Lecture 7: Symmetric encryption

Posted on piazza.com

- Lab 4: due on Monday 2/18 at 11pm
- Office hours change this week: Thursday at 9-10am and 3-4pm

Encryption via enciphering

<u>Algorithms</u> **Protocols Key evolution** Signal: messaging Key encapsulation TLS: internet **PGP: email** Confidential (see CS 558) **Protected** communication

Symmetric crypto

Public crypto

Protecting *privacy* of data at rest

encrypt **C** = *E*(*K*, *P*)

message **P**

encrypt **P** = D(**K**, **C**)

???

Bad attempt: Electronic Codebook (ECB) mode

Raw image of Linux penguin

Image after ECB mode

What we want from encryption

What if message blocks don't repeat?

key K

encode $C_i = B_K(P_i)$

•

private data $P_1, P_2, \dots P_e$

key K

decode $P_i = B_K^{-1}(C_i)$

What if message blocks don't repeat?

key K

encode $C_i = \Pi(P_i)$

•

777

private data $P_1, P_2, \dots P_e$

key K

decode $P_i = \Pi^{-1}(C_i)$

Question: How do we guarantee that message blocks don't repeat?

Encryption in practice

<u>bu.edu</u> homepage (2017)

Obsolete connection settings

The connection to this site uses TLS 1.0 (an obsolete protocol), RSA (an obsolete key exchange), and AES_256_CBC with HMAC-SHA1 (an obsolete cipher).

www.amazon.com

Secure connection

The connection to this site is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE_RSA with P-256 (a strong key exchange), and AES_128_GCM (a strong cipher).

Lessons learned

- Randomness matters: We can confuse Eve! Just need to design a mode of operation that guarantees each enciphered block is unique.
- Definitions matter: Our argument leveraged the concept that a block cipher "looks like" a random permutation from Eve's point of view.

private **P** nonce N—- Mode ciphertext

Lessons learned

- Randomness matters: We can confuse Eve! Just need to design a mode of operation that guarantees each enciphered block is unique.
- **Definitions matter:** Our argument leveraged the concept that a block cipher "looks like" a random permutation from Eve's point of view.

private **P** nonce N — Mode ciphertext

Cipher block chaining (CBC) mode

Two differences from CBC-MAC:

- 1. All blocks are output
- 2. First block is protected by a public, randomly chosen *initialization vector*

Apple's Common Crypto Library Defaults to a Zero IV if One is not Provided

Today I was writing some guidelines about generating keys for mobile applications at work. While providing code examples in Java and Obj-C for AES encryption I happened to look at Apple's Common <u>Crypto</u> library . While going through the source code for <u>CommonCryptor.c</u>, I noticed that IV is commented as /* optional initialization vector */. This makes sense because not all ciphers use IV and not all AES modes of operation (e.g. ECB mode). However; if an IV is not provided, the library will default to a zero IV.

You can see the code here inside the function ccInitCryptor (search for defaultIV) source. CC_XZEROMEM resets all bytes of IV to zero (that is 0x00):

```
static inline CCCryptorStatus ccInitCryptor
(CCCryptor *ref, const void *key, unsigned long key_len, const void *tweak_key, const void *iv
   size_t blocksize = ccGetCipherBlockSize(ref);
   uint8_t defaultIV[blocksize];
    if(iv == NULL) {
       CC_XZEROMEM(defaultIV, blocksize);
       iv = defaultIV;
```

```
. . .
return kCCSuccess;
```

While I am told this is probably common behavior in crypto libraries, I think it's dangerous. I ended up putting a comment in code examples warning developers about this behavior. So, heads up ;)

Source: parsiya.net/ blog/2014-07-03-applescommon-crypto-librarydefaults-to-a-zero-iv-ifone-is-not-provided/

CBC decryption

Lessons learned

- Randomness matters: We can confuse Eve! Just need to design a mode of operation that guarantees each enciphered block is unique.
- Definitions matter: Our argument leveraged the concept that a block cipher "looks like" a random permutation from Eve's point of view.

private **P** nonce N — Mode ciphertext

A new type of pseudorandomness

<u>Block cipher</u>

 $B_{\mbox{\scriptsize K}}$ looks like a truly random function, meaning nobody can tell them apart

Encryption scheme

Similar, except even making the same request twice yields different answers

Defining symmetric encryption

<u>Algorithms</u>

- **KeyGen:** choose key $K \leftarrow \{0,1\}^{\lambda}$
- **Encrypt**_K ($P \in \{0,1\}^{\rho}$, N) \rightarrow ct $C \in \{0,1\}^{\gamma}$
 - Must be randomized with $\gamma \ge \rho$
- **Decrypt**_K ($C \in \{0,1\}^{\tau}, N$) $\rightarrow P$

<u>Constraints</u>

- **Performance:** All algorithms are efficiently computable
- Correctness: For every K, Enc_K and Dec_K are inverses
- Security: ???

