
Lecture 10: Time attacks

• Lab 5 schedule 

• Posted today 

• Due next Friday 3/8 

• Read this week’s assigned 
reading before discussion 
tomorrow 

• Guest lecture by Sarah Scheffler 
next Tuesday



Part 2: Breaking data at rest

message P

key K key K

protect P via encryption or MAC

power, ti
me, …

message P, maybe even key K
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• Crypto security definitions ensure that the output is “harmless” 

• But, crypto implementations can reveal more than its desired outputs! 
These side channels of information weren’t captured in our definitions 

• Focus for this week: side channels on AES

Side channel attacks on crypto implementations

AES
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K AES AES AES

!=> and thus any AES mode



Divide and conquer

• Break 1 byte of the message or 
key at a time 

• For each byte: guess all 256 
values and check which works 

• (Think: how you see crypto 
broken in any Hollywood movie)



Last time: Power analysis of AES in hardware

Mallory: oscilloscope to measure power Alice: FPGA that runs AES



Today: Timing attacks on AES in software

Question: what might 
affect the runtime of AES? 

Answer: the S-box! 
Let’s look at simplified 
first and last rounds of AES

AES

X

Y

K

16 byte input

S S S S… …

round key0

16 byte output

S S S S… …

round keyn

… …… …

Learn S-box input or 
output !=> learn the key



AES code has table lookups

static const u8 Te4[256] = { 
    0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 
    0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 
    0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 
    0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 
    0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 
    0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 
    0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 
    0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 
    0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 
    0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 
    0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 
    0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 
    0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 
    0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 
    0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 
    0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 
    0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 
    0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 
    0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 
    0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 
    0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 
    0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 
    0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 
    0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 
    0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 
    0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 
    0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 
    0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 
    0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 
    0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 
    0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 
    0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U

Computer caching

Computers cache recently-accessed 
data, assuming that if you wanted it 
before, then you may want it again 

• Response of array lookup depends upon 
whether the value is already in cache 

• This, in turn, depends on whether you’ve 
already looked up this value in the past

Source: github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

CPU 
(bytes)

Cache 
(KB to MB)
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(GB)



Attack setup 1: Mallory co-resident with Alice

• For now, suppose Mallory has a presence on Alice’s machine 

• Co-located VMs on the cloud 

• Unprivileged user on a multi-tenant Unix machine with full-disk encryption 

• Cache is shared between all tenants on a machine 

• Ergo, Mallory can influence the state of Alice’s cache! 
[Osvik, Shamir, Tromer 2006]



How the cache works

• There is a fixed mapping between locations in memory & cache 

• If you control a large region of memory (~size of cache), you can fill in 
the cache with your own contents



Prime + Probe attack

Algorithm: 

1. Fill the cache with a large array A that you control 

2. Trigger an AES encryption (or wait for one to occur) 

3. Re-read your array A and record the time to retrieve each byte 

Upshot: AES evicted one line of your cache 

Strength: Find key byte with 
~800 samples over 65ms 

Countermeasure: check for  
scans of large arrays?



Evict + Time attack

Algorithm: 

1. As before, create a large array A 

2. Trigger an AES encipher/decipher with known input x /output y 

3. Read a few bytes of your array A 

4. Trigger another AES encipher/decipher with the same x/y 

Upshot: 2nd AES is slower iff you evicted the right cacheline 

Strength: Find key byte with ~50k samples over ~30s, without ever reading 
a really large array



Attack setup 2: Mallory observes Alice over network

• Suppose Alice kicks Mallory off of her machine 

• Mallory cannot tamper with Alice’s cache 

• Mallory doesn’t get to observe Alice’s cache directly 

• Still, timing information may be viewable remotely! 

• Mallory can observe response times to Alice’s TLS packets over the internet 

• Mallory can use this info to find Alice’s key (albeit with many more samples)



First round table lookups

• In the first round, AES code makes 16 S-box table lookups 

• If z1 and z2 are identical, then S[z2] table lookup will be faster than S[z1] 

• Generally, 1st round running time       # of distinct intermediate values∝

16 byte input X

…S S S S

round key
z1 = key1 ⊕ x1 z2 = key2 ⊕ x2 z16 = key16 ⊕ x16



How can Mallory exploit speed differences?

