e Lab 5 schedule

e Posted today
* Due next Friday 3/8

e Read this week’s assigned
reading before discussion
tomorrow

e Guest lecture by Sarah Scheffler

next Tuesday

Lecture 10: Time attacks

SIDE-CHANNEL VECTOR

Physical Logical
Properties Properties Properties

Physical

Logical
Properties

(SW)

(HW)

(HW)

(SW)

Fingerprinting devices [118)
&
Differential computation analysis [35] Data-usage statistics |14
o .
Network traffic analysis |/1] Page deduplication |34
® procfs leaks |25] @
-
Power analysis [33 Micrcnarchit:ct:lral attacks 7|
analysis |3 ¢ analysis |7¢ 27772 —
EM analysis 2(] EM analysis {74] Location inference | 120
® L ®
Q T~ ‘< ¢ 1 Q - - . -
USB po“’“.‘m‘l]%'b 1731 Fingerprinting devices |1 13]]
_ WiFi signal monitoring [78) Speech recognition [123)
Reflections/hands |42 -» Soundcomber [126] o
¢ ®
Smudges [36] Scnsor-based keyloggers |9
= o
NAND mirroring [|60]
A
Lascr/optical [54)
A
. - Rowhammer J130
Clock/power glitch [5T] P,
A Micreoarchitectural attacks [[7]]
Temperature variation [57) “
F
EMFI [52)
A
Differential computation analysis [59)
A Network traffic analysis [SOf
A
Chip Device Wire/Communication Software Web
ATTACKER
Local Vicinity Remote

Scope of smarteard attacks ® Passive attacks

& Active attacks

Scope of clond attacks

Passive
MODE OF ATTACK

Active

Part 2: Breaking data at rest

oD key K

message P

message P, maybe even key K

Cryptology

Cryptography Cryptanalysis

Physics of Math of
implementation algorithm

Side channel attacks on crypto implementations

e Crypto security definitions ensure that the output is “harmless”

e But, crypto implementations can reveal more than its desired outputs!
These side channels of information weren’t captured in our definitions

e Focus for this week: side channels on AES = and thus any AES mode
X

NN

Divide and conquer

 Break 1 byte of the message or
key at a time

* For each byte: guess all 256
values and check which works

o (Think: how you see crypto
broken in any Hollywood movie)

Last time: Power analysis of AES in hardware

390 rax _On 170 LINES

- .- (00 0 OOOOOO} = *Tr ![
el 111] S u" ’,r' a 0 Q0 O ()
ﬁ.”‘ - ,- £ U:'JOIL-r T00 3-1

BT m Bwg mGouro
- 3 ik

nmnmnmnmm

a2’
0

’OOOOOOOMZ

' @3 I e i
T. N X I N 7

C
N

Ces

2
R 1
:

i)
7103 ~."’°" 90

U4
. e

"

'
r".- .
L=

nYe o "

"4

1)

™
oooooodo

A

ST
38 3400+

f

(1

LR

e
. tusmim\\mummm

061 Boes iR

90y
‘e va W

3
-

-

-

)
T

-
--
s~
=
o
—
-—
-~
‘-
—
-
—
°

-t)il e i
Aau row\aw’ | : - ! 2 o CANS
g : '-

Oz T 1n > ST
X GND —} ‘

o mzu
tmwm TR

000 0(03000

GND PC6 Po7 POR P PD3 P04 POS

54

e
ol 7
’

®

vl

33 o
U}«' » n NGB
e H H

g:%:"

1}

SR

‘l|'. ;...'

Mallory: oscilloscope to measure power Alice: FPGA that runs AES

Today: Timing attacks on AES in software

16 byte input

Db b e

-..
L]
..~
~N
l N
D
A 4
) 2

S | .. S S S

Learn S-box input or

Question: what might output = learn the key

° ? . : : :
affect the runtime of AES: s| .. [g S| ..|s

Answer: the S-boxt | L [-7 |

Let’s look at simplified <— round keyn
first and last rounds of AES l l l l
16 byte output

AES code has table lookups Computer caching

static const u8 Te4[256] = {
0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U,
0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0OxabU, 0x76U,
0xcal, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xfoU,
0xadU, 0xd4U, 0xa2U, 0OxafU, 0x9cU, 0xa4U, 0x72U, 0xcOU,
0xb7U, 0xfdu, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, OxccU,
0x34U, 0xabu, 0Oxe5U, 0xf1lU, 0x71U, 0xd8U, 0x31U, 0x15U,
0x04U, @Oxc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, ©0x9aU,
0xQ07U, 0x12U, 0x80U, 0xe2U, OxebU, 0x27U, 0xb2U, 0x75U,
0xQ09U, 0x83U, 0x2cU, 0xlaU, 0x1bU, 0x6eU, 0x5aU, 0xadU,
0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U,
0x53U, 0xdlu, 0x00U, 0xedU, 0x20U, 0xfcU, 0xblU, 0x5bU,
0x6alU, 0OxcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU,

