
Lecture 5: MACs for long messages
Posted on piazza.com

• Lab 3: due on Monday 2/11 at 11pm

• Week 3 reading

• Lab 2 answers

http://piazza.com

Random functions of different lengths
We will explore the design of random-looking functions R: {0,1}in → {0,1}out

“If A hasn’t explicitly queried R on some point x, then the value of R(x) is
completely random… at least as far as A is concerned.” —Katz & Lindell

Case: in < out in = out
(permutation)

in > out in = ∞

One public function Stream
cipher Codebook Compression

function
Hash function/
random oracle

Family of functions
indexed by private key Block cipher Message 

auth code

Message authenticity

Objective of actively malicious Mallory: 
inject a new message and tag (A, T) 
or tamper with an existing one

send A along with 
tag T = MACK(A) validate 

T = MACK(A)

key K

auth 
msg A

key K

Definition: Message authentication code
Algorithms

• KeyGen: choose key K !<- {0,1}λ

• MACK (A ∈ {0,1}α) → tag T ∈ {0,1}τ

– Can be randomized

– But usually deterministic

– Prefer short tags: τ < α

• VerifyK (A, T ∈ {0,1}τ) → yes/no

Security game

Even after viewing many (A, T) pairs,
Mallory cannot forge a new one

❶ choose 
K ← {0,1}λ

❷ submit A

receive T

Mallory wins if this is a valid forgery, and it’s new

❸ output (A*, T*)

Alice Mallory

Block 
cipher 
adv 
E

If we restrict |A| = |T| = block length of a block cipher, simply applying the block cipher suffices!

MACK(A) = BK(A)

Block cipher !-> MAC reduction

MAC
adversary 

MMAC

orBK Π

A1X1 = A1

T1 = Y1Y1

A2X2 = A2

T2 = Y2Y2 ……

forgery (A*, T*)

B/Π

check validity of forgery: does T* = Yq?

Xq = A*

Yq

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

A1

BK

A2

T

A3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

BK

A1

T1

BK

A2

T2

BK

A3

T3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

3. Auth each block along with sequence # Drop blocks from the end of the message

BK

(A1, 1)

T1

BK

(A2, 2)

T2

BK

(A3, 3)

T3

Encode length 
of message?

A construction that works
Four inputs per block:

• AS = part of the message  
(using ¼ block length at a time)

• S = this block’s sequence number

• L = length of overall message

• N = nonce chosen for this message

Thm. If BK is (t, ε)-pseudorandom,  
then this construction yields a
MAC that is (t, ε')-EU-CMA for ε'
negligibly close to ε.

Terrible performance

• Bad throughput: invoke BK four times
as much as minimally necessary

• Long tag: want tag length τ == security
parameter λ, indep of msg length α

BK

(A1, 1, L, N)

T1

BK

(A2, 2, L, N)

T2

…

overall T

We can do better!
• New objective: find better constructions of MACs from block ciphers

• Insist that τ = 1 block in length, at most

• Security-space tradeoff

• Can truncate the tag to l < τ bits in length, if desired

• Ideally, the MAC still requires 2l effort to forge

Supporting longer messages
Def. A mode of operation connects multiple calls to a block cipher (with one key K)

One simple mode: process each block of the message independently

This is called Electronic Codebook (ECB) mode

BK

M1

C1

BK

M2

C2

BK

Mℓ

Cℓ

… = ECB BK

M

C

CBC-MAC: cipher block chaining
• 1st block simply runs the underlying block cipher (just like ECB mode)

• Subsequent inputs to the block cipher depend on both new input + prior output!

