Lecture 14: Timely key exchange

e Lab 6 due Monday 3/25 at 11pm

e Guest lectures on cryptography + law starting 1 week from today

Recall: Authenticated encryption

Course roadmap

| N

Protected
Elegant |]
- communication |

protocols —

Utilitarian
tools

. Block | | Hash |
{ ciphers | | functions |

N

| Random(ish) ﬁ
| permutations |

Confidentiality

Integrity

Availability

Private v

Confidentiality {De”‘able ?

Withstand device compromise X

Authenticated v

Integrity {Binding [non-malleable v

Fresh X

Availability

End-to-end crypto over the Internet

\ Protection from network

« Message privacy
« Message binding

» Sender deniability . » Sender authenticity
« Secrecy before/after compromise . Message freshness

Protection from endpoints

Forward and backward secrecy

compromise

—%—

recovery fime

safe? <

pwned

> safe?

Forward (aka pre-

compromise) secrecy:
past messages remain
confidential even if secret
state is exposed later

Backward (aka post-

recovery) secrecy:
future messages remain
confidential even if secret
state is compromised and
then the device recovers

Non-repudiable crypto (xkcd.com/538)

A CRYPTO NERD'S
IMAGINATION &

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOULAR,
CLOSTER TO CRACK \T.

NO GOoD! ITS
U096 -BI\T RSA\

BLAST! OUR)
EVIL PLAN
1S FOILED! ™~

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TEUS U5 THE PASSWORD.

\ Gor 1T,

O%)Q}

Deniable crypto = can pretend you said something else

One time pad — perfect deniability

Bad news: can prove that perfect deniability requires |K| > |P]

Auth encryption — partial sender deniability

Part 3: Generate, exchange, evolve, and delete keys

Core ideas of Part 3

e Key exchange

e Alice and Bob want to generate a shared key without ever having met before

« Often, need the help of a (partially) trusted entity to mediate this connection

 Key evolution (aka ratcheting)
e Use each key to protect just 1 message, then delete it!

* Protect message privacy + integrity against device compromise in past + future

 Generate a new key for the next message

Key management = initial exchange + subsequent evolution

Server trust? Cryptoused Method
Full Symmetric Needham-Schroeder = Kerberos system

Partial Asymmetric (Authenticated) Diffie-Hellman key exchange

None Symmetric Key evolution, starting from an initial shared symmetric key

Needham-Schroeder protocol for key transport

Objective: with the help of a trusted server, Alice + Bob agree on a shared key

I \Want to make a new shared symmetric key Kag

Needham-Schroeder: take 1

Basic idea: Let the trusted server choose Kxg

Problems?

* Mallory can read the key

 Alice doesn’t know If K,z came
from trusted server

« Bob doesn’t know this either
(even if Alice did)

Needham-Schroeder: take 2

New idea: Authenticate messages from the trusted server

3: A, {Kag]gs

2: {KAB}AS, {KAB}BS Notation: Protect message
contents using this key

Two Problems

« Bob doesn’t know whether he’s
really talking to Alice

« Server I1s too willing to create
messages Intended for others

Problem 1 in more detail

Issue: Mallory can con Bob into producing messages that weren't
Intended for Alice, and then forward them along anyway

Problem 2 in more detail

Because the server signs messages intended for other parties, Mallory can use this
capability to emulate the actions of the trusted server!

3: A, {IKmalms

2: {IKmalas,
1KmalMs

S
2": IKmatwmss tKmalas

Needham-Schroeder: take 3

Both problems were due to the fact that people misinterpreted some of the
server’s responses as Intended for other participants. So, have server be explicit.

3: A, {Kag, Algs

2: {Kag, Blas, tKag, Alps

Problem: freshness

Mallory can always repeat
message #2 from before. This
would defeat forward secrecy.

Needham-Schroeder: take 4

Use nonces to ensure uniqueness messages 2 and 3 without maintaining state

3: A, {Kag, Algs

2: 1 Nx, B, Kag, {Kas; Algs Jas

Two Problems

« Bob doesn’t know key Is fresh

4
I |/]/ »

e Alice doesn’t know If Bob
received the key

Needham-Schroeder: take 5

Improvement: Have Alice and Bob immediately use their newly-received keys to
make sure that they both have them and that they agree upon their freshness

3: A, {Kag, Algs
4: {INg}as

/)‘ 4—

5: {Ng}aB

—>

Problem?

« Anybody can produce message 5, since it equals message 4

« We need Alice to do something that depends on the nonce but doesn’t equal it

Needham-Schroeder: take 6

Key idea: Alice sends a simple function of the nonce Ng

3: A, {Kag, Algs
4: {INg}aB

/
/
e
. o

5:{Ng - 1}aB

—

Full Needham-Schroeder protocol (1978)

3: A, {Kag, Algs _

A {NgjaB
5:{Ng - 1}a8

1: A, B, Na
LABNy
2:{Na B, Kag, {Kag, Alps Jas

W

Whew, we finally reproduced the full protocol!

It has no remaining problems... right?

Denning and Sacco (1981)

1: A, B, Ny i
- , :445 {Ng}ag
2: { Na, B, Kag, {Kag, Algs }AS>

[J
' - ' 2
: e |) 9 . ,"'
' - : Nl 2
= " - 5:{Ng-1 R
| ‘ ’ : * — E N 1
| TSR > B ° { B }AB : P &
e : \

 Problem: Bob's involvement begins in step 4; he has no i1dea If
the first three steps of the protocol occurred recently before then

e |If Mallory has compromised key Kag when 1t was used in the past,
she can replay message #3 to start a “'new” Needham-Schoeder
Instance with Bob that he will think is fresh when 1t isn't

Denning and Sacco’s fix

Key Idea: Get Bob involved early In the protocol so he also knows 1t is fresh

-1: A _
O: {A, Ng'}
— 1: A, B, Ny, (A, NoJae e —
———————————————————————————— .‘

2: {NAa B KAB’ {KAB’ A NB }BS}AS

> 3: A’ {KAB’ Aa NBlBS
4: {Ngjag

<—

5:{Ng - 1}aB

(/)]

=

Needham-Schroeder — Kerberos

Authentication .
Requirements

auth Server (AS)

request
ﬁ
- 1. Users only enter passwords once, at
Client] €D et the beginning of each session
len TGT |
/2 E, F 2. The network itself is untrusted:
Client_to server ticket " .
passwords and authentication

Client/server
‘E) Earvics tokens need protection in transit
' . Server (SS)
Client to server ticket .
SUthenticator 3. Aservice must be able to prove that
the person using a ticket == the

person to whom 1t was issued

H
time auth

4. Clients must authenticate services
before sending sensitive info to
them (mutual authentication)

Next time: Public key infrastructure

Lower trust in the server, at the expense of using more expensive cryptography

I \Want to make a new shared symmetric key Kag

Name Unique key
Alice

Bob