0xdoU, 0xefU, 0Oxaal, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U,

0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, Computers cache recently—accessed
0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, d t . th t .f t d .t
O0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, O0xffu, 0xf3U, 0xd2U,

0xcdU, 0x0cU, 0x13U, OxecU, 0x5fU, 0x97U, 0Ox44U, 0x17U, a a’ assumlng a I you Wan e. I
O0xc4U, 0Oxa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U,

0x60U, 0x81U, 0x4fU, OxdcU, 0x22U, 0x2aU, 0x90U, 0x88U, bEforel then you may Want It agaln

0x46U, OxeeU, 0xb8U, 0x14U, 0OxdeU, 0x5eU, 0x0bU, 0xdbU,
0xe@QU, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU,

0xc2U, 0xd3U, OxacU, 0x62U, 0x91U, 8x95U, OxesU, 0x79U, e Response of array lookup depends upon
0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xadl, . .
0x6cU, 0x56U, 0xf4U, Oxeal, 0x65U, 0x7al, OxaeU, 0x08U, whether the value Is already in cache

0xbal, 0x78U, 0x25U, 0x2eU, 0x1lcU, 0xabU, 0xb4U, 0xc6U,
0xe8U, 0xddU, 0x74U, 0x1fU, 0Ox4bU, 0xbdU, 0x8bU, 0x8aU,

0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x@3U, 0xf6U, @x0el, PR r
0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xclU, @x1dU, @x9eU, * This, In turn, depends on whether you've
@xelU, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, Bx8eU, @x94U, : :

@x9bU, OxleU, @x87U, 0xe9U, @xceU, 0x55U, 0x28U, 0xdfU, already looked up this value in the past

0x8cU, 0xalU, 0x89U, 0x0dU, OxbfU, 0xebU, 0x42U, 0x68U,
0x41U, 0x99U, 0x2dU, 0x0fU, 0xboU, 0x54U, 0xbbU, 0x16U

Source: github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

Attack setup 1: Mallory co-resident with Alice

e For now, suppose Mallory has a presence on Alice’s machine

e Co-located VMs on the cloud

e Unprivileged user on a multi-tenant Unix machine with full-disk encryption

e Cache is shared between all tenants on a machine

e Ergo, Mallory can influence the state of Alice’s cache!
[Osvik, Shamir, Tromer 2006]

How the cache works

ooooo

e There Is a fixed mapping between locations in memory & cache

o |f you control a large region of memory (~size of cache), you can fill in
the cache with your own contents

Prime + Probe attack

Algorithm:

1. Fill the cache with a large array A that you control

2. Trigger an AES encryption (or wait for one to occur)

3. Re-read your array A and record the time to retrieve each byte

Upshot: AES evicted one line of your cache

2.5 | 1 | | l+

Strength: Find key byte with *; o

1.5 4

~800 samples over 65ms '

0.5 .
+) G o T -+
+ +
b+ e A T
0 -1 ty + +*H'+ﬁ 4+ 1= ++

0.5 o 14wt T

Countermeasure: check for 717+ -7+

-1.5

I
-+.
| I | 1 | | |

scans of large arrays? 0 16 32 48 o4 o0

T T T T 1 1 T T T 1
96 112 128 144 160 176 192 208 224 240 256

Evict + Time attack

Algorithm:

1. As before, create a large array A

2. Trigger an AES encipher/decipher with known input x /output y s ' as
3. Read a few bytes of your array A q L u
4. Trigger another AES encipher/decipher with the same x/y -

Upshot: 2nd AES Is slower Iff you evicted the right cacheline

Strength: Find key byte with ~50k samples over ~30s, without ever reading
a really large array

Attack setup 2: Mallory observes Alice over network

e Suppose Alice kicks Mallory off of her machine

 Mallory cannot tamper with Alice’s cache

e Mallory doesn’t get to observe Alice’s cache directly

o Still, timing information may be viewable remotely!

 Mallory can observe response times to Alice’s TLS packets over the internet

» Mallory can use this info to find Alice’s key (albeit with many more samples)

First round table lookups

16 byte input X

¢

= Rey; @ x1l

S

& é; G e

Z, i Rey, ® X,

lz16 Rey s ® X6

S S

S

* In the first round, AES code makes 16 S-box table lookups

o If z; and z, are identical, then S[z,] table lookup will be faster than S[z,]

e Generally, 1st round running time o # of distinct intermediate values

How can Mallory exploit speed differences?

o Let’s say Mallory tells Alice to encipher an input with x; = 01, x, = 02

e Suppose for now that Mallory magically learns that a cache hit occurs In
the first two S-box lookups

 Then, Mallory knows that
Z1 =2y
Rey; ® X; = Rey, @ X,

Rey; ® Rey, = X; ® X, = 03

How can Mallory find Alice’s key?

e Even knowing Rey; ® key, = x; @ X, = 03 doesn't tell you key; or Rey,

e What If all 16 input bytes caused collisions?