• Only the final block tag is revealed !=> important for performance and security

BK

A1

BK

A2

BK

A3

T

CBC-MAC: cipher block chaining
Thm. If is pseudorandom, then is an EU-CMA MAC 
…for any pre-specified fixed length that is a multiple of the block length

CBC-MAC BKBK

BK

A1

BK

A2

BK

A3

T

CBC-MAC: cipher block chaining
Thm. If is pseudorandom, then is an EU-CMA MAC 
…for any pre-specified fixed length that is a multiple of the block length

CBC-MAC insecure if recipient doesn't know length in advance! 
(Padding won’t help)

CBC-MAC BKBK

BK

A1

BK

A2

BK

A3

T

BK

A1’

BK

A2’

BK

A3’

T’

T ⊕

T

A1’

How to fix CBC-MAC?
Proposed fix: How to implement: Comment:

BK

A1

BK

A2

BK

A3

T

How to fix CBC-MAC?
Proposed fix: How to implement: Comment:

1. One key per length Let KL !<- BK(L) be MAC key for msgs of length L Poor key agility

BK

L = 3

K3

BK3

A1

BK3

A2 A3

T

BK3

How to fix CBC-MAC?
Proposed fix: How to implement: Comment:

1. One key per length Let KL !<- BK(L) be MAC key for msgs of length L Poor key agility

2. Prepend length Prepend L to the message (appending won’t work!) Difficult to handle streaming data

BK

L = 3

BK

A1

BK

A2 A3

T

BK

How to fix CBC-MAC?
Proposed fix: How to implement: Comment:

1. One key per length Let KL !<- BK(L) be MAC key for msgs of length L Poor key agility

2. Prepend length Prepend L to the message (appending won’t work!) Difficult to handle streaming data

3. Finalize last block Perform another crypto operation at the end Preferred! Don’t need L in advance

A1 A2 A3

T

BK

BKend

A3 , 10*

BKend’

BK BK

But this cipher is pointless

EMAC

Formally: encipher the result of a target collision resistant function

BK

A1

BK

A2 A3

BK

BKend

T

BK

A1

BK

A2

BK

BKend’

A3 , 10*

T
This technique relies on
new keys for finalization

Just need unique value here

FMAC

Save one block cipher call

BK

A1

BK

A2 A3

BKend

T

BK

A1

BK

A2

BKend’

A3 , 10*

T
Key expansion is expensive

Cipher-based MAC (CMAC, aka XMAC)

• Don't use extra keys to encrypt. Instead use them to influence the final block.

• Designed by Black and Rogaway, 2000

BK

A1

BK

A2 A3

BK

T

BK

A1

BK

A2

BK

A3 , 10*

T

Kend Kend’

One-key CBC-MAC (OMAC)
• Designed by Iwata & Kurosawa 2003

• Save on key length by deriving the finalization keys from the original

CBC-MAC EMAC FMAC CMAC OMAC

Alternative MAC constructions
XOR-based MACs

• Parallelizable!

• Best in lightweight environments

• Resolve the problem from the start
of lecture via lots of sweat

• Example: PMAC, in OCB mode

Hash-based MACs

• Probably the best standalone MAC to
use today

• Requires a new primitive…

HMAC(K, M) = H ((K ⊕ opad ∥ H (K ⊕ ipad) ∥ M)

Block cipher = Huge family of codebooks

Hash function = 1 public codebook
• Hash function H : {0,1}∞ → {0,1}out

• Compresses long messages into short digests

• Cannot invert!

• We have already seen one in the labs: SHA-256

X Y
aba nr
abs mb
ace yd
act wv
add je
ado hg
aft uv
age zm
ago ds
aha ae
aid kf

⋮ ⋮

zip cy
zoo dx

Hash function: length-reducing !-> collisions exist

finite	set

infinite	set

Bellare Rogaway 1993: “Random oracles are practical”

Two step process:

1. Pretend we have random oracle R, produce crypto protocol PR that uses it

2. Replace R with an “appropriately chosen” function H, and hope that it
works

We argue that the random oracle model -- where all par5es have access to a public
random oracle -- provides a bridge between cryptographic theory and cryptographic
prac5ce. In the paradigm we suggest, a prac5cal protocol P is produced by devising
and proving correct a protocol PR for the random oracle model and then replacing
oracle accesses by the computa5on of an “appropriately chosen” func5on H. This
paradigm yields protocols much more efficient than standard ones while retaining
many of the advantages of provable security.

