
Lecture 8: Data at rest — putting everything together

Posted on piazza.com

• Lab 4: due on Monday 2/18 at 11pm

• Midterm next Thursday, February 21

• Office hours change next week: Tuesday at 9am-noon

• Posted last year’s exam

• Tomorrow’s discussion session will focus on test prep

http://piazza.com

Last time: Protecting privacy of data at rest

message P

???

key K key K

encrypt P = D(K, C)

encrypt C = E(K, P)

Cipher block chaining (CBC) mode

BK

P1

C1

BK

P2

C2

BK

P3

C3

 CBC

P

C

IV =

Two differences from CBC-MAC:
1. All blocks are output
2. First block is protected by a public,

randomly chosen initialization vector

BK

IV

IV

Counter (CTR) mode

 CTR

P

C

N =BK

per-block
counter

BK

(N, 0)

BK

(N, 1)

BK

(N, 2)

C1 C2 C3

P1 P2 P3

Synthetic, one time use key K’

per-message
nonce

Padding in CTR?

• CTR mode produces a  
keystream to XOR with message

• If you don’t need the full
keystream, just discard it

• No need to pad in CTR

per-block
counter

BK

(N, 0)

BK

(N, 1)

BK

(N, 2)

C1 C2 C3

P1 P2 P3

Synthetic, one time use key K’

per-message
nonce

Padding in CBC?

• Not as simple: BK requires exactly 1 block of text, which means the XOR
needs two inputs that are 1 block long

• Seems like padding P3 is necessary…

BK

P1

C1

IV

BK

P2

C2

BK

P3

C3

 CBC BK

P

C, IV

IV =

IV

Ciphertext stealing for CBC

How to encrypt

• Pad the final block with 0s  
(on its own, this is not invertible)

• Output the entire final block

• For the second-to-last block, 
only output the first |Mn| bytes

BK

Mn-1

Cn || C’

BK

Mn || 0

Cn-1Cn-2

Ciphertext stealing for CBC

How to encrypt

• Pad the final block with 0s  
(on its own, this is not invertible)

• Output the entire final block

• For the second-to-last block, 
only output the first |Mn| bytes

How to decrypt
• First decrypt the last block

• Data after the first |Mn| bytes == C'

• Now can decrypt the penultimate block

BK

Mn-1

Cn || C’

BK

Mn || 0

Cn-1Cn-2

Cn || C’ Cn-1

BK

Xn-1

-1 BK

Xn || C’

-1

Cn || C’

Xn || C’Xn-1

Privacy !-> Authenticity?

Q: Why don’t our existing encryption schemes provide authenticity?

A: Encryption schemes can be malleable

• ECB: Blocks are independent

• CBC: One bit flip in C !-> one bit flip in next  
block of P (and destroying the current one)

• CTR: One bit flip in C !-> one bit flip in  
same block of P since it is a one-time pad

BK

(N, 0)

BK

(N, 1)

BK

(N, 2)

C1 C2 C3

P1 P2 P3

Synthetic, one time use key K’

Today’s objectives

• See where + how symmetric encryption primitives are used in practice

• See why they improve privacy

Data at rest protection on laptops

• Goal:

• Data on a hard disk cannot be tampered with or exfiltrated

• Even if the laptop is left unattended, lost, or stolen

• Several products

• Microsoft Bitlocker, standard on Windows 8 & 10

• Apple FileVault, on by default from Mac OS X Yosemite (10.10)

• Linux dm-crypt

• Third-party products like TrueCrypt and SecureDoc 
(https://en.wikipedia.org/wiki/Comparison_of_disk_encryption_software)

Data at rest protection on laptops: 4 components

2. Memory
– Ephemeral storage
– Erased upon shutdown*

4. Trusted Platform Module
– Stores crypto keys**

3. CPU
– Performs crypto quickly

1. Disk
– Long-term storage
– Always encrypted

Disk encryption: Attempt 1

AES key

Enc(key, data)

Disk encryption: Attempt 2

AES key

Enc(key, data)

data

Remaining questions:
1. What mode of operation to use?
2. How to protect TPM’s release of key?

Use CBC mode?

Ferguson (2006): Lacks diffusion in the CBC decryption operation.

If the attacker introduces a change ∆ in ciphertext block i, then plaintext
block i is randomized, but plaintext block i+1 is changed by ∆. In other
words, the attacker can flip arbitrary bits in one block at the cost of
randomizing the previous block.

BK

C1

P1

IV

BK

C2

P2

BK

C3

P3

CBC-1 BK

C

P

=

IV

-1 -1 -1

Disk encryption: Threat model

Attacker can:

1. Read contents of disk at any time

2. Request disk to encrypt files of its choosing

3. Modify files/sectors on disk 
and request their decryption

Think: persistent malware!

