
Lecture 12: Authenticated Encryption

• Lab 5 due Friday at 11pm

• No discussion sessions tomorrow

• Nicolas will hold office hours tomorrow at the usual time

• Have a good spring break!

Cryptography Cryptanalysis

Cryptology

Math of 
algorithm

Physics of 
implementation

Cryptanalysis

Side channels ⇒ difficult to implement crypto securely

Source: 
moserware.com/2009/09/stick-figure-guide-to-advanced.html

Last time: Padding oracle attack

Outcomes

1. Invalid padding

2. Valid padding, wrong HMAC

3. Valid padding, right HMAC

What to do in cases #1 and #2?

• Typical answer: return error message

• We can use error messages to find P!

P

CBC Dec

T
pad

C

HMAC
success?

How can we fix this?

• Remember the three cases
1. Invalid padding
2. Valid padding, wrong HMAC
3. Valid padding, right HMAC

• Bob’s solution: return the same error message in cases #1 and #2

• Mallory’s countermeasure: can still distinguish the two cases by observing the
time that the MAC-then-Encrypt system takes to execute!

• Bob’s new solution: ensure crypto software’s runtime is independent of
input (i.e., perform the HMAC test whether the padding is correct or not)

• This won’t work; Mallory can exploit timing variations within HMAC itself ☹

Required effort
!=> Read the padding bytes
!=> Read padding bytes, compute the HMAC
!=> Read padding bytes, compute the HMAC

Software is hard!

• Timing independence is hard

• So is software in general

• So are compilers in general

Part 2: Breaking crypto via side channels

message P

key K

math-approved way to protect P

message P, maybe even key K

fake file
s

error m
essages

Issues with Bob’s error messages
1. He sends them sometimes, not always.
2. His decision depends upon the key.
3. Error messages depend upon “non-

cryptographic” properties of the message,
like whether the padding is correct.

key K

Our desired countermeasure

message P

key K

math-approved way to protect P

fake file
s

I’m
 not ta

lking to 

you, Mallory

1. Bob always rejects
Mallory’s messages

2. Ideally with minimal
use of the key

3. All of Bob’s checks
are cryptographic

key K

– Prof. Matthew Green, Johns Hopkins

“Confidentiality xor authenticity is not possible. If you don't
have both, often you don't have either.”

– Moxie Marlinspike

“If you have to perform any cryptographic operation before
verifying the MAC on a message you’ve received, it will
somehow inevitably lead to doom!”

Encryption xor Authentication

IND$-CPA against 
nonce-respecting Eve

Even after viewing many (A, T) pairs,
Mallory cannot forge a new one

P, N

$

P, N

C C

Enc ❶ choose 
K ← {0,1}λ

❷ submit A

receive T

Mallory wins if:
1. It’s a valid forgery
2. It’s new

❸ output 
(A*, T*)

Alice Mallory

Privacy Authenticity

First, let’s strengthen privacy

Same thing, but now Mallory has access to
encryption and decryption oracles

What is the connection to padding oracles?

P

$

P

C C

Enc Enc

Dec$ $-1

IND$-CCAIND$-CPA

Formalizing IND$-CCA

Comprises 3 algorithms:

• KeyGen(λ) outputs a key K ← {0,1}λ

• EncryptK(message P, nonce N) → C

• DecryptK(ciphertext C, nonce N) → P

Satisfies 3 constraints

• Performance: all 3 algorithms are
efficiently computable

• Correctness: DecK-1 (EncK(P, N)) = P for
all K ∈ {0,1}λ , N ∈ {0,1}μ , and P ∈ {0,1}*

• (q, t, ε)-IND$-CCA: for every nonce-respecting
adversary A who makes ≤ q queries and runs in
time ≤ t, 
 
 
where $ responds randomly and so does $-1
subject to consistency with $

Enc

Dec$ $-1
(q, t, ε)

AEncK,DecK ≈q,t,ϵ A$,$−1

Combining Enc and MAC generically

P || pad

MACEnc

TC

MAC then Enc

P

MAC

Enc

T
pad

C
Intuitive concerns with MAC then Enc
• The private data P is authenticated, but C is not!
• Recipient must perform decryption before

knowing whether the message is authentic

Enc and MAC

P || pad

MAC

Enc

TC

Enc then MAC

Combining Enc and MAC generically

MAC then Enc

P || pad

MACEnc

TC

P

MAC

Enc

T
pad

C

P || pad

MAC

Enc

TC

Confidentiality None CPA CCA!

Integrity Plaintext integrity: Cannot make CT that decrypts to
message that sender never encrypted

Ciphertext integrity: Cannot make new
valid CTs, only know sender-made ones

Enc and MAC Enc then MAC

Formalizing ciphertext integrity

• Goal: Mallory cannot make a valid CT that wasn’t previously made by sender

• Imagine that Mallory is trying to perform a padding oracle attack

• If she spams Bob with malformed CTs, now he simply rejects them all!

Enc

Dec$

T Operation: This box returns a single “integrity failure”
error message no matter what Mallory submits!

Restriction: Mallory cannot attempt to decrypt
ciphertexts that are the result of prior encryptions.

Relating integrity and confidentiality

• Thm. Suppose that an encryption scheme provides (q, t, ε1)-CPA privacy and (q, t,
ε2)-ciphertext integrity. Then, it also provides (q, t, ε1+2ε2)-CCA privacy.

• Intuition: If Mallory can’t forge new messages, then Dec oracle useless to her

• Proof by picture:
Enc Dec$ $-1

T

Enc$

by CTXT

T

$

by CPA

by CTXT, emulate $-1
in Mallory’s head

Def. Authenticated Encryption with Associated Data (AEAD)

• KeyGen: randomly chooses key, as always

• Enc(authenticated data A,  
private + auth data P, nonce N) → 
ciphertext C of length |C| > |P|

• Dec(C, A, N) → P or

Why combine authentication and encryption?

• Better security: resist some of these physical side channel attacks

• Simplicity: developers have fewer decisions (i.e., opportunities for mistakes)

• Performance: save in time + space costs, also often only need 1 key

T

Auth Enc

P

C

A, N

Auth Dec

C, A, N

P or T
T

AEAD as a picture

gibberishEnc

Dec “I refuse”