Pseudorandomness under chosen plaintext attack (IND\$-CPA)

For every adv A with runtime \leq t and queries totaling \leq q blocks,

$$A^{Enc_{\$}(-,-)} \approx_{(q,t,\varepsilon)} A^{\$(-,-)}$$

Two variants

- Standard: Eve doesn't choose N, instead it is chosen randomly
- Nonce-respecting: Eve chooses N, but each choice must be distinct

Indistinguishability under a chosen plaintext attack (IND-CPA)

- Let's make an encryption game similar in style to the forgery one
- Alice provides many (P, C) pairs of Eve's choice
- Should still be difficult for Eve to distinguish between $Enc(P_0)$ and $Enc(P_1)$

receive $C = Enc_{\kappa}(P)$

 Θ submit P_0 , P_1

receive Enc_k(P_b)

choose $b \leftarrow \{0,1\}$

Alice

Eve wins if she learns b better than by random guessing

Eve

Thm. If Enc is IND\$-CPA secure, then it is IND-CPA secure

Proof sketch: even after making all of the P queries,

 $\operatorname{Enc}_{K}(P_{0}) \approx \$ \approx \operatorname{Enc}_{K}(P_{1})$

Eve wins if she learns b better than by random guessing

Counter (CTR) mode

Issues to consider

- ✓ 1. Tradeoff between the lengths of N and P
- ✓ 2. How do we choose **N** if the parties are stateless?
- **?** 3. How to prove that CTR satisfies IND\$-CPA?
- **?** 4. What to do if **N** is accidentally repeated?

296 232 f N and P ties are state

choose randomly, rely on birthday bound

Counter (CTR) mode

C N I I CTR-1 B_K CTR-1 uses B_K in forward direction!

Counter (CTR) mode B_K CTR Nnonce is unique N

- Roughly ~2x better performance
- Competitions held by European standards body: NESSIE, eSTREAM
- Only recently has anything gained much adoption

Random functions $R: \{0,1\}^{i_n} \rightarrow \{0,1\}^{out}$

Informal CTR reduction by picture

Ideal encryption scheme

CTR mode with $\Pi \Rightarrow$ one time pad

Recall: How formal reductions work

<u>If we begin with:</u>

a block cipher B_K that is $(q_{\rm B}, t_{\rm B}, \varepsilon_{\rm B})$ pseudorandom

Contrapositive: If an adversary **A** can break Mode B_{K} , then we can construct an adversary **A'** that breaks B_K almost as effectively.

Then we can construct:

Mode B_K symmetric key enc scheme that is $(q_c, t_c, \varepsilon_c)$ indistinguishable from pseudorandom under chosen plaintext attack

Formal CTR mode reduction

If we begin with:

Adversary $\mathbf{A}_{\mathbf{CTR}}$ who can distinguish

with probability > ε_c given time t_c and queries that total q_c blocks of data

Then we can construct:

Adversary A_{BC} who can distinguish

with probability > $\varepsilon_{\rm B}$ given time $t_{\rm B}$ and a total of $q_{\rm B}$ queries

Formal CTR mode reduction

If we begin with:

Adversary **A**_{CTR} who can distinguish

Then we can construct:

Adversary **A**_{BC} who can distinguish

How A_{BC} operates

Step 1:Step 2:StWait for A_{CTR} Query A_{BC} 's ownCoto output aoracle on (N,0), (N,1), re(P, N) pair..., (N, |P|-1)th

Step 3: Concatenate response blocks, then xor with P *Step 4:* Repeat

Step 5: Output the same bit as **A_{CTR}**

Why this reduction works

If A_{BC} is talking to B_{K} , then this procedure faithfully yields B_K

identical to

Our final result

If we begin with:

Adversary $\mathbf{A}_{\mathbf{CTR}}$ who can distinguish

with probability > ε_c given time t_c and queries that total q_c blocks of data

Then we can construct:

Adversary A_{BC} who can distinguish

with probability > ε_c given time $t_c + q_c$ and a total of q_c queries