
Lecture 14: Timely key exchange

• Lab 6 due Monday 3/25 at 11pm

• Guest lectures on cryptography + law starting 1 week from today

Recall: Authenticated encryption

gibberishEnc

Dec “I refuse”

Course roadmap

Random(ish)
permutations

Utilitarian
tools

Elegant
protocols

Block
ciphers

Hash
functions

?

Protected
communication

?

??

Confidentiality

Integrity

Availability

Confidentiality

Integrity

Availability

Private
Deniable
Withstand device compromise

Authenticated
Binding / non-malleable
Fresh

✓

✗

✓
✓

?
✗

End-to-end crypto over the Internet

Protection from network
• Message privacy
• Message binding
• Sender authenticity
• Message freshness

Protection from endpoints
• Sender deniability
• Secrecy before/after compromise

Forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

Forward	(aka	pre-
compromise)	secrecy:	
past	messages	remain	
confidential	even	if	secret	
state	is	exposed	later

Backward	(aka	post-
recovery)	secrecy:	
future	messages	remain	
confidential	even	if	secret	
state	is	compromised	and	
then	the	device	recovers

Non-repudiable crypto (xkcd.com/538)

Deniable crypto = can pretend you said something else

C = EncK(P)

what does C 
decrypt to?

hmm… PA’

what does C 

decrypt to
?

hmm… PB’

One time pad !-> perfect deniability

C = P ⊕ K

what does C 

decrypt to
?

what does C 
decrypt to?PA’ with key K = C ⊕ PA’ PB’ w

ith key K = C ⊕ PB’

Bad news: can prove that perfect deniability requires |K| ≥ |P|

Auth encryption !-> partial sender deniability

show me your phone

P, K, C

C = EncK(P)

did you write P?no, Bob wrote it!

Part 3: Generate, exchange, evolve, and delete keys

key K

??

key K

Core ideas of Part 3

• Key exchange

• Alice and Bob want to generate a shared key without ever having met before

• Often, need the help of a (partially) trusted entity to mediate this connection

• Key evolution (aka ratcheting)

• Use each key to protect just 1 message, then delete it!

• Protect message privacy + integrity against device compromise in past + future

• Generate a new key for the next message

Key management = initial exchange + subsequent evolution

Server trust? Crypto used Method
Full Symmetric Needham-Schroeder !=> Kerberos system

Partial Asymmetric (Authenticated) Diffie-Hellman key exchange

None Symmetric Key evolution, starting from an initial shared symmetric key

Needham–Schroeder protocol for key transport

Objective: with the help of a trusted server, Alice + Bob agree on a shared key

Shared symmetric key K
AS Shared sy

mmetric
 ke

y K
BS

Want to make a new shared symmetric key KAB

Needham–Schroeder: take 1

Basic idea: Let the trusted server choose KAB

1: A, B

2: KAB

3: KAB

Problems?

• Mallory can read the key

• Alice doesn’t know if KAB came
from trusted server

• Bob doesn’t know this either
(even if Alice did)

Needham–Schroeder: take 2

New idea: Authenticate messages from the trusted server

1: A, B

2: {KAB}AS, {KAB}BS

3: A, {KAB}BS

Notation: Protect message
contents using this key

Two Problems
• Bob doesn’t know whether he’s

really talking to Alice

• Server is too willing to create
messages intended for others

Problem 1 in more detail

Issue: Mallory can con Bob into producing messages that weren’t
intended for Alice, and then forward them along anyway

3: A, {KAB}BS 3: M, {KAB}BS

{I hate you}AB{I hate you}AB

Problem 2 in more detail
Because the server signs messages intended for other parties, Mallory can use this
capability to emulate the actions of the trusted server!

1’: M, A

2’: {KMA}MS, {KMA}AS

3: A, {KMA}MS

1: A, B
2: {KMA}AS,
2: {KMA}MS

???

Needham–Schroeder: take 3
Both problems were due to the fact that people misinterpreted some of the
server’s responses as intended for other participants. So, have server be explicit.

1: A, B

2: {KAB, B}AS, {KAB, A}BS

3: A, {KAB, A}BS

Problem: freshness

Mallory can always repeat
message #2 from before. This
would defeat forward secrecy.

Needham–Schroeder: take 4

Use nonces to ensure uniqueness messages 2 and 3 without maintaining state

1: A, B, NA

2: { NA, B, KAB, {KAB, A}BS }AS

3: A, {KAB, A}BS

Two Problems
• Bob doesn’t know key is fresh

• Alice doesn’t know if Bob
received the key

Needham–Schroeder: take 5
Improvement: Have Alice and Bob immediately use their newly-received keys to
make sure that they both have them and that they agree upon their freshness

1: …

2: …
5: {NB}AB

Problem?

• Anybody can produce message 5, since it equals message 4

• We need Alice to do something that depends on the nonce but doesn’t equal it

4: {NB}AB

3: A, {KAB, A}BS

Needham–Schroeder: take 6
Key idea: Alice sends a simple func%on of the nonce NB

1: …

2: …
5: {NB - 1}AB

4: {NB}AB

3: A, {KAB, A}BS

Full Needham–Schroeder protocol (1978)

Whew, we finally reproduced the full protocol!

It has no remaining problems… right?

5: {NB - 1}AB

4: {NB}AB

3: A, {KAB, A}BS
1: A, B, NA

2: { NA, B, KAB, {KAB, A}BS }AS

Denning and Sacco (1981)

• Problem: Bob’s involvement begins in step 4; he has no idea if
the first three steps of the protocol occurred recently before then

• If Mallory has compromised key KAB when it was used in the past,
she can replay message #3 to start a “new” Needham-Schoeder
instance with Bob that he will think is fresh when it isn’t

5: {NB - 1}AB

4: {NB}AB

3: A, {KAB, A}BS
1: A, B, NA

2: { NA, B, KAB, {KAB, A}BS }AS

Denning and Sacco’s fix

Key idea: Get Bob involved early in the protocol so he also knows it is fresh

3: A, {KAB, A, NB’}BS

5: {NB - 1}AB

4: {NB}AB

1: A, B, NA, {A, NB’}BS

2: {NA, B, KAB, {KAB, A, NB’}BS}AS

-1: A
0: {A, NB’}BS

Needham-Schroeder !-> Kerberos

Requirements

1. Users only enter passwords once, at
the beginning of each session

2. The network itself is untrusted:
passwords and authentication
tokens need protection in transit

3. A service must be able to prove that
the person using a ticket == the
person to whom it was issued

4. Clients must authenticate services
before sending sensitive info to
them (mutual authen%ca%on)

Next time: Public key infrastructure

Lower trust in the server, at the expense of using more expensive cryptography

Want to make a new shared symmetric key KAB

Name Unique key
Alice

Bob