Consequences of threat model:

• Encrypt each sector of disk individually

• No two sectors should be processed 
identically !-> Tweakable encryption

P, N

$

P, N

C C

M B$

BK(Z*, -)

X

Π

X

Y Y

BK(Z1, -) BK(Z2, -) BK(Zn, -)…

Tweakable encryption

• Encryption extends block ciphers in two ways

• Add nonces for variety

• Provide a mode of operation that supports long messages

• Tweakable block ciphers incorporate the first goal directly into BCs

Tweakable block ciphers

History

• First proposed concretely by the
“Hasty Pudding Cipher,” a first-round
submission to the AES competition

• Codified later by Liskov, Rivest,
Wagner [Crypto 2002]

Objectives

• Variety: tweak is public, yet cipher
with different tweaks act in an
“uncorrelated” manner
• Even a good block cipher BK can

be broken with access to BK*

• For a TBC, access to BK,Z provides
no help in breaking BK,Z*

• Agility: faster to change tweak than
key (avoids key setup/expansion)B

input X

output Y

key K
tweak Z

secret,
long-living

public,
easy to change

XEX mode

• Tweakable cipher designed in 2004 by Philip Rogaway

• Even-Mansour style with constantly-changing tweak

• Tweak Z = sector number
Z

XTS mode
Z

Key wrapping

• What if multiple users should read the disk?

• Different user accounts on the machine

• Recovery key stored in a separate, safe place

• Don’t want to encrypt the entire drive several times!

EncK1(file)

EncK2(file)

EncK3(file)

Key wrapping

• What if multiple users should read the disk?

• Different user accounts on the machine

• Recovery key stored in a separate, safe place

• Don’t want to encrypt the entire drive several times!

• Key wrapping = protect one key under another

• Intuitively think of it as WrapK (K’) = EncK (K’)

• We’ll see later that not all encryption works to protect keys

• Tl;dr: use SIV mode

WrapK1(ek)

WrapK2(ek)

WrapK3(ek)

Encek(file)

Trusted Platform Module

Generate key rather than storing it!

• User’s master password (use PBKDF2, which we will discuss later in detail)

• Machine’s state (“sealing”)

Case study of Apple’s iPhone

• Full disk encryption since iOS 8

• TPM-like hardware protection 
of key material since iPhone 5s

Crypto on Apple’s mobile devices

Unique, randomly-chosen string for each device

Hardware AES-256 engine on RAM-disk path

Secure place to store keys & biometrics

All OS components & applications signed by
Apple, verified at boot before loading

Data for each application always encrypted

with what key?

Hierarchy of keys

Master key generated
from things that you
know, are, and have

Derive keys that live
only for limited time

Use these to wrap a unique key for each file

Per-file encryption

• Each file is encrypted with a unique key

• File encrypted with AES-XTS

• Keywrap goes in the file’s metadata

• Secure Enclave includes a hardware chip to generate keys at random

• Specifically: it uses CTR-DRBG, which we will discuss later in the course

Four classes of data protection

Per-file key is wrapped with 1 of 4
“class keys” based on availability

Availability Example
Key erased if
phone is…

Always SIM PIN Wiped

After 1st
unlock Wifi password Shut down

When locked Incoming mail (N/A)

When
unlocked

Web passwords  
& bookmarks

10s after lock
(without biometric)

Deriving class keys

Remember our mantra: generate key rather than storing it!

• Wrap sensitive class keys in a passcode key derived from:

• User’s alphanumeric pin

• Unique string fused into the chip at manufacture time, unknown outside Secure Enclave

• Countermeasures to make brute forcing the PIN as difficult as possible

• Crypto: use 10,000 iterations of a hash to derive the key (~80 ms per guess)

• Hardware: pause between tries + optionally wipe the phone

• Note: there exist other ways to derive class keys to enable 
iTunes & iCloud backups + corporate device management

Putting it all together

EncFK(Safari data)WrapCK(FK)WrapPK(CK)

PK = PBKDF2(pin, uid)

When phone is locked
• Without Touch ID: CK is deleted from Secure Enclave’s memory
• With Touch ID: Form new keywrap WrapTouchID(CK), then delete CK

P.S.: CK is changed whenever the passcode is changed 
P.S.: Memory used by Secure Enclave is itself encrypted w/ ephemeral key

Something different: iOS over-the-air updates

Version of each component,
Unique device ID, nonce

Upgraded iOS components,
Sign(Data, ID, nonce)

Signature contains:

• Device ID to personalize the response to this particular phone

• Nonce to connect the response to the initial request, prevent replay attacks

Apple vs. FBI Case

• FBI wanted data on a locked iPhone 5c in its possession, but they did not have the PIN

• key = Hash(pin, uid), so to read the files they could:

• Pry open the phone to find the uid

• Brute-force the pin on the phone itself

• FBI wanted Apple to modify its operating system to enable a brute-force search of the PINs:

• Allow PINs to be submitted via external interface, not by hand

• Remove the delay between incorrect guesses

• Remove the “poison pill” wiping of the phone after 10 misses

• FBI wanted Apple to produce & digitally sign this “GovtOS” update, else the phone will reject it

• iPhone 5c doesn’t have a Secure Enclave, so delay is software-enforced rather than hardware-
enforced

Part 1 recap: protecting data at rest

IND$-CPA against 
nonce-respecting Eve

Even after viewing many (A, T) pairs,
Mallory cannot forge a new one

P, N

$

P, N

C C

M B$ ❶ choose 
K ← {0,1}λ

❷ submit A

receive T

Mallory wins if:
1. It’s a valid forgery
2. It’s new

❸ output 
(A*, T*)

Alice Mallory

Privacy Authenticity

