Lecture 11: Padding & padding oracles

Announcements

e | am not Prof. Varia

* Lab 5 due Friday 3/8 at 11pm
* Prof. Varia will be back Thursday 3/7
» Office hours: Thursday 3/7 from 9-10 am and 2:30-3:30 pm

* Nicolas’ office hours: normal time on Friday

Last week: Power analysis and timing attacks

Power analysis (SPA, DPA, template) Timing attacks (cache: prime+probe,
evict+time; network)

')H_»'w'li-.'\\lf“‘kr'qh.))“".1*]"*)’\"’ W "W"‘* “f” qj,»;.mldl&.,‘ "‘“, ok f"\"‘M‘

§
"

] f \ E

0.25 : : s
0.2 :]
0.15 Key 0x73 1

cache main memory

0.1
50.05
s 25 —
g 0 2 Hogght thbt
[*] H C 1.5 A
O-0.05 f x 1
i : 05 A, . .
H 05 ar et T
- L] _1 -
-0.1 H
0 5 : '15 T T T T T T T T T T T T T T T
-0.2 ¢ . 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
-0.25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of measurements

Today: Padding Oracle Attacks

* Last week: Attacks on AES
— Exploit knowledge of power, timing

* Today: Attacks on modes of AES: CBC mode (plus other ingredients)

— Exploit knowledge of error messages

Divide and conquer

* Attacks follow a divide and
conquer approach: break 1 byte at
a time

* For each byte, simply guess all 256
values and check which one works

* (Think: how you see crypto broken
in any Hollywood movie)

Padding Oracles [Vaudenay 2002]

* Main idea: Exploit error messages for different kinds of
malformed input to recover the plaintext

* Three building blocks:
1. CBC Mode
2. Error messages

3. MAC+then-Encrypt

Building block 1: CBC mode (encryption)

(& CBC Enc | B,

|

public
random C

string

Recall: CBC mode needs padding

1V —

B,

Pl PZ P3

[TITTTTT]
_,? \
,

=T

v C C, C,

I 4

For today: Length of P = any number of bytes
Will not “split” bytes
Might not be multiple of 16

PKCS #7 padding

|

cC CcC CcC CcC C€C CcCc cCcCc cCc cCc cc cc cc

|| | J | J | J'l J J 1 J J | J |

CC CC CC
J | Bl I

01

%) 1 2 3 4 5 6 7 3 9 10 11

ccC €C CC CcC CCc cCc cCcc cCc cc cc cc cc
|

J J1 J N J 1 N J Jl N

12 13 14

94 04 04
1 I I

15

04

%) 1 2 3 4 5 6 7 8 9 10 11

—

12 13 14 15
10 bytes of padding
A
OA OA OA OA

CC CC CC CC CC CC oA OA OA oA OA oA
|

|| | J | J'l J J 1 J 1 J | J |

J | J J 1

%) 1 2 3 4 5 6 7 3 9 10 11

12 13 14

15

PKCS #7 padding

Padding adds N whole bytes, each of value N

(end of) plaintext message pad

A A
a Y I
47 47 47 47 47 47 01 02 03 04 065 05 05 05 05 065
1 Il Il |1 I j1 | I Il |)| 1 1L |

%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What if padding is invalid?

AN
a M

47 47 47 47 47 47 47 47 47 47 47 47 06 06 06 06
| | | | | |

Return error message “Invalid Padding”

10

(Building block 2 for padding oracle attacks)

Building block 3: MAC-then-Encrypt

So far in this class:

Privacy XOR Avuthenticity

Privacy: Encryption scheme

Authenticity: MAC

How do we put these together?
« Attempt 1: MAC-+then-encrypt
* More on this later...

11

Building block 3: MAC-then-Encrypt

Consider the following scheme for
encrypting and authenticating plaintext P:

1. Let T = HMAC(P)

2. Let pqd = PKCS7(P ” T) (Il is concatenation)

3. Return C=CBC_Enc(P | T| pad)

12

Decryption and Verification 13

Decrypting/authenticating ciphertext C:

1. Let (P, T, pad) = CBC_Dec(C)

i L:> Invalid Padding
\

2. Let T = HMAC(P) "ot messages 1o
3. Check whether T'=T recover P

/
i L:> Invalid MAC

Valid plaintext

Attack setup

14

Problems with CBC decryption?

* Formally:
— Doesn’t provide integrity
— Isn’t nonce-respecting

» Specific concerns to exploit today:

— Propagation only goes forward...
so it suffices to design a mechanism
that recovers the final block P,

— Malleability: altering ciphertext block
C, changes plaintext block P, in a
byte by byte manner! (Destroys P, in
the process, but no maitter)

15

Padding oracle attack: the idea

16

Mallory knows C for unknown msg private P

She uses mauling power to make ;
all 256 options of final byte private P

Exactly one will have the final byte , a
01 & thus look like a valid pad! private

tag T pad 030303
tag T~ pad 0303xx
tag (77| 0303) [pad 01

The other mauled messages will
have an invalid tag, such as 030302

Different error messages > can distinguish between these two cases

Use distinction to learn actual value of the final byte (here, 03)

Rinse, lather, repeat!