• Let’s say Mallory tells Alice to encipher an input with x1 = 01, x2 = 02 

• Suppose for now that Mallory magically learns that a cache hit occurs in 
the first two S-box lookups 

• Then, Mallory knows that 

z1 = z2 

key1 ⊕ x1 = key2 ⊕ x2 

key1 ⊕ key2 = x1 ⊕ x2 = 03



How can Mallory find Alice’s key?

• Even knowing key1 ⊕ key2 = x1 ⊕ x2 = 03 doesn’t tell you key1 or key2 

• What if all 16 input bytes caused collisions? 

• Then Mallory can also compute key1 ⊕ key3, key1 ⊕ key4, …, key1 ⊕ key16 

• I claim that Mallory has effectively learned 120 of the 128 bits of key! 

• There are 256 choices for key1 

• Each choice gives a unique remaining option for key2, key3, …, key16 

• Brute-force the rest if you have a (pt, ct) pair



Making the attack more realistic

Simplifying assumptions so far 

• 1 input x !-> many cache collisions 

• Can tell which bytes of z collide  

• Timing measurement corresponds 
precisely to first round runtime, 
which is exactly proportional to # 
of z collisions

How to remove these assumptions 

• View time for many colliding x 
(stronger signal) 

• Vary x samples only in certain 
locations (more precise signal) 

• Collect even more samples to 
overcome noise



Tactic 1: Collect more samples

• Strategy 
• Don’t assume the existence of a single “magical” x with many collisions 

• Instead, simply try many possible x 

• If x is chosen randomly, then the probability that: 
• a given pair of bytes (e.g., bytes 1 and 2) collide = 1/256 

• byte 1 collides with some other byte ≈ 1/16 

• there exists a collision = 1 – (256 choose 16)/(25616) ≈ 1 – 10-14 

• Just as before, each collision yields a constraint on the key 

• Sample enough x until we observe 15 independent constraints



Tactic 2: Strategically vary x

• Mallory needs to (1) observe a collision and (2) know where it occurs 

• We can determine which bytes collide by fixing part of x 

• Example: take average timing over several inputs with 

• x1 = 0, x2 = 0, and the other 14 bytes randomly chosen 

• x1 = 0, x2 = 1, and the other 14 bytes bytes randomly chosen 

• … 

• x1 = 0, x2 = 255, and the other 14 bytes bytes randomly chosen 

• For whichever bucket is consistently faster, x1 ⊕ x2 = key1 ⊕ key2



Tactic 3: Repeat to overcome noise

• We know that Time(AES) is smaller when z1 = z2 than when they differ 

• Mallory’s measurement of AES runtime depends on many other factors 

• Other bytes in the same cache line 

• Other bytes of the 1st round (or last round for a ct attack) 

• Other rounds 

• Network latency (if you’re conducting this attack remotely) 

• With enough samples, we can average over this noise! 

• Bin running times by x1 ⊕ x2, see which is smallest



Countermeasures to (cache) timing attacks

1. Don’t have table lookups 

• Hardware implementations of AES are not vulnerable 

• There exist other ciphers that are designed to avoid the need for table lookups 
(for instance, we will see later in the course that SHA-3 doesn’t have any) 

2. Look up the entire table 

• Pre-load the entire S-box into the cache before beginning AES 

• Then the timing doesn’t depend on the particular values that you look up 

• Precarious because you might get interrupted in the middle of execution



Side channels ⇒ difficult to implement crypto securely

Source: 
moserware.com/2009/09/stick-figure-guide-to-advanced.html



What you should do

Validate code for timing independence Use good crypto coding conventions

Source: cryptocoding.net/index.php/Coding_rulesSource: github.com/agl/ctgrind



Next time: padding oracle attacks

message P

key K key K

protect P via encryption or MAC

fake file
s

error m
essages

message P, maybe even key K