So… what is an “appropriately chosen” H?
Def. A hash func5on H: {0,1}* → {0,1} η is an efficiently-computable func@on that
accepts unbounded input and outputs strings of a fixed length η

Security notions against adversaries who possess the code of H

•Preimage resistance: given y = H(x) for a “randomly” chosen x, difficult to find any
preimage x’ s.t. H(x’) = y

•2nd preimage resistance: given “randomly” chosen x, difficult to find another x’ s.t.
H(x’) = H(x’) no@ceably faster than an exhaus@ve search of 2η values

•Target collision resistance: same as CR, except x chosen before H is known

•Collision resistance: given only H, difficult to find two different inputs x and x’ s.t.
H(x) = H(x’) no@ceably faster than a birthday bound search of 2η/2 values

st
ro

ng
er

Birthday bound

• When drawing with replacement from set of size L,

• The distribution of M is tightly concentrated around its expected value

E[# items to draw until first collision] ≈
π
2

L ≈ 1.25 L

Popular families of hash functions
Ron Rivest’s Message Digest family

• 1991 MD5 (128 bits) is most well-
known, still sadly in use today
despite being completely broken.

• Some of the earlier iterations never
reached the public domain, and all
have mostly been discarded

• MD6 was a submission to the SHA-3
competition. Its security analysis
originally had problems, so the
authors recommended that NIST not
continue it.

Secure Hash Algorithm (SHA) family

• NSA-designed, NIST-approved

• SHA-0: retracted before standardization

• 1995: SHA-1 (160 bits) is still in use today,
though slowly fading

• Wang, Yin, Yu 04: showed algorithm for 269
step collision

• Stevens et al 17: found collision in 263 steps

• 2001: SHA-2 family (224, 256, 384, or 512 bits) is
the recommended hash function to use today

• All follow a Merkle-Damgard design

• (2015: SHA-3 algorithm has different design)

Merkle-Damgård paradigm
Can build a variable-length input hash function from two primitives:

1. A fixed-length, compressing random-looking function

2. A mode of operation that iterates this function multiple times in a smart manner

IV for hash function is typically fixed in spec, not user configurable.

CIV

M1

C

M2

C

Mn

hash

…

Concern with Merkle-Damgård design
“The vulnerability of [a hash function] construction is due to its finite
state, [a limitation that does] not apply to a random oracle.”

–Keccak team, Cryptographic sponge func5ons

CIV

M1

C

M2

C

Mn

hash

…

Length extension attack

C

M1

C

M2

C

Mn

…

hash

Mn+1

C

Countermeasure: finalization

hashCIV

M1

C

M2

C

Mn

…

final

Hash function → MAC
•NMAC: let’s use C one more @me as a type of finaliza@on

• In essence: H(K1 || M) pares M down to a size that K2 can process

CIV

K1

C

M1

C

L

tag T

…

C
K2

H(K1 || M)

HMAC [Bellare Canetti Krawczyk 97]
• Recall from CMAC !-> OMAC story: nobody wants to carry multiple keys

•HMAC: use C itself to derive two “independent” keys from one ini@al key
• Uses fixed constants ipad = 0x5C, opad = 0x36 repeated to equal the length of the key

CIV

K ⊕ ipad
C

M1

C

L

tag T

…

C

CIV

K ⊕ opad

Strength of HMAC
Thm. HMAC is an EU-CMA MAC as long as:

1. The compression function C is pseudorandom

2. The Merkle-Damgard iteration mechanism is collision-resistant

Bellare (2005) removed condition #2, so HMAC applies even to hash
functions like MD5 and SHA1 that are not collision resistant

https://www.bu.edu:

Random functions of different lengths
We will explore the design of random-looking functions R: {0,1}in → {0,1}out

“If A hasn’t explicitly queried R on some point x, then the value of R(x) is
completely random… at least as far as A is concerned.” —Katz & Lindell

Case: in < out in = out
(permutation)

in > out in = ∞

One public function Stream
cipher Codebook Compression

function
Hash function/
random oracle

Family of functions
indexed by private key Block cipher Message 

auth code