Padding oracle attack: the execution 17

AH‘GCI(procedure Padding Oracle (Guess #1)

« Send 256 CTs to Bob,

one for each value of c

Altered Ciphertext Block C Ciphertext Block to Decrypt

* Probably all will fail,
return error messages

— 255 of the failures will be due to bad | Decrypted Bl
padding | -
— 1 failures will have valid pad, bad MAC >
« Save the value of ¢ causing the 2nd
errorl Altered Plaintext Block |0x01

CLOUDFLARE

Padding oracle attack: computing the message 18

CBC Mode Decryption (Normal Operation) Padding Oracle (Guess #1)

Previous Ciphertext Block | X Ciphertext Block to Decrypt Altered Ciphertext Block C Ciphertext Block to Decrypt

ecTyned Hock 8 Decrypted Block a
g >
Plaintext Block m)
Altered Plaintext Block |0x01

A

We can compute a in two ways: a = x @ m = c @ 0x01 s
So, the original message byte m = x ® ¢ @ 0xO01

Padding oracle attack: getting more bytes

19

Altered Ciphertext Block

Attack byte-by-byte

Ciphertext Block to Decrypt

Decrypted Block b | a
*P
v
Altered Plaintext Block |0x02|0x02

How can we fix this® 20

« Remember the three cases * Required effort
1. Invalid padding = Read the padding bytes

2. Vdlid padding, wrong HMAC = Read padding bytes, compute the HMAC
3. Valid padding, right HMAC = Read padding bytes, compute the HMAC

* Bob’s solution: return the same error message in cases #1 and #2

* Mallory’s countermeasure: can still distinguish the two cases by observing
the fime that the MAC-then-Encrypt system takes to executel!

* Bob’s new solution: ensure that crypto software’s running time is
independent of input; here, perform the HMAC test whether the padding is
correct or not

* Mallory’s new countermeasure: exploit timing variation within HMAC itself
®

How to fix these vulnerabilities? 21

Can check to make sure you’re operating on exactly what you expect
...but you had better make sure that this check is itself timing-independent

...and even then the fix might introduce a side-channel of its own

Basically. timina-independence OpenSSL Fact @OpenSSLFact Jul 24, 2013

. Y | 9 P /*The aim of right-shifting md_size is so that the compiler doesn't

IS reqlly hard! figure out that it can remove div_spoiler..which | hope is beyond it.*/

(So IS softwq re in generql.) OpenSSL Fac.:t @OpenSSLFact Jan 22, 2013
/* EEK! Experimental code starts */

C:penSSL Fack @O.penSSLFact . . Sep 3, 2012 OpenSSL Fact @OpenSSLFact Sep 5, 2012

/* [we should] obviate the ugly and illegal kludge in /* BIG UGLY WARNING! This is so damn ugly | wanna puke ... ARGH!

CRYPTO_mem_leaks_cb. Otherwise the code police will come and get ARGH! ARGH! Let's get rid of this macro package. Please? */

us.*/

How to fix these vulnerabilities?® 2
. . . . @ Mudge @dotMudge - Jan 25 v
(SO 1S flg hh ng Gga Inst a Q Modern compilers make a lot of optimizations and perform advanced heuristics
.I . I to determine what to emit. The resulting binaries have many (attack-able)
com Pl er in ge nera) components you cannot learn from the source alone.
Source is the intent, the binary is reality.
Steven Bellovin @ @SteveBellovin - Jan 25 v
“ My favorite is how hard it is to zero out a cryptographic key that you're done
with--the optimizer says “this variable is never used again”, so it deletes the
zeroize operation.
Basically. timina-independence OpenSSL Fact @OpenSSLFact Jul 24, 2013
. Y g P /*The aim of right-shifting md_size is so that the compiler doesn't
IS req”)’ hard! - figure out that it can remove div_spoiler..which | hope is beyond it.*/
/* EEK! Experimental code starts */
OpenSSL Fact @Openssliact _ 5ep 3, 2012 5henSSL Fact @OpenSSLFact Sep 5. 2012
/™ [we should] obviate the ugly and illegal kludge in - /* BIG UGLY WARNING! This is so damn ugly | wanna puke ... ARGH!
CRYPTO_mem_leaks_cb. Otherwise the code police will come and get ARGH! ARGH! Let's get rid of this macro package. Please? */

us.*/

Padding Oracle Timeline
2002: Serge Vaudenay discovers CBC

padding oracle attacks

2002-11: Extensions to specific systems like

XML Encryption
2011: BEAST (Browser Exploit Against

SSL/TLS) builds Java applet to perform the

padding oracle in TLS 1.0

2013: Lucky 13 (TLS messages with 2 correct

padding bytes processed faster than 1)
2014: POODLE (Padding Oracle On

Downgraded Legacy Encryption) finds that
the straightforward oracle works on SSL 3.0

2015: Extended Lucky 13 attack on

Amazon’s timing-independent TLS
implementation

2017: TLS 1.3 breaks backward compatibility,

permits Encthen-MAC

23

Jan Schaumann
Attack timeline T given a theoretical vulnerability V:

TO: academic research shows an attack is possible
Industry: Pfft, unrealistic.