« Then Mallory can also compute Rey; ® Reys, Rey; ® Rey,, ..., Rey; ® Rey;

| claim that Mallory has effectively learned 120 of the 128 bits of key!

 There are 256 choices for Rey;

o Each choice gives a unique remaining option for Rey,, keys, ..., Reyi;

 Brute-force the rest if you have a (pt, ct) pair

Making the attack more realistic

Simplifying assumptions so far

* 1input x = many cache collisions

* Can tell which bytes of z collide

 TiIming measurement corresponds
precisely to first round runtime,
which 1s exactly proportional to #

of z collisions

How to remove these assumptions

* View time for many colliding x
(stronger signal)

* Vary x samples only in certain
locations (more precise signal)

e Collect even more samples to
overcome noise

Tactic 1: Collect more samples

e Strategy
* Don’t assume the existence of a single “magical” x with many collisions

* Instead, simply try many possible x

* If x1s chosen randomly, then the probability that:
 a given pair of bytes (e.g., bytes 1 and 2) collide = 1/256
* byte 1 collides with some other byte = 1/16
e there exists a collision =1 - (256 choose 16)/(256) = 1 — 10-14

* Just as before, each collision yields a constraint on the key

* Sample enough x until we observe 15 independent constraints

Tactic 2: Strategically vary x

» Mallory needs to (1) observe a collision and (2) know where it occurs
 We can determine which bytes collide by fixing part of x

 Example: take average timing over several inputs with

e X;=0, X, =0, and the other 14 bytes randomly chosen

e X;=0, X, =1, and the other 14 bytes bytes randomly chosen

e X;=0, X, =255, and the other 14 bytes bytes randomly chosen

« For whichever bucket 1s consistently faster, x; ® x, = Rey; ® key,

Tactic 3: Repeat to overcome noise

e We know that Time(AES) is smaller when z, = z, than when they differ

e Mallory’'s measurement of AES runtime depends on many other factors

e Other bytes in the same cache line
e Other bytes of the 1st round (or last round for a ct attack)
e Other rounds

» Network latency (if you're conducting this attack remotely)
e With enough samples, we can average over this noise!

e Bin running times by x; @ x,, see which 1s smallest

Countermeasures to (cache) timing attacks

1. Don't have table lookups

 Hardware implementations of AES are not vulnerable

 There exist other ciphers that are designed to avoid the need for table lookups
(for instance, we will see later in the course that SHA-3 doesn’t have any)

2. Look up the entire table
e Pre-load the entire S-box into the cache before beginning AES
 Then the timing doesn’t depend on the particular values that you look up

* Precarious because you might get interrupted in the middle of execution

Side channels = difficult to implement crypto securely

This agreement shall be in effect

FOOf-ShOOfins until the undersigned creotées o
Preven‘rion Agr’eemen'r meaningful interpretive dance that

compares and controsts cache“based,
fiming, and ofhe.r side. channd affocks

1, » pPromisc thar once ond their countermeasures.

YOUY' Name.

I see how simp|e AES rea"y IS, I will

not implemenf it in producﬂon code
even fhough "t would be really 'Fun.
M‘_

Signafure Datre

Source:
moserware.com/2009/09/stick-figure-guide-to-advanced.html

What you should do

Validate code for timing independence

< agl / ctgrind o}

<> Code Issues 0 Pull requests 1 Projects 0 Pulse Graphs

Checking that functions are constant time with Valgrind

D 3 commits ¥ 1 branch O 0 releases

Branch: master v

Adam Langley C++ support and constify pointers

£) Makefile Initial import

=) README A couple of typos

[ctgrind.c C++ support and constify pointers
) ctgrind.h C++ support and constify pointers
=) test.c Initial import

[£) valgrind.patch Initial import

README

Checking that functions are constant time with Valgrind.

Source: github.com/agl/ctgrind

Use good crypto coding conventions

This page lists coding rules with for each a description of the problem addressed (with a
concrete example of failure), and then one or more solutions (with example code snippets).

Contents [hide]

1 Compare secret strings in constant time
1.1 Problem
1.2 Solution
2 Avoid branchings controlled by secret data
2.1 Problem
2.2 Solution
3 Avoid table look-ups indexed by secret data
3.1 Problem
3.2 Solution
4 Avoid secret-dependent loop bounds
4.1 Problem
4.2 Solution
5 Prevent compiler interference with security-critical operations
5.1 Problem
5.2 Solution
6 Prevent confusion between secure and insecure APIs
6.1 Problem
6.2 Bad Solutions
6.3 Solution

Source: cryptocoding.net/index.php/Coding_rules

Next time: padding oracle attacks

oD key K

message P

message P, maybe even key K

