining symmetric encryption

Algorithms Constraints

* KeyGen: choose key K < {0,1}A * Performance: All algorithms are
efficiently computable
* Encrypt, (P c{0]1}c, N) = ct Ce {01}y
* Correctness: For every K, Enck and
e Must be randomized with Y20P Deck are Inverses

* Decrypt (Ce{01}:,N) > P * Security: 7??

Pseudorandomness under chosen plaintext attack (INDS-CPA)

| For every adv A with runtime <t and
queries totaling < q blocks,

Encg(—,—) ~ ——
A Encs()N(q,t,e) A$(=—)

Two variants

e Standard: Eve doesn’t choose N, instead
It Is chosen randomly

* Nonce-respecting: Eve chooses N, but
each choice must be distinct

Indistinguishability under a chosen plaintext attack (IND-CPA)

» Let’'s make an encryption Alice Eve
game similar in style to ® choose _@submitP
the forgery one K00 3 receive >

C = Enck(P _C=EncdP) =

e Alice provides many (P, C)

pairs of Eve's choice choose 2.5ubmit Po, Py
+ Should still be difficult for 10 receive Encpy) |
Eve to distinguish between Eve wins if
Enc(Py) and Enc(P) she learns b
better than
by random

guessing

Thm. If Enc is INDS-CPA secure, then it is IND-CPA secure

| Alice Eve
' ® choose 9 submit P

. I

A
K< {0'1} ' receive >
C = EncK L =EnckF) — |

| ® submit Po, P
' choose =-—————

Proof sketch: even after b ¢ {01} receive Enck(Pb)
. . —_— '
making all of the P queries, e wing if
ENci(Py) ~ $ ~ Encg(P,) she learns b
better than
by random

guessing

Informal proof by picture: CBC is INDS-CPA

Real CBC mode CBC with ideal cipher Ideal encryption scheme

P1 Pz P1 P2

I
L

Cq C,

by pseudorandomness input to every
of the block cipher Iis “random”

Counter (CTR) mode

Issues to consider 296 232

v’ 1. Tradeoff between the lengths of N and P

v’ 2. How do we choose N if the parties are stateless?
? 3. How to prove that CTR satisfies IND$-CPA?

? 4. What to do if N is accidentally repeated?

choose randomly,
rely on birthday bound

Counter (CTR) mode

(N, 0)

CTR-1 uses By (N 0)

n forward

i

Counter (CTR) mode

P

nonce is
unique

Counter mode = Stream cipher

0 1 2
Synthetic, one
+ = : ,
time use key K
Nonce N

' : « Roughly ~2x better performance
Synthetic, one time use key K’ ghly P

» Competitions held by European
P, P, P, standards body: NESSIE, eSTREAM
 Only recently has anything gained
Cy C C3

much adoption

Random functions R: {0,1}in - {0,1}out

in < out in = out
(permutation)
. . Stream Compression _Hash function/
One public function cipher 4 Codebook — function _>random oracle

| | o /
!:amlly of func.tlons \ Block cipher == Message

Indexed by private key auth code

Informal CTR reduction by picture

Real CTR CTR with ideal cipher Ideal encryption scheme
(N, 0) (N, 1) (N, 0) (N, 1) P, P,
$->
||

Cq C,

CTR mode with [T = one time pad

(N, O) (N, 1) (N, 2)

Recall: How formal reductions work

If we begin with: Then we can construct:

a block cipher m symmetric key enc scheme

that is (gs, ts, €8) pseudorandom that is (g, tc, €c) indistinguishable

from pseudorandom under chosen
plaintext attack

Contrapositive: If an adversary A can break m , then we can

construct an adversary A’ that breaks m almost as effectively.

Formal CTR mode reduction

If we begin with: Then we can construct:

Adversary Acrr Who can distinguish Adversary Agc who can distinguish

B 3 o 0

with probability > - given time t: and with probability > €5 given time tz and
queries that total g. blocks of data a total of gg queries

Formal CTR mode reduction

If we begin with: Then we can construct:

Adversary Acrg Who can distinguish Adversary Agc who can distinguish

m from

adversary adversary

ACTR ABC

How Agc operates

Step 1: Step 2: Step 3: Step 4: Step 5:
Wait for Ac;g ~ Query Agc's own Concatenate Repeat Output the
to output a oracle on (N,0), (N;1), F€sponse b.locks, same bit as Acrr
(P, N) pair . (N, “_‘)‘_1) then xor with P
X1
............. Y1
adversary X2 or
A ==
CTR e Y2
bit b

Why this reduction works

If Agc IS talking to , then this If Agc IS talking to , then this
procedure faithfully yields procedure faithfully yields
Identical to by non-repetition

X1
Y1
adversary adversary X2 Oor
ACTR ABC

Y2

bit b’

Our final result

If we begin with: Then we can construct:

Adversary Acrr Who can distinguish Adversary Agc who can distinguish

m from m from n

with probability > &: given time t: and with probability > - given time t;: + g¢
queries that total g. blocks of data and a total of g. queries