Jan Schaumann
T1: nation-state attackers use the attack covertly
Industry: See, nobody's using this, nothing to worry about.

Jan Schaumann
T2: academic research shows an attack is feasible with $$$$
Industry: We still have time.

Jan Schaumann
T3: actually sophisticated attackers start using it
Industry: We should do something. Not today, but definitely Soon(tm).

Jan Schaumann
T4: attacks become commodity, metasploit plugin appears
Industry: *gulp* *scrambles* *panic*

Jan Schaumann
T5: with much pain, industry eliminates attack vector
Industry: yay, we're all good now

What can you do?

Use good crypto coding conventions

This page lists coding rules with for each a description of the problem addressed (with a

concrete example of failure), and then one or more solutions (with example code snippets).

Contents [hide]

1 Compare secret strings in constant time
1.1 Problem
1.2 Solution
2 Avoid branchings controlled by secret data
2.1 Problem
2.2 Solution
3 Avoid table look-ups indexed by secret data
3.1 Problem
3.2 Solution
4 Avoid secret-dependent loop bounds
4.1 Problem
4.2 Solution
5 Prevent compiler interference with security-critical operations
5.1 Problem
5.2 Solution
6 Prevent confusion between secure and insecure APIs
6.1 Problem
6.2 Bad Solutions
6.3 Solution

24

Validate code for timing independence

H agl / ctgrind ©

<> Code Issues 0 Pull requests 1 Projects 0 Pulse Graphs

Checking that functions are constant time with Valgrind

® 3 commits ¥ 1 branch © 0 releases

Branch: master v

Adam Langley C++ support and constify pointers
[E) Makefile Initial import
[E) README A couple of typos
[E) ctgrind.c C++ support and constify pointers
(B ctgrind.h C++ support and constify pointers
[E) test.c Initial import

[) valgrind.patch Initial import

README

Checking that functions are constant time with Valgrind.

Related sources of error

Compression oracles

Basic idea: if you apply
compression before encryption,
then post-compression message
Iengtﬁ reveals some information
about message!

2012: CRIME (Compression Ratio
Info-leak Made Easy) recovers
secret web cookies over HTTPS
connections, hijacks sessions

2013: BREACH (Browser
Reconnaissance and Exfiltration via
Adaptive Compression of
Hypertext)

25

Format oracles

* Basic idea: if a higher-level
protocol expects underlying
message to obey some structural
rules, can tinker with ciphertext
until you find something that works

« 2011: “How to break XML

encryption”

« 2015: “How to break XML
encryption - automatically”

Summary: attacker oracles

* When we talk of ‘oracles’ in cryptanalysis, we mean that somehow the
system is providing the attacker with the ability to compute f(P) for some
function f

 There are many possible sources of these ‘oracles’

— Error messages

— Message length, if a compression function is applied pre-encryption
— Expected formatting of the underlying message (e.g., XML)

— Time for a computation to finish

— Performance speedup in running time due to the cache

— Power consumed by the device

26

Part 1: privacy XOR authenticity 27

Privacy Authenticity
INDS-CPA against Even after viewing many (A, T) pairs,
nonce-respecting Eve Mallory cannot forge a new one

| Alice
’ @ submit 4

@ choose T =] - >
K« {0,1}* : receive T

Mallory wins if: © output
1. It's a valid forgery (A%, T%)
2. It's new

How to combine Enc and MAC? 28

Enc and MAC MAC then Enc Enc then MAC

&3

Intuitive concerns with MAC then Enc

P || pad

* Recipient must perform decryption before knowing whether the message is authentic
* Leads to problems, as we just saw

How to combine Enc and MAC? 29

Crypl'og rqphic MAC then Enc Enc then MAC
doom principle :

P P|| pad

If you have to perform
any crypto operation
before verifying the
MAC on a message
you've received, it will
somehow inevitably
lead to doom!

- Moxie Marlinspike

C T

Intuitive concerns with MAC then Enc

* Recipient must perform decryption before knowing whether the message is authentic
* Leads to problems, as we just saw

Next time: Authenticated Encryption

* Build toward both authenticity and privacy with the same construct!

30

