
Lecture 4: Message authentication codes
Posted on piazza.com

• Lab 2: due on Monday 2/4 at 11pm

• Week 2 reading

• Lab 1 answers

http://piazza.com

Roadmap for this course

Math Tools Primitives

Random(ish) 
permutations

Block 
ciphers

Symmetric crypto

Hash 
functions

Protected 
communication

Roadmap for this course

Math Tools Primitives Algorithms Protocols

Random(ish) 
permutations

Block 
ciphers

Public crypto

Modular 
arithmetic

TLS: internet 
PGP: email
(see CS 558)

Signal: messaging

Key encapsulation

Key evolutionAuth key 
exchange

Block cipher = Huge family of codebooks

Block cipher
• Family of permutations, each 

of the form B : {0,1}μ → {0,1}μ

• Key K ∈ {0,1}λ determines  
which permutation to use

• BK is strongly pseudorandom if every adversary running in time ≤ t and
making ≤ q queries cannot tell it apart from a secret, truly random Π

BK

X

Y

BK

Y

X

-1encipher decipher

B$ Π

B$ Π-1 -1

options2λ
chosen from

options≈ (2μ)(2μ) > 22μ
chosen from

Two ways crypto primitives can go bad
1. Broken: can be attacked much faster than with brute force (e.g., 2DES)

2. Obsolete: people have the computing power required to conduct a
brute force attack (e.g., DES)

How to think about really large numbers
Converting to base-2 Speed of cryptography on modern computers

• Running AES: (231 cycles/sec) / (10 cycles/aes) ≈ 227 aes/sec

• So about 252 ops/year, given that 1 year ≈ 225 sec

• Entire bitcoin network: about 265 ops/sec

210 ≈ 103

220 ≈ 106

230 ≈ 109

240 ≈ 1012

250 ≈ 1015

260 ≈ 1018

⋮

Difficulty of attacking crypto
Eve’s search space Time with laptop 

(252 ops/yr)
Time with bitcoin network 
(265 ops/sec)

220 (your lab) 0.01 second ~instantaneous

256 (DES brute force) 24 = 16 CPU core-years much less than 1 second

280 228 = 256 million CPU core-yr 215 seconds ≈ 9 hours

2128 (AES brute force)

276 = 64 sextillion CPU core-yr 
 = 233 x 243
 = 8 trillion CPU core-yr 
 for each person on earth

263 sec ≈ 238 year ≈ 100 billion yr

2256 (largest AES) (about the energy of the sun)

Random functions of different lengths
We will explore the design of random-looking functions R: {0,1}in → {0,1}out

“If A hasn’t explicitly queried R on some point x, then the value of R(x) is
completely random… at least as far as A is concerned.” —Katz & Lindell

Case: in < out in = out
(permutation)

in > out in = ∞

One public function Stream
cipher Codebook Compression

function
Hash function/
random oracle

Family of functions
indexed by private key Block cipher Message 

auth code

Part 1: Protecting data at rest

message M

???

key K key K

decode M = D(K, C)

encode C = E(K, M)

Alice’s integrity + confidentiality goals
• Data authenticity: 

if Eve tampers with C, then Alice
can detect the change

• Entity authenticity: 
future Alice knows that she
previously created C

• Privacy: Eve cannot learn M

encode C

msg M

Does a cipher give us protected communication?

Yes, we get authenticity + privacy!

But only if

• Message length is exactly one block

• (For privacy) Alice sends just 1 message

In general: no. Ciphers are a building
block toward protected comms but
do not provide it on their own.

encipher Y = BK(X)

Auguste Kerckhoffs’ principles to protect communication

1. The system must be practically, if not mathematically, indecipherable

2. It should not require secrecy, and it should not be a problem if it falls into enemy hands

3. It must be possible to communicate and remember the key without using written notes,
and correspondents must be able to change or modify it at will

4. It must be applicable to telegraph communications

5. It must be portable, and should not require several persons to handle or operate

6. Lastly, given the circumstances in which it is to be used, the system must be easy to use
and should not be stressful to use or require its users to know and comply with a long
list of rules

Source: La Militaire, 1883

Message authenticity

Objective of actively malicious Mallory: 
inject a new message and tag (A, T) 
or tamper with an existing one

send A along with 
tag T = MACK(A) validate 

T = MACK(A)

key K

auth 
msg A

key K

What cryptographic authenticity will not do
• Hide message contents: 

Need encryption for that

• Thwart replay attacks: 
A higher-level protocol needs to handle 
this, say via nonces or timestamps

A, T = MACK(A)

Definition: Message authentication code
Algorithms

• KeyGen: choose key K "<- {0,1}λ

• MACK (A ∈ {0,1}α) → tag T ∈ {0,1}τ

– Can be randomized

– But usually deterministic

– Prefer short tags: τ < α

• VerifyK (A, T ∈ {0,1}τ) → yes/no

Security game

Even after viewing many (A, T) pairs,
Mallory cannot forge a new one

❶ choose 
K ← {0,1}λ

❷ submit A

receive T

Mallory wins if this is a valid forgery, and it’s new

❸ output (A*, T*)

Alice Mallory

Existential unforgeability
We say that a MAC has (q, t, ε)-existential unforgeability against a chosen
message attack if all adversaries that make ≤ q queries and run in time ≤
t can forge a message with probability < ε

❶ choose 
K ← {0,1}λ

❷ submit A

receive T

❸ output (A*, T*)

Alice Mallory

Block cipher !-> MAC
• For our first MAC, let’s restrict |A| = |T| = block length of a block cipher

• In this case, simply applying the block cipher suffices!

MACK(A) = BK(A)

• How do we prove this claim?

• BK is pseudorandom, meaning Mallory cannot distinguish it from Π

• The EU-CMA game is about forgery; it doesn’t have an indistinguishability style

• What if we made the MAC from Π rather than BK?

• Remember, the output of Π(X) doesn't depend on Π(X’) for any X ≠ X’

Prove the contrapositive: given adversary Mallory that forges a MAC, we
will construct an adversary Eve that distinguishes a block cipher from Π

Thm: is pseudorandom !-> is EU-CMABK MAC BK

Block 
cipher 
adv 
E

orBK Π

X1

Y1

X2

Y2…

guess which 
box she is 

interacting with?

MAC
adversary 

MMAC BK

…

A1

T1

A2

T2

forgery (A*, T*)

Block 
cipher 
adv 
E

Why this works: If E had access to BK then M can forge. If E had access to
Π then Pr[M forges] ≤ 2-τ because Π(A*) is independent of other queries

Thm: is pseudorandom !-> is EU-CMA

MAC
adversary 

MMAC

orBK Π

A1X1 = A1

T1 = Y1Y1

A2X2 = A2

T2 = Y2Y2 ……

forgery (A*, T*)

B/Π

check validity of forgery: does T* = Yq?

Xq = A*

Yq

BK MAC BK

MACs for longer messages?
• Performance goal: minimize space

required for the MAC tag

• Security goal: ensure that MAC
remains existentially unforgeable

tag space {0,1}τ
message space {0,1}α

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

A1

BK

A2

T

A3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

BK

A1

T1

BK

A2

T2

BK

A3

T3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

3. Auth each block along with sequence # Drop blocks from the end of the message

BK

(A1, 1)

T1

BK

(A2, 2)

T2

BK

(A3, 3)

T3

Encode length 
of message?

A construction that works
Four inputs per block:

• AS = part of the message  
(using ¼ block length at a time)

• S = this block’s sequence number

• L = length of overall message

• N = nonce chosen for this message

Thm. If BK is (t, ε)-pseudorandom,  
then this construction yields a
MAC that is (t, ε')-EU-CMA for ε'
negligibly close to ε.

Terrible performance

• Bad throughput: invoke BK four times
as much as minimally necessary

• Long tag: want tag length τ == security
parameter λ, indep of msg length α

BK

(A1, 1, L, N)

T1

BK

(A2, 2, L, N)

T2

…

overall T

